Exploring the dynamic impact of future land use changes on urban flood disasters: A case study in Zhengzhou City, China

Yuanyuan Bai , Shao Sun , Yingjun Xu , Yi Zhao , Yujie Pan , Yao Xiao , Ruoxin Li

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100287

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100287 DOI: 10.1016/j.geosus.2025.100287
Research Article
research-article

Exploring the dynamic impact of future land use changes on urban flood disasters: A case study in Zhengzhou City, China

Author information +
History +
PDF

Abstract

In recent years, urban floods have increased in frequency and severity due to intensified extreme rainfall events exacerbated by rapid urbanization. This study integrates a Markov-PLUS model and a rainfall-runoff-flood hydraulic numerical model to establish a scenario-based research framework for identifying interactions between land use dynamics and urban flood risk, using the Jialu River basin in Zhengzhou, China, as a case study. Future land use changes under three scenarios were forecast: Natural Development (ND), Economic Development (ED), and Ecological Protection (EP), alongside rainfall scenarios occurring every 10, 50, and 100 years. There were expansions and decreases in construction land under the ED and EP scenarios, respectively, emphasizing the importance of prioritizing ecological conservation. Economic scenarios showed the highest risks under the increased surface runoff and flood risk driven by higher rainstorm intensity. Over the next 15 years, the Economic Development scenario is projected to increase flood hazard areas, whereas the intensified Ecological Protection scenario is expected to reduce these risks. This underscores the contribution of prioritizing ecological conservation to mitigating disaster risks, calling for enhanced drainage systems and elevated flood protection standards to promote resilient urban development in the face of increasingly severe urban flood challenges.

Keywords

Urban flooding / Land use / Rainstorm / Scenario simulation / Zhengzhou / China

Cite this article

Download citation ▾
Yuanyuan Bai, Shao Sun, Yingjun Xu, Yi Zhao, Yujie Pan, Yao Xiao, Ruoxin Li. Exploring the dynamic impact of future land use changes on urban flood disasters: A case study in Zhengzhou City, China. Geography and Sustainability, 2025, 6(4): 100287 DOI:10.1016/j.geosus.2025.100287

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

Data will be made available on request.

CRediT authorship contribution statement

Yuanyuan Bai: Writing - original draft, Methodology, Investigation, Formal analysis, Data curation. Shao Sun: Writing - review & editing, Data curation. Yingjun Xu: Writing - review & editing, Project administration, Funding acquisition. Yi Zhao: Writing - review & editing. Yujie Pan: Writing - review & editing. Yao Xiao: Methodology, Investigation. Ruoxin Li: Investigation.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research is supported by the National Key Research and Development Plan of China (Grants No. 2022YFC3004404 and 2023YFF1305303). We also thank Prof. Guangfa Lin from Fujian Normal University for the early discussions and inspiration, Prof. Dongfeng Li from Peking University for critical edits on the earlier manuscript versions, and Prof. Jidong Wu from Beijing Normal University for supporting this research.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100287.

References

[1]

Aerts, J.C.J.H., Bates, P.D., Botzen, W.J.W., de Bruijn, J., Hall, J.W., van den Hurk, B., Kreibich, H., Merz, B., Muis, S., Mysiak, J., Tate, E., Berkhout, F., 2024. Exploring the limits and gaps of flood adaptation. Nat. Water 2, 719-728. doi: 10.1038/s44221-024-00274-x.

[2]

Azizi, S., Ilderomi, A.R., Noori, H., 2021. Investigating the effects of land use change on flood hydrograph using HEC-HMS hydrologic model (case study: Ekbatan Dam). Nat. Hazards 109 (1), 145-160. doi: 10.1007/s11069-021-04830-6.

[3]

Chan, F.K.S., Chen, W.Y., Gu, X., Peng, Y., Sang, Y., 2022. Transformation towards resilient sponge cities in China. Nat. Rev. Earth Environ. 3 (2), 99-101. doi: 10.1038/s43017-021-00251-y.

