Wetland key habitat functional areas in China informed by flagship waterbirds: Past changes, present status and future trend with modeling scenarios

Hengxing Xiang , Dehua Mao , Ming Wang , Yeqiao Wang , Chi-Yeung Choi , Wenjuan Wang , Haitao Wu , Kaidong Feng , Zongming Wang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100284

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100284 DOI: 10.1016/j.geosus.2025.100284
Research Article
research-article

Wetland key habitat functional areas in China informed by flagship waterbirds: Past changes, present status and future trend with modeling scenarios

Author information +
History +
PDF

Abstract

Considering the crucial role of wetland conservation in China for the sustainability of biodiversity, it is imperative to identify key habitat functional areas (KHFAs), which are suitable for sustaining waterbirds and ensuring landscape connectivity, to optimize wetland management. This study identifies the past changes, present status, and future patterns of wetland KHFAs in China by using the Zonation model with comprehensive data inputs, including wetland distribution, key bird distribution areas (such as Ramsar sites and Important Bird Areas), and flagship waterbird species. Results show that the current wetland KHFAs in China is 41,613.5 km2, mainly in the Sanjiang Plain (SJP), Songnen Plain (SNP), middle and lower reaches of the Yangtze River, and the Qinghai-Xizang Plateau (QXP) regions. The area of wetland KHFAs has been declining since 1990, especially in 2000, mainly due to anthropogenic impacts such as urbanization and agricultural expansion. The future projections suggest a continued decline in the area of wetland KHFAs, although the trend is expected to be slowed. The conservation gap analysis indicates that prioritizing wetland reserves in KHFAs areas, such as the SJP, SNP, and QXP, can significantly enhance the protection of wetland flagship species and their habitats. The results of this study establish conservation priorities that align with national goals of a 55 % wetland protection rate and the global biodiversity framework in protected areas and biodiversity, indicating that the spatial conservation optimization approach is an effective method for identifying wetland KHFAs.

Keywords

Wetland / Waterbird key habitat / Conservation prioritization / Zonation model / China

Cite this article

Download citation ▾
Hengxing Xiang, Dehua Mao, Ming Wang, Yeqiao Wang, Chi-Yeung Choi, Wenjuan Wang, Haitao Wu, Kaidong Feng, Zongming Wang. Wetland key habitat functional areas in China informed by flagship waterbirds: Past changes, present status and future trend with modeling scenarios. Geography and Sustainability, 2025, 6(4): 100284 DOI:10.1016/j.geosus.2025.100284

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Hengxing Xiang: Writing - original draft, Methodology, Funding acquisition, Formal analysis, Data curation, Conceptualization. Dehua Mao: Writing - review & editing. Ming Wang: Investigation. Yeqiao Wang: Writing - review & editing. Chi-Yeung Choi: Writing - review & editing. Wenjuan Wang: Writing - review & editing. Haitao Wu: Writing - review & editing. Kaidong Feng: Resources. Zongming Wang: Writing - review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was jointly funded by the National Key R&D Program of China (Grants No. 2022YFF1300904, 2023YFF0807201-1), the National Natural Science Foundation of China (Grants No. 42301430, U2243230), and the “Young support talents program” from Science and Technology Association of Jilin Province (2024-2026) to Dr. Hengxing Xiang (QT202417).

References

[1]

Acharya, B.K., Chen, W., Ruan, Z., Pant, G.P., Yang, Y., Shah, L.P., Cao, C., Xu, Z., Dhimal, M., Lin, H., 2019. Mapping environmental suitability of scrub typhus in Nepal using MaxEnt and random forest models. Int. J. Environ. Res. Public Health 16 (23), 4845. doi: 10.3390/ijerph16234845.

[2]

Barik, S., Saha, G.K., Mazumdar, S., 2022. Conservation prioritization through combined approach of umbrella species selection, occupancy estimation, habitat suitability and connectivity analysis of kingfisher: a study from an internationally important wetland complex (Ramsar site) in India. Ecol. Inform. 72, 101833. doi: 10.1016/j.ecoinf.2022.101833.

