Water-heat-carbon nexus for understanding mechanisms and response thresholds across urbanization gradients

Kaiping Wang , Chenxing Wang , Jingran Gao , Yimei Chen , Hanqi Tang , Yunlu Zhang , Zhaowu Yu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100283

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100283 DOI: 10.1016/j.geosus.2025.100283
Research Article
review-article

Water-heat-carbon nexus for understanding mechanisms and response thresholds across urbanization gradients

Author information +
History +
PDF

Abstract

Urbanization significantly affects the balance of key elements such as water, heat, and carbon in cities. However, previous studies have not integrated these factors for comprehensive analysis. Here, we proposed a water-heat-carbon (WHC) nexus model to provide a holistic understanding of urbanization’s impacts. Furthermore, we employed the model to identify the mechanisms and response thresholds of urbanization through this coupling approach. Our findings reveal three key insights: (1) WHC exhibits a nonlinear, inverted S-shaped response to urbanization. (2) The mechanisms through which urbanization impacts WHC differ significantly across urbanization gradients. Acrossing urbanization gradients, the complexity of impact pathways increases, with direct effects becoming more pronounced and positive impact pathways emerging progressively. (3) We identified priority zones for restoration and protection based on the likelihood of units shifting between lower-risk and higher-risk categories. Our study enhances understanding of the WHC-urbanization nexus and highlights the importance of accounting for threshold effects and environmental interactions when examining the impact between urbanization and WHC. This framework can be adapted to other urban areas experiencing similar challenges.

Keywords

Water-heat-carbon nexus / Non-linear response / Influence mechanism / Priority management areas / Urbanization

Cite this article

Download citation ▾
Kaiping Wang, Chenxing Wang, Jingran Gao, Yimei Chen, Hanqi Tang, Yunlu Zhang, Zhaowu Yu. Water-heat-carbon nexus for understanding mechanisms and response thresholds across urbanization gradients. Geography and Sustainability, 2025, 6(4): 100283 DOI:10.1016/j.geosus.2025.100283

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Kaiping Wang: Writing – review & editing, Writing – original draft, Software, Methodology, Formal analysis, Conceptualization. Chenxing Wang: Writing – review & editing, Writing – original draft, Resources, Funding acquisition. Jingran Gao: Visualization, Methodology, Data curation. Yimei Chen: Writing – original draft, Visualization. Hanqi Tang: Visualization, Validation. Yunlu Zhang: Writing – review & editing, Project administration, Funding acquisition, Conceptualization. Zhaowu Yu: Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the National Forestry and Grassland Administration (Grant No. 2023132050); National Forestry and Grassland Administration (Grant No. 2019132703); National Science Foundation of China (Grants No. 42171093, 42101250); Fengyun 3 Satellite Ground Application Project (Grants No. FY-2(03)-AS-12.09-ZT, FY-APP-2021.0407).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100283.

References

[1]

Ajjur, S. B., Al-Ghamdi, S. G., 2022. Exploring urban growth–climate change–flood risk nexus in fast growing cities. Sci. Rep., 12 (1) , p. 12265. doi: 10.1038/s41598-022-16475-x.

[2]

Bai, Y, Xuan, X, Wang, Y, Weng, C, Huang, X, Deng, X., 2024. Revealing the nexus profile of agricultural water–land–food–GHG flows in China. Resour. Conserv. Recy., 204 , Article 107528. doi: 10.1016/j.resconrec.2024.107528.

[3]

Bilotto, F, Christie-Whitehead, K. M., Malcolm, B, Harrison, M. T., 2023. Carbon, cash, cattle and the climate crisis. Sustain. Sci., 18 (4) , pp. 1795-1811. doi: 10.1007/s11625-023-01323-2.

[4]

BJSTATS 2021. Beijing Statistical Yearbook (2021) (in Chinese).

[5]

BJWA 2020. Beijing Water Resources Bulletin (2020) (in Chinese).

[6]

Boesing, A. L., Prist, P. R., Barreto, J, Hohlenwerger, C, Maron, M, Rhodes, J. R., Romanini, E, Tambosi, L. R., Vidal, M, Metzger, J. P., 2020. Ecosystem services at risk: integrating spatiotemporal dynamics of supply and demand to promote long-term provision. One Earth, 3 (6) , pp. 704-713. doi: 10.1016/j.oneear.2020.11.003.

[7]

Chen, H, Huang, J. J., Dash, S. S., McBean, E, Wei, Y, Li, H. 2022a. Assessing the impact of urbanization on urban evapotranspiration and its components using a novel four-source energy balance model. Agric. For. Meteorol., 316 (2022), Article 108853. doi: 10.1016/j.agrformet.2022.108853.