[4]

Chang, H., Franczyk, J., 2008. Climate change, land-use change, and floods: toward an integrated assessment. Geogr. Compass. 2 (5), 1549-1579. doi: 10.1111/j.1749-8198.2008.00136.x.

[5]

Cheng, H., Lin, B., Ying, S., Chen, X., Chen, Q., Yao, H., 2024. Different responses of eventbased flood to typhoon and non-typhoon rainstorms under land use change in Xixi basin of southeastern China. Catena 234, 107562. doi: 10.1016/j.catena.2023.107562.

[6]

Nithila Devi, N., Sridharan, B., Kuiry, S.N., 2019. Impact of urban sprawl on future flooding in Chennai City, India. J. Hydrol. 574, 486-496. doi: 10.1016/j.jhydrol.2019.04.041.

[7]

Devitt, L., Neal, J., Coxon, G., Savage, J., Wagener, T., 2023. Flood hazard potential reveals global floodplain settlement patterns. Nat. Commun. 14 (1), 2801. doi: 10.1038/s41467-023-38297-9.

[8]

Ding, M., Lin, P., Gao, S., Wang, J., Zeng, Z., Zheng, K., Zhou, X., Yamazaki, D., Gao, Y., Liu, Y., 2023. Reversal of the levee effect towards sustainable floodplain management. Nat. Sustain. 6 (12), 1578-1586. doi: 10.1038/s41893-023-01202-9.

[9]

Elfert, S., Bormann, H., 2010. Simulated impact of past and possible future land use changes on the hydrological response of the northern german lowland ‘hunte’ catchment. J. Hydrol. 383, 245-255. doi: 10.1016/j.jhydrol.2009.12.040.

[10]

IPCC, 2023. AR6 Synthesis Report: Climate Change 2023. Intergovernmental Panel on Climate Change.

[11]

Janizadeh, S., Pal, S.C., Saha, A., Chowdhuri, I., Ahmadi, K., Mirzaei, S., Mosavi, A.H., Tiefenbacher, J.P., 2021. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. J. Environ. Manage. 298, 113551. doi: 10.1016/j.jenvman.2021.113551.

[12]

Jiang, R., Lu, H., Yang, K., Chen, D., Zhou, J., Yamazaki, D., Pan, M., Li, W., Xu, N., Yang, Y., Guan, D., Tian, F., 2023. Substantial increase in future fluvial flood risk projected in china’s major urban agglomerations. Commun. Earth Environ. 4 (1), 389. doi: 10.1038/s43247-023-01049-0.

[13]

Wang, J., Li, N., Wang, S., 2019. Review on flood hazard assessment index and grade classification. China Flood Drought Manage. 29 (12), 21-26 (in Chinese).

[14]

Kundzewicz, Z.W., Su, B., Wang, Y., Xia, J., Huang, J., Jiang, T., 2019. Flood risk and its reduction in China. Adv. Water Resour. 130, 37-45. doi: 10.1016/j.advwatres.2019.05.020.

[15]

Li, L., Yang, J., Wu, J., 2020. Future flood risk assessment under the effects of land use and climate change in the Tiaoxi basin. Sensors 20 (21), 6079. doi: 10.3390/s20216079.

[16]

Jiang, L., Yu, J., Wen, J.H., Tang, J., Qi, M.F., Wang, L.Y., Zhang, M., 2021. Risk assessment of extreme flood in the north bank of the hangzhou bay under land use change scenarios. Prog. Geogr. 8, 1355-1370. doi: 10.18306/dlkxjz.2021.08.009 ,. (in Chinese).

[17]

Liang, X., Liu, X., Li, X., Chen, Y., Tian, H., Yao, Y., 2018. Delineating multi-scenario urban growth boundaries with a ca-based FLUS model and morphological method. Landsc. Urban Plan. 177, 47-63. doi: 10.1016/j.landurbplan.2018.04.016.