[3]

Beatty, W.S., Kesler, D.C., Webb, E.B., Raedeke, A.H., Naylor, L.W., Humburg, D.D., 2014. The role of protected area wetlands in waterfowl habitat conservation: implications for protected area network design. Biol. Conserv. 176, 144-152. doi: 10.1016/j.biocon.2014.05.018.

[4]

BirdLife, International, 2022. Important Bird and Biodiversity Area (IBA) Digital Boundaries: September 2022 Version. BirdLife International, Cambridge, UK.

[5]

Breiner, F.T., Anand, M., Butchart, S.H.M., Flörke, M., Fluet-Chouinard, E., Guisan, A., Hilarides, L., Jones, V.R., Kalyakin, M., Lehner, B., van Leeuwen, M., Pearce- Higgins, J.W., Voltzit, O., Nagy, S., 2022. Setting priorities for climate change adaptation of Critical Sites in the Africa-Eurasian waterbird flyways. Glob. Change Biol. 28 (3), 739-752. doi: 10.1111/gcb.15961.

[6]

Cao, B., Bai, C., Xue, Y., Yang, J., Gao, P., Liang, H., Zhang, L., Che, L., Wang, J., Xu, J., Duan, C., Mao, M., Li, G., 2020. Wetlands rise and fall: six endangered wetland species showed different patterns of habitat shift under future climate change. Sci. Total Environ. 731, 138518. doi: 10.1016/j.scitotenv.2020.138518.

[7]

Choi, C.Y., Shi, X., Shi, J.B., Gan, X.J., Wen, C.J., Zhang, J.W., Jackson, M.V., Fuller, R.A., Gibson, L., 2022. China’s Ecological Conservation Redline policy is a new opportunity to meet post-2020 protected area targets. Conserv. Lett. 15, e12853. doi: 10.1111/conl.12853.

[8]

Critchlow, R., Cunningham, C.A., Crick, H.Q.P., Macgregor, N.A., Morecroft, M.D., Pearce- Higgins, J.W., Oliver, T.H., Carroll, M.J., Beale, C.M., 2022. Multi-taxa spatial conservation planning reveals similar priorities between taxa and improved protected area representation with climate change. Biodivers. Conserv. 31 (2), 683-702. doi: 10.1007/s10531-022-02357-1.

[9]

Cui, P., Wu, Y., Ding, H., Wu, J., Cao, M., Chen, L., Chen, B., Lu, X., Xu, H., 2014. Status of wintering waterbirds at selected locations in China. Waterbirds 37 (4), 402-409. doi: 10.1675/063.037.0407.

[10]

Di Minin, E., Soutullo, A., Bartesaghi, L., Rios, M., Szephegyi, M.N., Moilanen, A., 2017. Integrating biodiversity, ecosystem services and socio-economic data to identify priority areas and landowners for conservation actions at the national scale. Biol. Conserv. 206, 56-64. doi: 10.1016/j.biocon.2016.11.037.

[11]

Dong, Z., Wang, Z., Yang, X., 2015. Changes in suitable waterbirds’ habitats from 1990 to 2010 in the Bielahong Watershed of Northeast China. J. Indian Soc. Remote Sens. 43 (3), 599-607. doi: 10.1007/s12524-014-0429-x.

[12]

Donald, P.F., Fishpool, L.D.C., Ajagbe, A., Bennun, L.A., Bunting, G., Burfield, I.J., Butchart, S.H.M., Capellan, S., Crosby, M.J., Dias, M.P., Diaz, D., Evans, M.I., Grimmett, R., Heath, M., Jones, V.R., Lascelles, B.G., Merriman, J.C., O’brien, M., Ramírez, I., Waliczky, Z., Wege, D.C., 2018. Important Bird and Biodiversity Areas (IBAs): the development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv. Int. 29 (2), 177-198. doi: 10.1017/S0959270918000102.

