Bioeconomy and sustainable development goals: How do their interactions matter?

Anne Warchold , Prajal Pradhan

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100293

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100293 DOI: 10.1016/j.geosus.2025.100293
Research Article
review-article

Bioeconomy and sustainable development goals: How do their interactions matter?

Author information +
History +
PDF

Abstract

Countries worldwide are leveraging the 2030 Agenda and its 17 Sustainable Development Goals (SDGs) for building a more resilient and sustainable future. One solution in this endeavour is transitioning towards a bioeconomy (BE), utilizing renewable resources and low-carbon value chains to meet food, energy, and materials demands. However, BE is neither inherently circular nor sustainable, compromising SDGs’ progress. Therefore, we conducted a detailed ex-post analysis using correlation, transfer entropy, and network analysis to understand the complex causal interactions between BE and SDGs. Moving beyond correlation, we explored the directional influence of interactions within the BE-SDG nexus. Our findings reveal a robust bidirectional influence between 19 BE criteria and 109 SDG targets across all goals among 48 European countries. While BE can drive progress toward SDGs, a balanced distribution of synergies and trade-offs constrains its impact. Collaborative efforts among European countries would effectively drive towards achieving both BE and SDGs. SDG 13 has positive influences from lowered fossil fuel emissions and negative ones due to land use changes and intensified agriculture, which releases stored carbon. Similarly, SDG 15 emerges as a positive influence, as healthy ecosystem services foster a resilient BE. Despite efforts towards SDG 12, Europe’s unsustainable consumption impedes BE supply chains. While BE practices are intended to accelerate sustainability, they fall short of playing a transformational role in achieving the SDGs. A shift towards a cohesive, collaborative strategy that leverages synergies and mitigates trade-offs can enhance the BE’s impact, advancing Europe closer to achieving the 2030 Agenda.

Keywords

SDGs / Bioeconomy / Bioeconomy database / Synergies and trade-offs / Causal interactions / Directionality

Cite this article

Download citation ▾
Anne Warchold, Prajal Pradhan. Bioeconomy and sustainable development goals: How do their interactions matter?. Geography and Sustainability, 2025, 6(3): 100293 DOI:10.1016/j.geosus.2025.100293

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Anne Warchold: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Prajal Pradhan: Writing – review & editing, Supervision, Resources, Project administration, Funding acquisition, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We acknowledge funding from the German Federal Ministry of Education and Research (BMBF) for the BIOCLIMAPATHS project (Grant No. 01LS1906A) under the Axis-ERANET call. Further, we acknowledge funding from the European Research Council (ERC) Starting Grant 2022 for the BEYONDSDG project (Grant No. 101077492). The funders had no role in the design, data collection and analysis, publication decisions, or study preparation.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100293.

References

[1]

Abdullah, M, Ali, Z, Yasin, M. T., Amanat, K, Sarwar, F, Khan, J, Ahmad, K., 2024. Advancements in sustainable production of biofuel by microalgae: recent insights and future directions. Environ. Res., 262 , Article 119902. doi: 10.1016/j.envres.2024.119902.

[2]

Barska, A, Wojciechowska-Solis, J., 2020. E-consumers and local food products: a perspective for developing online shopping for local goods in Poland. Sustainability, 12 , p. 4958. doi: 10.3390/su12124958.

[3]

Behrendt, S, Dimpfl, T, Peter, F. J., Zimmermann, D. J., 2019. RTransferEntropy – quantifying information flow between different time series using effective transfer entropy. SoftwareX, 10 , Article 100265. doi: 10.1016/j.softx.2019.100265.

[4]

Biber-Freudenberger, L, Ergeneman, C, Förster, J. J., Dietz, T, Börner, J., 2020. Bioeconomy futures: expectation patterns of scientists and practitioners on the sustainability of bio-based transformation. Sustain. Dev., 28 , pp. 1220-1235. doi: 10.1002/sd.2072.