[18]

Liang, X., Guan, Q., Clarke, K.C., Liu, S., Wang, B., Yao, Y., 2021. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China. Comput. Environ. Urban Syst. 85, 101569. doi: 10.1016/j.compenvurbsys.2020.101569.

[19]

Liao, D., Zhu, H., Zhou, J., Wang, Y., Sun, J., 2019. Study of the natural rainstorm moving regularity method for hyetograph design. Theor. Appl. Climatol. 138, 1311-1321. doi: 10.1007/s00704-019-02890-0.

[20]

Lin, W., Sun, Y., Nijhuis, S., Wang, Z., 2020. Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou metropolitan area as a case study. Sci. Total Environ. 739, 139899. doi: 10.1016/j.scitotenv.2020.139899.

[21]

Lin, P., Yin, Z., Zheng, K., Lei, X., Yuan, Z., 2024. Tracking global floodplain urban growth. Innov. Geosci. 2 (3), 100086. doi: 10.59717/j.xinn-geo.2024.100086.

[22]

Liu, J., Xiong, J., Chen, Y., Sun, H., Zhao, X., Tu, F., Gu, Y., 2023. An integrated model chain for future flood risk prediction under land-use changes. J. Environ. Manage. 342, 118125. doi: 10.1016/j.jenvman.2023.118125.

[23]

Lu, Q., Chang, N.-B., Joyce, J., Chen, A.S., Savic, D.A., Djordjevic, S., Fu, G., 2018. Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Comput. Environ. Urban Syst. 68, 121-132. doi: 10.1016/j.compenvurbsys.2017.11.006.

[24]

Luo, P., Wang, X., Zhang, L., Mohd Arif Zainol, M.R.R., Duan, W., Hu, M., Guo, B., Zhang, Y., Wang, Y., Nover, D., 2023. Future land use and flood risk assessment in the Guanzhong Plain, China: scenario analysis and the impact of climate change. Remote Sens. 15 (24), 5778. doi: 10.3390/rs15245778.

[25]

Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J.C.J.H., Bates, P., Bertola, M., Kemter, M., Kreibich, H., Lall, U., Macdonald, E., 2021. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2 (9), 592-609. doi: 10.1038/s43017-021-00195-3.

[26]

Miao, L., Ju, L., Sun, S., Agathokleous, E., Wang, Q., Zhu, Z., Liu, R., Zou, Y., Lu, Y., Liu, Q., 2024. Unveiling the dynamics of sequential extreme precipitation-heatwave compounds in China. Npj Clim. Atmos. Sci. 7 (1), 67. doi: 10.1038/s41612-024-00613-5.

[27]

Miller, S.N., Kepner, W.G., Mehaffey, M.H., Hernandez, M., Miller, R.C., Goodrich, D.C., Devonald, K.K., Heggem, D.T., Miller, W.P., 2002. Integrating landscape assessment and hydrologic modeling for land cover change analysis. J. Am. Water Resour. Assoc. 38 (4), 915-929. doi: 10.1111/j.1752-1688.2002.tb05534.x.

[28]

Li, M., Li, G.-J., Zhang, W., Liu, H.-M., Wang, J.-L., Yang, J., 2012. Application of chi-square method in statistical homogeneity zoning of fratured rock mass in Longmen Peak, Changbai Mountain. J. Jilin Univ. 42 (2), 449-453 (in Chinese).

[29]

Disaster Investigation Team of the State Council, 2022. Investigation Report on the “7·20 ” Extraordinary Torrential Rain Disaster in Zhengzhou, Henan. Ministry of Emergency Management of the People’s Republic of China, Beijing (in Chinese).

[30]

MWR, 2023. China Flood and Drought Disaster Prevention Bulletin. China Water & Power Press, Beijing.

[31]

Moore, D.S., 2017. Tests of chi-squared type. In: D’Agostino,R.B. (Ed.), Goodness-of- Fit-Techniques. Routledge, New York, pp. 63-96.