[13]

Epele, L.B., Grech, M.G., Manzo, L.M., Macchi, P.A., Hermoso, V., Miserendino, M.L., Cañedo-Argüelles, M., 2021. Identifying high priority conservation areas for Patagonian wetlands biodiversity. Biodivers. Conserv. 30 (5), 1359-1374. doi: 10.1007/s10531-021-02146-2.

[14]

Rahman, F., Ismail, A., 2018. Waterbirds: an important bio-indicator of ecosystem. Pertanika J. Sch. Res. Rev. 4, 81-90.

[15]

Fu, F., Deng, S.M., Wu, D., Liu, W.W., Bai, Z.H., 2022. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sust. Cities Soc. 80, 103760. doi: 10.1016/j.scs.2022.103760.

[16]

Flint, P.L., Patil, V., Shults, B., Thompson, S.J., 2022. Prioritizing habitats based on abundance and distribution of molting waterfowl in the Teshekpuk Lake Special Area of the National Petroleum Reserve, Alaska. Glob. Ecol. Conserv. 38, e02182. doi: 10.1016/j.gecco.2022.e02182.

[17]

Ait, El Haj, F., Ouadif, L., Akhssas, A., 2023. Simulating and predicting future land-use/land cover trends using CA- Markov and LCM models. Case Stud. Chem. Environ. Eng. 7, 100342. doi: 10.1016/j.cscee.2023.100342.

[18]

Huang, Z., Lu, Y., Meng, W., Mo, X., Xu, W., Yun, H., He, M., Wang, Y., 2023. Study on suitability assessment of waterbird habitats along the Bohai Rim. Ecol. Indic. 150, 110229. doi: 10.1016/j.ecolind.2023.110229.

[19]

Johst, K., Brandl, R., Pfeifer, R., 2001. Foraging in a patchy and dynamic landscape: human land use and the white stork. Ecol. Appl. 11 (1), 60-69. doi: 10.1890/1051-0761(2001)011[0060:FIAPAD]2.0.CO;2.

[20]

Karimi, A., Yazdandad, H., Reside, A.E., 2023. Spatial conservation prioritization for locating protected area gaps in Iran. Biol. Conserv. 279, 109902. doi: 10.1016/j.biocon.2023.109902.

[21]

Katuwal, H.B., Sharma, H.P., Rokka, P., Bhusal, K.P., Bhattarai, B.P., Koirala, S., Luitel, S.C., Yadav, S., Sah, G., Quan, R.-C., 2023. The effects of climate and land use change on the potential distribution and nesting habitat of the Lesser Adjutant in Nepal. Avian Res. 14, 100105. doi: 10.1016/j.avrs.2023.100105.

[22]

Keddy, P.A., Fraser, L.H., Solomeshch, A.I., Junk, W.J., Campbell, D.R., Arroyo, M.T.K., Alho, C.J.R., 2009. Wet and wonderful: the world’s largest wetlands are conservation priorities. BioScience 59 (1), 39-51. doi: 10.1525/bio.2009.59.1.8.

[23]

Kim, J.H., Park, S., Kim, S.H., Lee, E.J., 2021. Identifying high-priority conservation areas for endangered waterbirds using a flagship species in the Korean DMZ. Ecol. Eng. 159, 106080. doi: 10.1016/j.ecoleng.2020.106080.

[24]

Kujala, H., Whitehead, A.L., Morris, W.K., Wintle, B.A., 2015. Towards strategic offsetting of biodiversity loss using spatial prioritization concepts and tools: a case study on mining impacts in Australia. Biol. Conserv. 192, 513-521. doi: 10.1016/j.biocon.2015.08.017.

[25]

Kullberg, P., Di Minin, E., Moilanen, A., 2019. Using key biodiversity areas to guide effective expansion of the global protected area network. Glob. Ecol. Conserv. 20, e00768. doi: 10.1016/j.gecco.2019.e00768.