[5]

Biermann, F, Hickmann, T, S´enit, C. A., Beisheim, M, Bernstein, S, Chasek, P, Grob, L, Kim, R. E., Kotzé, L. J., Nilsson, M, Ordónez Llanos, A, Okereke, C, Pradhan, P, Raven, R, Sun, Y, Vijge, M. J., van Vuuren, D, Wicke, B., 2022. Scientific evidence on the political impact of the Sustainable Development Goals. Nat. Sustain., 5 , pp. 795-800. doi: 10.1038/s41893-022-00909-5.

[6]

Boermans, T, Schillig, F., 2005. BioXchange: a European trading floor for biomass. Euroheat Power (Engl. Ed.) 4, 36-39.

[7]

Bracco, S, Tani, A, Calicioglu, Ö, Gomez San Juan, M, Bogdanski, A., 2019. Indicators to Monitor and Evaluate the Sustainability of bioeconomy. Overview and a Proposed Way Forward. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy

[8]

Bugge, M. M., Hansen, T, Klitkou, A., 2016. What is the bioeconomy?. A review of the literature. Sustainability, 8 , p. 691. doi: 10.3390/su8070691.

[9]

Calicioglu, Ö, Bogdanski, A., 2021. Linking the bioeconomy to the 2030 sustainable development agenda: can SDG indicators be used to monitor progress towards a sustainable bioeconomy?. New Biotechnol., 61 , pp. 40-49. doi: 10.1016/j.nbt.2020.10.010.

[10]

D'Amato, D, Droste, N, Allen, B, Kettunen, M, Lähtinen, K, Korhonen, J, Leskinen, P, Matthies, B. D., Toppinen, A., 2017. Green, circular, bioeconomy: a comparative analysis of sustainability avenues. J. Clean. Prod., 168 , pp. 716-734. doi: 10.1016/j.jclepro.2017.09.053.

[11]

De Besi, M, McCormick, K., 2015. Towards a bioeconomy in Europe: national, regional and industrial strategies. Sustainability, 7 , pp. 10461-10478. doi: 10.3390/su70810461.

[12]

Delgado-Serrano, M. M., Hurtado-Martos, J. A., 2018. Land use changes in Spain. Drivers and trends in agricultural land use. EU Agrar. Law, 7 (2) , pp. 1-8. doi: 10.2478/eual-2018-0006.

[13]

Dimpfl, T, Peter, F. J., 2013. Using transfer entropy to measure information flows between financial markets. Stud. Nonlinear Dyn. Econom., 17 , pp. 85-102. doi: 10.1515/snde-2012-0044.

[14]

Dolge, K, Balode, L, Laktuka, K, Kirsanovs, V, Barisa, A, Kubule, A., 2023. A comparative analysis of bioeconomy development in European Union countries. Environ. Manage., 71 , pp. 215-233. doi: 10.1007/s00267-022-01751-3.

[15]

Edinburgh, T, Eglen, S. J., Ercole, A., 2021. Causality indices for bivariate time series data: a comparative review of performance. Chaos, 31 , Article 083111. doi: 10.1063/5.0053519.

[16]

European Commission, 2012. Innovating for sustainable growth: a bioeconomy for Europe Technical Report. European Union, Brussels, Belgium . https://data.europa.eu/doi/ 10.2777/6462

[17]

European Commission, 2018. Bioeconomy: the European way to use our natural resources: action plan 2018 Technical Report. European Commission Directorate-General for Research and Innovation, Brussels, Belgium . https://data.europa.eu/doi/10.2777/ 79401.

[18]

European Commission, 2024. The bioeconomy in different countries . https:// knowledge4policy.ec.europa.eu/visualisation/bioeconomy- different- countries_en.

[19]

EUROSTAT, 2023. European Statistical Office - data browser . https://ec.europa.eu/ eurostat/databrowser/explore/all/all_themes

[20]

FAO, 2021. Aspirational principles and criteria for a sustainable bioeconomy. Technical Report. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy . https://openknowledge.fao.org/handle/20.500.14283/cb3706en

[21]

FAO, 2022a. AQUASTAT - FAO’s Global Information System on Water and Agriculture of the United Nations . https://data.apps.fao.org/aquastat/?lang=en.