[32]

Olang, L.O., Fürst, J., 2011. Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River basin, Kenya. Hydrol. Process. 25 (1), 80-89. doi: 10.1002/hyp.7821.

[33]

Peng, J., Wei, H., Wu, W., Liu, Y., Wang, Y., 2018. Storm flood disaster risk assessment in urban area based on the simulation of landuse scenarios: a case of maozhou watershed in Shenzhen city. Acta Ecol. Sin. 38 (11), 3741-3755. doi: 10.5846/stxb201708271546, (in Chinese).

[34]

Quan, R., 2021. Impact of future land use change on pluvial flood risk based on scenario simulation: a case study in Shanghai, China. Arab. J. Geosci. 14 (11), 943. doi: 10.1007/s12517-021-07345-3.

[35]

Rentschler, J., Avner, P., Marconcini, M., Su, R., Strano, E., Vousdoukas, M., Hallegatte, S., 2023. Global evidence of rapid urban growth in flood zones since 1985. Nature 622 (8981), 87-92. doi: 10.1038/s41586-023-06468-9.

[36]

Sajikumar, N., Remya, R.S., 2015. Impact of land cover and land use change on runoff characteristics. J. Environ. Manage. 161, 460-468. doi: 10.1016/j.jenvman.2014. 12.041.

[37]

Song, S., Ye, X., Zhou, Z., Chuai, X., Zhou, R., Zou, J., Chen, Y., 2024. Impacts of climate change and land cover factor on runoff in the Coastal Chinese Mainland region. Geogr. Sustain. 5 (4), 526-537. doi: 10.1016/j.geosus.2024.04.003.

[38]

Wang, Q., Zhao, G., Zhao, R., 2024. Resilient urban expansion: identifying critical conflict patches by integrating flood risk and land use predictions: a case study of Min Delta Urban Agglomerations in China. Int. J. Disast. Risk Reduct. 100, 104192. doi: 10.1016/j.ijdrr.2023.104192.

[39]

Xiao, Y., Yi, S., Tang, Z., 2017. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Sci. Total Environ. 599-600, 1034-1046. doi: 10.1016/j.scitotenv.2017.04.218.

[40]

Xu, X.L., Liu, J.Y., Zhang, S.W., Li, R.D., Yan, C.Z., Wu, S.X., 2018. China’s multi-period land use land cover remote sensing monitoring dataset (CNLUCC). Data Registry and Publishing System of the Resource Environmental Science Data Center of the Chinese Academy of Sciences.

[41]

Yang, J., Huang, X., 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 13 (8), 3907-3925. doi: 10.5194/essd-13-3907-2021.

[42]

Dai, Y.X., Wang, Z.H., Dai, L.D., Cao, Q.L., Wang, T., 2023. Application of Chicago hyetograph method in design of short duration rainstorm pattern. J. Arid Meteorol. 35 (6), 1061-1069. doi: 10.11755/j.issn-7639(2017)-06-1061, (in Chinese).

[43]

Zope, P.E., Eldho, T.I., Jothiprakash, V., 2016. Impacts of land use-land cover change and urbanization on flooding: a case study of Oshiwara River basin in Mumbai, India. Catena 145, 142-154. doi: 10.1016/j.catena.2016.06.009.

[44]

Zhao, H., Gu, T., Tang, J., Gong, Z., Zhao, P., 2023. Urban flood risk differentiation under land use scenario simulation. iScience 26 (4), 106479. doi: 10.1016/j.isci.2023.106479.

[45]

Zwirglmaier, V., Reimuth, A., Garschagen, M., 2024. How suitable are current approaches to simulate flood risk under future urbanization trends? Environ. Res. Lett. 19 (7), 073003. doi: 10.1088/1748-9326/ad536f.

PDF

422

Accesses

0

Citation

Detail

Sections
Recommended

/