[26]

Lehtomäki, J., Kusumoto, B., Shiono, T., Tanaka, T., Kubota, Y., Moilanen, A., 2018. Spatial conservation prioritization for the East Asian islands: a balanced representation of multitaxon biogeography in a protected area network. Divers. Distrib. 25 (3), 414-429. doi: 10.1111/ddi.12869.

[27]

Lehtomäki, J., Moilanen, A., 2013. Methods and workflow for spatial conservation prioritization using Zonation. Environ. Model. Softw. 47, 128-137. doi: 10.1016/j.envsoft.2013.05.001.

[28]

Li, R., Powers, R., Xu, M., Zheng, Y., Zhao, S., 2018. Proposed biodiversity conservation areas: gap analysis and spatial prioritization on the inadequately studied Qinghai Plateau, China. Nat. Conserv. 24, 1-20. doi: 10.3897/natureconservation.24.20942.

[29]

Li, Z., Wang, Z., Liu, X., Sun, S., Ma, X., Zuo, Y., 2019. Using random forest and improved CA Markov model to evaluate the effect of Spartina alterniflora clearing on wetland use and landscape pattern in the Yellow River Delta wetland. Acta Ecol. Sin. 44 (18), 1-17.

[30]

Liu, X., Qiu, Y., Zheng, Z., Hong, Q., Zhang, Y., Qian, Q., Wan, B., Chen, Q., 2022. Spatiotemporal changes in waterfowl habitat suitability in the Caohai Lake wetland and responses to human activities. Sustainability 14 (21), 14409. doi: 10.3390/su142114409.

[31]

Lussu, M., Ancillotto, L., Labadessa, R., Di Musciano, M., Zannini, P., Testolin, R., Santi, F., Dolci, D., Conti, M., Marignani, M., Martellos, S., Peruzzi, L., Chiarucci, A., 2024. Prioritizing conservation of terrestrial orchids: a gap analysis for Italy. Biol. Conserv. 289, 110385. doi: 10.1016/j.biocon.2023.110385.

[32]

Luo, Z., Jiang, Z., Tang, S., 2015. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecol. Appl. 25 (1), 24-38. doi: 10.1890/13-1499.1.

[33]

Ma, Y., Choi, C.Y., Shang, L., Klaassen, M., Ma, Z., Chang, Q., Jaspers, V., Bai, Q., He, T., Leung, K., Hassell, C., Jessop, R., Gibson, L., 2024. Mercury contamination is an invisible threat to declining migratory shorebirds along the East Asian-Australasian Flyway. Commun. Biol. 7 (1), 585. doi: 10.1038/s42003-024-06254-x.

[34]

Maclean, I.M.D., Rehfisch, M.M., Delany, S., Robinson, R.A., 2007. The effects of climate change on migratory waterbirds within the African-Eurasian Flyway. Report of work carried out by The British Trust for Ornithology under contract to the AEWA Secretariat.

[35]

Maleki, S., Baghdadi, N., Rahdari, V., 2020. Which water bird groups need greater habitat conservation measures in a wetland ecosystem? Ecol. Eng. 143, 105677. doi: 10.1016/j.ecoleng.2019.105677.

[36]

Maleki, S., Soffianian, A.R., Soltani Koupaei, S., Saatchi, S., Pourmanafi, S., Sheikholeslam, F., 2016. Habitat mapping as a tool for water birds conservation planning in an arid zone wetland: the case study Hamun wetland. Ecol. Eng. 95, 594-603. doi: 10.1016/j.ecoleng.2016.06.115.

[37]

Maiorano, L., Falcucci, A., Boitani, L., 2006. Gap analysis of terrestrial vertebrates in Italy: priorities for conservation planning in a human dominated landscape. Biol. Conserv. 133 (4), 455-473. doi: 10.1016/j.biocon.2006.07.015.

[38]

Martín-García, L., Sangil, C., Brito, A., Barquín-Diez, J., 2014. Identification of conservation gaps and redesign of island marine protected areas. Biodivers. Conserv. 24 (3), 511-529. doi: 10.1007/s10531-014-0833-0.