[22]

FAO, 2022b. FAOSTAT - FAO Statistical Databases: Agriculture, Fisheries, Forestry, Nutrition. Food and Agriculture Organization of the United Nations . https://www.fao.org/faostat/en/# data.

[23]

Ferraz, D, Pyka, A., 2023. Circular economy, bioeconomy, and sustainable development goals: a systematic literature review. Environ. Sci. Pollut. Res. . doi: 10.1007/s11356-023-29632-0.

[24]

Ferreira Gregorio, V., Pié, L., Terceno, A., 2018. A systematic literature review of bio, green and circular economy trends in publications in the field of economics and business management. Sustainability 10, 4232. doi: 10.3390/su10114232.

[25]

Global Footprint Network, 2022. National Footprint and Biocapacity Accounts, 2019 edition . https://www.footprintnetwork.org/licenses/.

[26]

Heimann, T., 2019. Bioeconomy and SDGs: does the bioeconomy support the achievement of the SDGs?. Earth. Future, 7 , pp. 43-57. doi: 10.1029/2018EF001014.

[27]

Humpenöder, F, Popp, A, Bodirsky, B. L., Weindl, I, Biewald, A, Lotze-Campen, H, Dietrich, J. P., Klein, D, Kreidenweis, U, Müller, C, Rolinski, S, Stevanovic, M., 2018. Large-scale bioenergy production: how to resolve sustainability trade-offs?. Environ. Res. Lett., 13 , Article 024011. doi: 10.1088/1748-9326/aa9e3b.

[28]

JRC, 2022. Data/modelling platform of resource economics - bioeconomy, data and dashboards . https://datam.jrc.ec.europa.eu/datam/area/BIOECONOMY?rdr= 1720428460901.

[29]

Jónsdóttir, S, Gísladóttir, G., 2023. Land use planning, sustainable food production and rural development: a literature analysis. Geogr. Sustain., 4 , pp. 391-403. doi: 10.1016/j.geosus.2023.09.004.

[30]

Korbel, J., Jiang, X., Zheng, B., 2019. Transfer entropy between communities in complex financial networks. Entropy 21, 1124. doi: 10.3390/e21111124.

[31]

Kumar, K, Ghosh, S, Angelidaki, I, Holdt, S, Karakashev, D, Alvarado-Morales, M, Das, D., 2016. Recent developments on biofuels production from microalgae and macroalgae. Renew. Sust. Energ. Rev., 65 , pp. 235-249. doi: 10.1016/j.rser.2016.06.055.

[32]

Lee, J, Nemati, S, Silva, I, Edwards, B. A., Butler, J. P., Malhotra, A., 2012. Transfer entropy estimation and directional coupling change detection in biomedical time series. Biomed. Eng. Online, 11 , p. 19. doi: 10.1186/1475-925X-11-19.

[33]

Li, C., Pradhan, P., Chen, G., 2024. The agricultural system and planetary boundaries. In: Reference Module in Food Science. Elsevier, Amsterdam. doi: 10.1016/ B978- 0- 443- 15976- 3.00012- X.

[34]

Marschinski, R, Kantz, H., 2002. Analysing the information flow between financial time series. Eur. Phys. J. B, 30 , pp. 275-281. doi: 10.1140/epjb/e2002-00379-2.

[35]

Mesa, J. A., Sierra-Fontalvo, L, Ortegon, K, Gonzalez-Quiroga, A., 2024. Advancing circular bioeconomy: a critical review and assessment of indicators. Sustain. Prod. Consump., 46 , pp. 324-342. doi: 10.1016/j.spc.2024.03.006.

[36]

Miola, A, Schiltz, F., 2019. Measuring sustainable development goals performance: how to monitor policy action in the 2030 Agenda implementation?. Ecol. Econ., 164 , Article 106373. doi: 10.1016/j.ecolecon.2019.106373.

[37]

Miranda, J., Börner, J. , Bruckner, M., Lutz, C., Reuschel, S., Stöver, B., Többen, J., Wilts, R., 2023. Towards a bioeconomy within planetary boundaries. Technical, Report. Center for, Development, Research (ZE), F, University ofonn, B, Bonn, Germany.