[8]

Chen, J, Wang, K, Du, P, Zang, Y, Zhang, P, Xia, J, Chen, C, Yu, Z., 2024. Quantifying the main and interactive effects of the dominant factors on the diurnal cycles of land surface temperature in typical urban functional zones. Sust. Cities Soc., 114 , Article 105727. doi: 10.1016/j.scs.2024.105727.

[9]

Chen, S, Gong, B. L., 2021. Response and adaptation of agriculture to climate change: evidence from China. J. Dev. Econ., 148 , Article 102557. doi: 10.1016/j.jdeveco.2020.102557.

[10]

Chen, W, Gu, T, Zeng, J. 2022b. Urbanisation and ecosystem health in the middle reaches of the Yangtze river urban agglomerations, China: a U-curve relationship. J. Environ. Manage., 318 (2022), Article 115565. doi: 10.1016/j.jenvman.2022.115565.

[11]

Chen, W. X., Wang, G. Z., Gu, T. C., Fang, C. L., Pan, S. P., Zeng, J, Wu, J. H., 2023. Simulating the impact of urban expansion on ecosystem services in Chinese urban agglomerations: a multi-scenario perspective. Environ. Impact Assess. Rev., 103 , Article 107275. doi: 10.1016/j.eiar.2023.107275.

[12]

Nunes, C, Augé, J. I., 1999. Land-Use and Land-Cover Change (LUCC): Implementation Strategy. Scientific Steering Committee and International Project Office of LUCC

[13]

Costanza, R, D'Arge, R, de Groot, R, Farber, S, Grasso, M, Hannon, B, Limburg, K, Naeem, S, O'Neill, R. V., Paruelo, J, Raskin, R. G., Sutton, P, van den Belt, M., 1997. The value of the world's ecosystem services and natural capital. Nature, 387 (1997), pp. 253-260. doi: 10.1016/S0921-8009(98)00020-2.

[14]

Dang, H, , Y, Wang, X, Hao, Y, Fu, B., 2025. Integrating species diversity, ecosystem services, climate and ecological stability helps to improve spatial representation of protected areas for quadruple win. Geogr. Sustain., 6 (1) , Article 100205. doi: 10.1016/j.geosus.2024.06.005.

[15]

Ding, T. H., Chen, J. F., Fang, L. P., Ji, J, Fang, Z., 2023. Urban ecosystem services supply-demand assessment from the perspective of the water-energy-food nexus. Sust. Cities Soc., 90 , Article 104401. doi: 10.1016/j.scs.2023.104401.

[16]

Feng, Q, Zhao, W, Duan, B, Hu, X, Cherubini, F., 2021. Coupling trade-offs and supply-demand of ecosystem services (ES): a new opportunity for ES management. Geogr. Sustain., 2 (4) , pp. 275-280. doi: 10.1016/j.geosus.2021.11.002.

[17]

Fu, B, Liu, Y, Meadows, M. E., 2023. Ecological restoration for sustainable development in China. Natl. Sci. Rev., 10 (7) , p. nwad033. doi: 10.1093/nsr/nwad033.

[18]

Ghanbari, M, Arabi, M, Georgescu, M, Broadbent, A. M., 2023. The role of climate change and urban development on compound dry-hot extremes across US cities. Nat. Commun., 14 (1) , p. 3509. doi: 10.1038/s41467-023-39205-x.

[19]

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J, Bai, X, Briggs, J. M., 2008. Global change and the ecology of cities. Science, 319 (2008), pp. 756-760. doi: 10.1126/science.1150195.

[20]

Guillot, G, Rousset, F., 2013. Dismantling the Mantel tests. Methods Ecol. Evol., 4 (4) , pp. 336-344. doi: 10.1111/2041-210x.12018.

[21]

Hu, T, Dong, J, Hu, Y, Qiu, S, Yang, Z, Zhao, Y, Cheng, X, Peng, J., 2023. Stage response of vegetation dynamics to urbanization in megacities: a case study of Changsha City, China. Sci. Total Environ., 858 , Article 159659. doi: 10.1016/j.scitotenv.2022.159659.

[22]

IPCC 2019. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems.

[23]

Ji, Y. Y., Zhan, W. F., Du, H. L., Wang, S. S., Li, L, Xiao, J. F., Liu, Z. H., Huang, F, Jin, J. X., 2023. Urban-rural gradient in vegetation phenology changes of over 1500 cities across China jointly regulated by urbanization and climate change. ISPRS J. Photogramm. Remote Sens., 205 , pp. 367-384. doi: 10.1016/j.isprsjprs.2023.10.015.