[39]

Morrick, Z.N., Lilleyman, A., Fuller, R.A., Bush, R., Coleman, J.T., Garnett, S.T., Gerasimov, Y.N., Jessop, R., Ma, Z., Maglio, G., Minton, C.D.T., Syroechkovskiy, E., Woodworth, B.K., 2022. Differential population trends align with migratory connectivity in an endangered shorebird. Conserv. Sci. Pract. 4 (1), e594. doi: 10.1111/csp2.594.

[40]

Mao, D., Wang, Z., Du, B., Li, L., Tian, Y., Jia, M., Zeng, Y., Song, K., Jiang, M., Wang, Y., 2020. National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 164, 11-25. doi: 10.1016/j.isprsjprs.2020.03.020.

[41]

Mao, D., Yang, H., Wang, Z., Song, K., Thompson, J.R., Flower, R.J., 2022. Reverse the hidden loss of China’s wetlands. Science 376 (6597), 1060-1061. doi: 10.1126/science. adc8833.

[42]

Moilanen, A., 2007. Landscape Zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv. 134 (4), 571-579. doi: 10.1016/j.biocon.2006.09.008.

[43]

Moilanen, A., Franco, A.M.A., Early, R.I., Fox, R., Wintle, B., Thomas, C.D., 2005. Prioritizing multiple-use landscapes for conservation: methods for large multispecies planning problems. Proc. Royal Soc. B: Biol. Sci. 272 (1575), 1885-1891. doi: 10.1098/rspb.2005.3164.

[44]

Moilanen, A., Lehtinen, P., Kohonen, I., Jalkanen, J., Virtanen, E.A., Kujala, H., 2022. Novel methods for spatial prioritization with applications in conservation, land use planning and ecological impact avoidance. Methods Ecol. Evol. 13 (5), 1062-1072. doi: 10.1111/2041-210X.13819.

[45]

Na, X., Zhou, H., Zang, S., Wu, C., Li, W., Li, M., 2018. Maximum Entropy modeling for habitat suitability assessment of Red-crowned crane. Ecol. Indic. 91, 439-446. doi: 10.1016/j.ecolind.2018.04.013.

[46]

Pascual, U., Balvanera, P., Anderson, C.B., Chaplin-Kramer, R., Christie, M., González- Jiménez, D., Martin, A., Raymond, C.M., Termansen, M., Vatn, A., Athayde, S., Baptiste, B., Barton, D.N., Jacobs, S., Kelemen, E., Kumar, R., Lazos, E., Mwampamba, T.H., Nakangu, B., O’Farrell, P., Subramanian, S.M., van Noordwijk, M., Ahn, S.E., Amaruzaman, S., Amin, A.M., Arias-Arévalo, P., Arroyo-Robles, G., Cantú-Fernández, M., Castro, A.J., Contreras, V., De Vos, A., Dendoncker, N., Engel, S., Eser, U., Faith, D.P., Filyushkina, A., Ghazi, H., Gómez-Baggethun, E., Gould, R.K., Guibrunet, L., Gundimeda, H., Hahn, T., Harmáčková, Z.V., Hernández- Blanco, M., Horcea-Milcu, A.-I., Huambachano, M., Wicher, N.L.H., Ayd ı n, C. İ., Islar, M., Koessler, A.-K., Kenter, J.O., Kosmus, M., Lee, H., Leimona, B., Lele, S., Lenzi, D., Lliso, B., Mannetti, L.M., Merçon, J., Monroy-Sais, A.S., Mukherjee, N., Muraca, B., Muradian, R., Murali, R., Nelson, S.H., Nemogá-Soto, G.R., Ngouhouo- Poufoun, J., Niamir, A., Nuesiri, E., Nyumba, T.O., Özkaynak, B., Palomo, I., Pandit, R., Paw ł owska-Mainville, A., Porter-Bolland, L., Quaas, M., Rode, J., Rozzi, R., Sachdeva, S., Samakov, A., Schaafsma, M., Sitas, N., Ungar, P., Yiu, E., Yoshida, Y., Zent, E., 2023. Diverse values of nature for sustainability. Nature 620 (7975), 813-823. doi: 10.1038/s41586-023-06406-9.