[38]

Novelli, L, Atay, F. M., Jost, J, Lizier, J. T., 2020. Deriving pairwise transfer entropy from network structure and motifs. Proc. R. Soc. A-Math. Phy., 476 , Article 20190779. doi: 10.1098/rspa.2019.0779.

[39]

Peng, S., Han, W., Jia, G., 2022. Pearson correlation and transfer entropy in the Chinese stock market with time delay. Data Sci. Manage. 5, 117–123. doi: 10.1016/j.dsm.2022. 08.001.

[40]

Poppe Terán, C, Naz, B. S., Graf, A, Qu, Y, Hendricks Franssen, H. J., Baatz, R, Ciais, P, Vereecken, H., 2023. Rising water-use efficiency in European grasslands is driven by increased primary production. Commun. Earth Environ., 4 , pp. 1-13. doi: 10.1038/s43247-023-00757-x.

[41]

Pradhan, P., 2023. A threefold approach to rescue the 2030 Agenda from failing. Natl. Sci. Rev., 10 , p. nwad015. doi: 10.1093/nsr/nwad015.

[42]

Pradhan, P, Costa, L, Rybski, D, Lucht, W, Kropp, J. P., 2017. A systematic study of Sustainable Development Goal (SDG) interactions. Earth. Future, 5 , pp. 1169-1179. doi: 10.1002/2017EF000632.

[43]

Pradhan, P, Joshi, S, Dahal, K, Hu, Y, Subedi, D. R., Putra, M. P. I. F., Vaidya, S, Pant, L. P., Dhakal, S, Hubacek, K, Rupakheti, M, Roberts, D. C., Van Den Hurk, B., 2025. Policy relevance of IPCC reports for the Sustainable Development Goals and beyond. Resour. Environ. Sustain., 19 , Article 100192. doi: 10.1016/j.resenv.2025.100192.

[44]

Pradhan, P, Seydewitz, T, Zhou, B, Lüdeke, M. K. B., Kropp, J. P., 2022. Climate extremes are becoming more frequent, co-occurring, and persistent in Europe. Anthr. Sci., 1 , pp. 264-277. doi: 10.1007/s44177-022-00022-4.

[45]

Pradhan, P, Weitz, N, Daioglou, V, Abrahão, G. M., Allen, C, Ambrósio, G, Arp, F, Asif, F, Bennich, T, Benton, T. G., Biermann, F, Cao, M, Carlsen, H, Chen, F, Chen, M, Daams, M. N., Dawes, J. H. P., Dhakal, S, Gilmore, E, Miguel, L. J., Hubacek, K, Hu, Y, Jager, W, Kc, S, Kearney, N. M., Khot, U. A., Kluck, T, Kulkarni, S, Leininger, J, Li, C, Li, J, Lotze-Campen, H, Parrado-Hernando, G, Pedercini, M, Phuyal, R. K., Prell, C, Rijal, A, Schweizer, V, Sijtsma, F. J., Sorgel, B, Spittler, N, van Vuuren, D, Warchold, A, Weber, E, Wicke, B, Widerberg, O, Wilts, R, Wingens, C, Wu, C, Xing, Q, Yan, J, Yuan, Z, Zhou, X, Zimm, C., 2024. Three foci at the science-policy interface for systemic Sustainable Development Goal acceleration. Nat. Commun., 15 , p. 8600. doi: 10.1038/s41467-024-52926-x.

[46]

Rodriguez-Anton, J. M., Rubio-Andrada, L, Celemin-Pedroche, M. S., Alonso-Almeida, M. D. M., 2019. Celemin-Pedroche, M.D.M. Alonso-Almeida. Analysis of the relations between circular economy and sustainable development goals. Int. J. Sustain. Dev. World Ecol., 26 , pp. 708-720. doi: 10.1080/13504509.2019.1666754.