[24]

Jia, W, Zhao, S, Zhang, X, Liu, S, Henebry, G. M., Liu, L., 2021. Urbanization imprint on land surface phenology: the urban-rural gradient analysis for Chinese cities. Glob. Change Biol., 27 (12) , pp. 2895-2904. doi: 10.1111/gcb.15602.

[25]

Jiao, L. M., 2015. Urban land density function: a new method to characterize urban expansion. Landsc. Urban Plan., 139 , pp. 26-39. doi: 10.1016/j.landurbplan.2015.02.017.

[26]

Jiao, L. M., Dong, T, Xu, G, Zhou, Z. Z., Liu, J. F., Liu, Y. L., 2021. Geographic micro-process model: understanding global urban expansion from a process-oriented view. Comput. Environ. Urban Syst., 87 , Article 101603. doi: 10.1016/j.compenvurbsys.2021.101603.

[27]

Jin, Y, Wang, F, Zong, Q, Jin, K, Liu, C, Qin, P., 2024. Spatial patterns and driving forces of urban vegetation greenness in China: a case study comprising 289 cities. Geogr. Sustain., 5 (3) , pp. 370-381. doi: 10.1016/j.geosus.2024.03.001.

[28]

Kappes, M. S., Keiler, M, von Elverfeldt, K, Glade, T., 2012. Challenges of analyzing multi-hazard risk: a review. Nat. Hazards, 64 (2) , pp. 1925-1958. doi: 10.1007/s11069-012-0294-2.

[29]

Kyba, C. C. M., Kuester, T, de Miguel, A. S., Baugh, K, Jechow, A, Hölker, F, Bennie, J, Elvidge, C. D., Gaston, K. J., Guanter, L., 2017. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv., 3 (11) , Article e1701528. doi: 10.1126/sciadv.1701528.

[30]

Levin, N, Kyba, C. C. M., Zhang, Q. L., de Miguel, A. S., Román, M. O., Li, X, Portnov, B. A., Molthan, A. L., Jechow, A, Miller, S. D., Wang, Z, Shrestha, R. M., Elvidge, C. D., 2020. Remote sensing of night lights: a review and an outlook for the future. Remote Sens. Environ., 237 , Article 111443. doi: 10.1016/j.rse.2019.111443.

[31]

Li, C, Gu, X, Slater, L. J., Liu, J, Li, J, Zhang, X, Kong, D. 2023a. Urbanization-induced increases in heavy precipitation are magnified by moist heatwaves in an urban agglomeration of East China. J. Clim., 36 (2) (2023), pp. 693-709. doi: 10.1175/JCLI-D-22-0223.1.

[32]

Li, C, Yu, Z, Yuan, Y, Geng, X, Zhang, D, Zheng, X, Li, R, Sun, W, Wang, X., 2022. A synthetic water-heat-vegetation biodiversity nexus approach to assess coastal vulnerability in eastern China. Sci. Total Environ., 845 , Article 157074. doi: 10.1016/j.scitotenv.2022.157074.

[33]

Li, C. J., Fu, B. J., Wang, S, Stringer, L. C., Zhou, W. X., Ren, Z. B., Hu, M. Q., Zhang, Y. J., Rodriguez-Caballero, E, Weber, B, Maestre, F. T. 2023c. Climate-driven ecological thresholds in China's drylands modulated by grazing. Nat. Sustain., 6 (11) (2023), pp. 1363-1372. doi: 10.1038/s41893-023-01187-5.

[34]

Li, F, Pan, X, Xu, N, Meng, X, Li, Z, Guluzade, R, Dai, Y, Yang, Y., 2024. Does urbanization exacerbate asymmetrical changes in precipitation at divergent time scales in China?. Earth. Future, 12 (7) , Article e2023EF004355. doi: 10.1029/2023EF004355.

[35]

Li, R, Dong, L, Zhang, J, Wang, X, Wang, W. X., Di, Z, Stanley, H. E., 2017. Simple spatial scaling rules behind complex cities. Nat. Commun., 8 (1) , p. 1841. doi: 10.1038/s41467-017-01882-w.

[36]

Li, Y, Lin, D, Zhang, Y, Song, Z, Sha, X, Zhou, S, Chen, C, Yu, Z. 2023b. Quantifying tree canopy coverage threshold of typical residential quarters considering human thermal comfort and heat dynamics under extreme heat. Build. Environ., 233 (2023), Article 110100. doi: 10.1016/j.buildenv.2023.110100.

[37]

Li, Y, Schubert, S, Kropp, J. P., Rybski, D., 2020. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun., 11 (1) , p. 2647. doi: 10.1038/s41467-020-16461-9.

[38]

Li, Z. H., Jiao, L. M., Zhang, B. E., Xu, G, Liu, J. F., 2021. Understanding the pattern and mechanism of spatial concentration of urban land use, population and economic activities: a case study in Wuhan, China. Geo-Spat. Inf. Sci., 24 (4) , pp. 678-694. doi: 10.1080/10095020.2021.1978276.