[47]

Palumbo, M.D., Straub, J.N., Al-Saffar, M.A., Soulliere, G.J., Fleener, J.L., Coluccy, J.M., Cruz, A., Finger, T., Fowler, D.N., Glenzinski, B.J., Griffin, R.K., Hygnstrom, S.E., Kidd, G., Miller, N.A., Van Horn, K., Bergeson, M.T., Waterstradt, K., 2021. Multiscale waterfowl habitat conservation planning in Wisconsin, USA. Landsc. Ecol. 36 (11), 3207-3230. doi: 10.1007/s10980-021-01279-7.

[48]

Péron, G., Ferrand, Y., Leray, G., Gimenez, O., 2013. Waterbird demography as indicator of wetland health: the French-wintering common snipe population. Biol. Conserv. 164, 123-128. doi: 10.1016/j.biocon.2013.04.015.

[49]

Pontius, G.R., Malanson, J., 2005. Comparison of the structure and accuracy of two land change models. Int. J. Geograph. Inform. Sci. 19 (2), 243-265. doi: 10.1080/13658810410001713434.

[50]

Qu, Y., Sun, G., Luo, C., Zeng, X., Zhang, H., Murray, N., Xu, N., 2019. Identifying restoration priorities for wetlands based on historical distributions of biodiversity features and restoration suitability. J. Environ. Manage. 231, 1222-1231. doi: 10.1016/j.jenvman.2018.10.057.

[51]

Rai, A., Bashir, T., Lagunes-Díaz, E.G., Shrestha, B., 2023. Modeling Ganges river dolphin distribution and prioritizing areas for efficient conservation planning- a range-wide assessment. Ecol. Modell. 481, 110362. doi: 10.1016/j.ecolmodel.2023.110362.

[52]

Senzaki, M., Yamaura, Y., Shoji, Y., Kubo, T., Nakamura, F., 2017. Citizens promote the conservation of flagship species more than ecosystem services in wetland restoration. Biol. Conserv. 214, 1-5. doi: 10.1016/j.biocon.2017.07.025.

[53]

Smirenski, S.M., Danner, G., Harris, J.T., 2018. Case study: agriculture program of Muraviovka Park:integrating wetland conservation with farming. In: Handbook on Cranes and Agriculture:Humans and Cranes Sharing the Landscape. International Crane Foundation, Baraboo, Wisconsin, pp. 243-258.

[54]

The State Council Information Office of the People’s Republic of China, 2021. Biodiversity Conservation in China. White Paper. The State Council Information Office of the People’s Republic of China, Beijing.

[55]

Van Breugel, P.V., Kindt, R., Barnekow Lilleso, J.-P., van Breugel, M., 2015. Environmental gap analysis to prioritize conservation efforts in eastern Africa. PLoS One 10 (4), e0121444. doi: 10.1371/journal.pone.0121444.

[56]

Virtanen, E.A., Viitasalo, M., Lappalainen, J., Moilanen, A., 2018. Evaluation, gap analysis, and potential expansion of the Finnish Marine Protected Area network. Front. Marine Sci. 9, 402. doi: 10.3389/fmars.2018.00402.

[57]

Wang, C., Liu, H., Li, Y., Dong, B., Qiu, C., Yang, J., Zong, Y., Chen, H., Zhao, Y., Zhang, Y., 2021. Study on habitat suitability and environmental variable thresholds of rare waterbirds. Sci. Total Environ. 785, 147316. doi: 10.1016/j.scitotenv.2021.147316.

[58]

Wang, G., Wu, H., Dai, J., Xiong, Y., Long, Y., Cai, X., Mo, S., Yang, R., Liu, Y., 2023a. Priorities identification of habitat restoration for migratory birds under the increased water level during the middle of dry season: a case study of Poyang Lake and Dongting Lake wetlands China Ecol. Indic. 151, 110322. doi: 10.1016/j.ecolind.2023.110322.