[47]

Ronzon, T., Iost, S., Philippidis, G., 2022. Has the European Union entered a bioeconomy transition? Combining an output-based approach with a shift-share analysis. Environ. Dev. Sustain. 24, 8195–8217. doi: 10.1007/s10668- 021- 01780- 8.

[48]

Ronzon, T, Piotrowski, S, M'Barek, R, Carus, M., 2017. A systematic approach to understanding and quantifying the EU's bioeconomy. Bio-based Appl. Econ., 6 (1) , pp. 1-17. doi: 10.13128/BAE-20567.

[49]

Ronzon, T, Sanjuán, A. I., 2020. Friends or foes? A compatibility assessment of bioeconomy-related Sustainable Development Goals for European policy coherence. J. Clean. Prod., 254 , Article 119832. doi: 10.1016/j.jclepro.2019.119832.

[50]

Rosenboom, J. G., Langer, R, Traverso, G., 2022. Bioplastics for a circular economy. Nat. Rev. Mater., 7 , pp. 117-137. doi: 10.1038/s41578-021-00407-8.

[51]

Sachs, J.D., Kroll, C., Lafortune, G., Fuller, G., Woelm, F., 2022. From crisis to sustainable development: the SDGs as roadmap to 2030 and beyond. Sustainable Development Report 2022. Technical Report. Sustainable Development Solutions Network (SDSN) & Bertelsmann Stiftung, Cambridge.

[52]

Sachs, J.D., Lafortune, G., Fuller, G., 2024. The SDGs and the UN Summit of the Future. Sustainable Development Report 2024. Technical Report. Dublin University Press, Dublin. doi:10.25546/108572.

[53]

Silini, R, Masoller, C., 2021. Fast and effective pseudo transfer entropy for bivariate data-driven causal inference. Sci. Rep., 11 , p. 8423. doi: 10.1038/s41598-021-87818-3.

[54]

Stegmann, P., Londo, M., Junginger, M., 2020. The circular bioeconomy: its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl.: X 6, 100029. doi: 10.1016/j.rcrx.2019.100029.

[55]

Tantardini, M, Ieva, F, Tajoli, L, Piccardi, C., 2019. Comparing methods for comparing networks. Sci. Rep., 9 , Article 17557. doi: 10.1038/s41598-019-53708-y.

[56]

Többen, J, Stöver, B, Reuschel, S, Distelkamp, M, Lutz, C., 2024. Sustainability implications of the EU's bioeconomy transition along global supply chains. J. Clean. Prod., 461 , Article 142565. doi: 10.1016/j.jclepro.2024.142565.

[57]

Toma, I, Redman, M, Czekaj, M, Tyran, E, Grivins, M, Sumane, S., 2021. Small-scale farming and food security – policy perspectives from Central and Eastern Europe. Glob. Food Secur., 29 , Article 100504. doi: 10.1016/j.gfs.2021.100504.

[58]

Tongal, H, Sivakumar, B., 2021. Forecasting rainfall using transfer entropy coupled directed-weighted complex networks. Atmos. Res., 255 , Article 105531. doi: 10.1016/j.atmosres.2021.105531.

[59]

Vila-Traver, J, Aguilera, E, Infante-Amate, J, González de Molina, M., 2020. Climate change and industrialization as the main drivers of Spanish agriculture water stress. Sci. Total Environ., 760 , Article 143399. doi: 10.1016/j.scitotenv.2020.143399.

[60]

UN, 2022. Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development Global indicator framework adopted by the General Assembly in A/RES/71/313 (Annex), 2020 Comprehensive Review changes (Annex II) and annual refinements contained in E/CN.3/2018/2 (Annex II), E/CN.3/2019/2 (Annex II), E/CN.3/2020/2 (Annex III), E/CN.3/2021/2 (Annex), E/CN.3/2022/2 (Annex I) . https://unstats.un.org/sdgs/indicators/indicators-list/.

[61]

UNSTATS, 2022. Global SDG indicators Data Platform . https://unstats.un.org/sdgs/dataportal.

[62]

Warchold, A, Pradhan, P, Kropp, J. P., 2021. Variations in Sustainable Development Goal interactions: population, regional, and income disaggregation. Sustain. Dev., 29 , pp. 285-299. doi: 10.1002/sd.2145.

[63]

Warchold, A, Pradhan, P, Thapa, P, Putra, M. P. I. F., Kropp, J. P., 2022. Building a unified sustainable development goal database: why does Sustainable Development Goal data selection matter?. Sustain. Dev., 30 , pp. 1278-1293. doi: 10.1002/sd.2316.

[64]

World Bank Group, 2022b. DataBank - Sustainable Development Goals (SDGs) . https:// databank.worldbank.org/source/sustainable- development- goals- (sdgs.

[65]

World Bank Group, 2022a. World Development Indicators Database . https://data. worldbank.org/indicator.

[66]

Xing, Q, Wu, C, Chen, F, Liu, J, Pradhan, P, Bryan, B. A., Schaubroeck, T, Carrasco, L. R., Gonsamo, A, Li, Y, Chen, X, Deng, X, Albanese, A, Li, Y, Xu, Z., 2024. Intranational synergies and trade-offs reveal common and differentiated priorities of Sustainable Development Goals in China. Nat. Commun., 15 , p. 2251. doi: 10.1038/s41467-024-46491-6.

[67]

Yang, A., Throp, H., Sherman, S., 2024. How strategic collaboration on the bioeconomy can boost climate and nature action. Technical Report. Royal Institute of International Affairs. doi:10.55317/9781784136253.

[68]

Yuan, H, Wang, X, Gao, L, Wang, T, Liu, B, Fang, D, Gao, Y., 2023. Progress towards the Sustainable Development Goals has been slowed by indirect effects of the COVID-19 pandemic. Commun. Earth Environ., 4 (1) , p. 184. doi: 10.1038/s43247-023-00846-x.

[69]

Zafeiriou, E, Kyriakopoulos, G. L., Andrea, V, Arabatzis, G., 2023. Environmental Kuznets curve for deforestation in Eastern Europe: a panel cointegration analysis. Environ. Dev. Sustain., 25 , pp. 9267-9287. doi: 10.1007/s10668-022-02435-y.

[70]

Zeug, W, Bezama, A, Moesenfechtel, U, Jähkel, A, Thrän, D., 2019. Stakeholders’ interests and perceptions of bioeconomy monitoring using a Sustainable Development Goal framework. Sustainability, 11 , p. 1511. doi: 10.3390/su11061511.

[71]

Zhang, J, Skene, K. R., Wang, S, Ji, Q, Zheng, H, Zhou, C, Tian, K, Pradhan, P, Meadows, M. E., Fu, B., 2024. Beyond borders: assessing global sustainability through interconnected systems. Sustain. Dev. . doi: 10.1002/sd.3218.

[72]

Zhang, J, Wang, S, Pradhan, P, Zhao, W, Fu, B., 2022. Mapping the complexity of the food-energy-water nexus from the lens of Sustainable Development Goals in China. Resour. Conserv. Recycl., 183 , Article 106357. doi: 10.1016/j.resconrec.2022.106357.

[73]

Zhao, T, Zhang, X, Liu, W, Wang, J, Li, Z, Liu, L., 2025. Increase in global per capita cropland imbalance across countries from 1985 to 2022: a threat to achieving Sustainable Development Goals. Geogr. Sustain., 6 , Article 100239. doi: 10.1016/j.geosus.2024.09.005.

[74]

Zhong, H, Li, Y, Ding, J, Bruckner, B, Feng, K, Sun, L, Prell, C, Shan, Y, Hubacek, K., 2024. Global spillover effects of the European Green Deal and plausible mitigation options. Nat. Sustain., 7 (11) , pp. 1501-1511. doi: 10.1038/s41893-024-01428-1.

[75]

Zhou, X., Moinuddin, M., Xu, M., 2017. Sustainable Development Goals Interlinkages and Network Analysis: a practical tool for SDG integration and policy coherence. Institute for Global Environmental Strategies. doi: 10.57405/iges-6026.

PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

/