[59]

Wang, M., Mao, D., Wang, Y., Xiao, X., Xiang, H., Feng, K., Luo, L., Jia, M., Song, K., Wang, Z., 2023b. Wetland mapping in East Asia by two-stage object-based Random Forest and hierarchical decision tree algorithms on Sentinel-1/ 2 images. Remote Sens. Environ. 297, 113793. doi: 10.1016/j.rse.2023.113793.

[60]

Wang, X., Kuang, F., Tan, K., Ma, Z., 2018. Population trends, threats, and conservation recommendations for waterbirds in China. Avian Res. 9 (1), 14. doi: 10.1186/s40657-018-0106-9.

[61]

Wang, M., Qi, S., Zhang, X., 2011. Wetland loss and degradation in the Yellow River Delta, Shandong Province of China. Environ. Earth Sci. 67 (1), 185-188. doi: 10.1007/s12665-011-1491-0.

[62]

Winter, T.C., 2000. The vulnerability of wetlands to climate change: a hydrologic landscape perspective. J. Am. Water Resour. Assoc. 36, 305-311. doi: 10.1111/j.1752-1688.2000.tb04269.x.

[63]

Wuver, A.M., Attuquayefio, D.K., 2006. The impact of human activities on biodiversity conservation in a coastal wetland in Ghana. West Afr. J. Appl. Ecol. 9 (1), 18. doi: 10.4314/wajae.v9i1.45690.

[64]

Xia, S., Yu, X., Lei, J., Hearn, R., Smith, B., Lei, G., Xie, P., 2021. Priority sites and conservation gaps of wintering waterbirds in the Yangtze River floodplain. J. Geogr. Sci. 30 (10), 1617-1632. doi: 10.1007/s11442-020-1803-y.

[65]

Xia, S., Yu, X., Millington, S., Liu, Y., Jia, Y., Wang, L., Hou, X., Jiang, L., 2017. Identifying priority sites and gaps for the conservation of migratory waterbirds in China’s coastal wetlands. Biol. Conserv. 210, 72-82. doi: 10.1016/j.biocon.2016.07.025.

[66]

Xiang, H.X., Wang, Z.M., Mao, D.H., Zhang, J., Xi, Y.B., Du, B.J., Zhang, B., 2020. What did China’s National Wetland Conservation Program achieve? Observations of changes in land cover and ecosystem services in the Sanjiang Plain. J. Environ. Manage. 267, 110623. doi: 10.1016/j.jenvman.2020.110623.

[67]

Xiang, H., Xi, Y., Mao, D., Xu, T., Wang, M., Yu, F., Feng, K., Wang, Z., 2023. Modeling potential wetland distributions in China based on geographic big data and machine learning algorithms. Int. J. Digit. Earth 16 (1), 3706-3724. doi: 10.1080/17538947.2023.2256723.

[68]

Yao, S., Chen, C., Chen, Q., Zhang, J., Li, Y., Zeng, Y., 2022. An integrated hydrodynamic and multicriteria evaluation Cellular Automata-Markov model to assess the effects of a water resource project on waterbird habitat in wetlands. J. Hydrol. 607, 127561. doi: 10.1016/j.jhydrol.2022.127561.

[69]

Zhang, L., Wu, B., Yin, K., Li, X., Kia, K., Zhu, L., 2014. Impacts of human activities on the evolution of estuarine wetland in the Yangtze Delta from 2000 to 2010. Environ. Earth Sci. 73 (1), 435-447. doi: 10.1007/s12665-014-3565-2.

[70]

Zhao, Z., Xiao, N., Shen, M., Li, J., 2022. Comparison between optimized Max- Ent and random forest modeling in predicting potential distribution: a case study with Quasipaa boulengeri in China. Sci. Total Environ. 842, 156867. doi: 10.1016/j.scitotenv.2022.156867.

PDF

224

Accesses

0

Citation

Detail

Sections
Recommended

/