[39]

Liu, J, Hull, V, Godfray, H. C. J., Tilman, D, Gleick, P, Hoff, H, Pahl-Wostl, C, Xu, Z, Chung, M. G., Sun, J, Li, S., 2018. Nexus approaches to global sustainable development. Nat. Sustain., 1 (9) , pp. 466-476. doi: 10.1038/s41893-018-0135-8.

[40]

Luo, M, N-Lau, C., 2021. Increasing human-perceived heat stress risks exacerbated by urbanization in China: a comparative study based on multiple metrics. Earth. Future, 9 (7) , Article e2020EF001848. doi: 10.1029/2020EF001848.

[41]

McCallum, I, Kyba, C. C. M., Bayas, J. C. L., Moltchanova, E, Cooper, M, Cuaresma, J. C., Pachauri, S, See, L, Danylo, O, Moorthy, I, Lesiv, M, Baugh, K, Elvidge, C. D., Hofer, M, Fritz, S., 2022. Estimating global economic well-being with unlit settlements. Nat. Commun., 13 (1) , p. 2459. doi: 10.1038/s41467-022-30099-9.

[42]

McDonnell, M. J., Pickett, S. T. A., 1990. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology, 71 (4) , pp. 1232-1237. doi: 10.2307/1938259.

[43]

Millennium Ecosystem Assessment (MEA) 2005 Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-being: Synthesis. Island Press, Washington, D.C

[44]

Meng, Y, Li, S. P., Wang, S, Meiners, S. J., Jiang, L., 2023. Scale-dependent changes in ecosystem temporal stability over six decades of succession. Sci. Adv., 9 (40) , p. eadi1279. doi: 10.1126/sciadv.adi1279.

[45]

Mitchell, M. G. E., Devisscher, T., 2022. Strong relationships between urbanization, landscape structure, and ecosystem service multifunctionality in urban forest fragments. Landsc. Urban Plan., 228 , Article 104548. doi: 10.1016/j.landurbplan.2022.104548.

[46]

O'Connor, L. M. J., Pollock, L. J., Renaud, J, Verhagen, W, Verburg, P. H., Lavorel, S, Maiorano, L, Thuiller, W., 2021. Balancing conservation priorities for nature and for people in Europe. Science, 372 (2021), pp. 856-860. doi: 10.1126/science.abc4896.

[47]

Peng, J, Tian, L, Liu, Y, Zhao, M, Hu, Y, Wu, J., 2017. Ecosystem services response to urbanization in metropolitan areas: thresholds identification. Sci. Total Environ., 607–608 , pp. 706-714. doi: 10.1016/j.scitotenv.2017.06.218.

[48]

Pianosi, F, Wagener, T., 2015. A simple and efficient method for global sensitivity analysis based on cumulative distribution functions. Environ. Model. Softw., 67 , pp. 1-11. doi: 10.1016/j.envsoft.2015.01.004.

[49]

Porter, J. R., 2007. GLP Science Plan and Implementation Strategy. University of Copenhagen

[50]

Qiu, L, He, J, Yue, C, Ciais, P, Zheng, C., 2024. Substantial terrestrial carbon emissions from global expansion of impervious surface area. Nat. Commun., 15 (1) , p. 6456. doi: 10.1038/s41467-024-50840-w.

[51]

Rasmus, S, Yletyinen, J, Sarkki, S, Landauer, M, Tuomi, M, Arneberg, M. K., Bjerke, J. W., Ehrich, D, Habeck, J. O., Horstkotte, T, Kivinen, S, Komu, T, Kumpula, T, Leppänen, L, Matthes, H, Rixen, C, Stark, S, Sun, N, Tømmervik, H, Forbes, B. C., Eronen, J. T., 2024. Policy documents considering biodiversity, land use, and climate in the European Arctic reveal visible, hidden, and imagined nexus approaches. One Earth, 7 (2) , pp. 265-279. doi: 10.1016/j.oneear.2023.12.010.

[52]

Ren, Z, Li, C, Fu, B, Wang, S, Stringer, L. C., 2024. Effects of aridification on soil total carbon pools in China's drylands. Glob. Change Biol., 30 (1) , p. e17091. doi: 10.1111/gcb.17091.

[53]

Schwanen, T., 2018. Thinking complex interconnections: transition, nexus and geography. Trans. Inst. Br. Geogr., 43 (2) , pp. 262-283. doi: 10.1111/tran.12223.

[54]

Shen, J. S., Li, S. C., Wang, H, Wu, S. Y., Liang, Z, Zhang, Y. T., Wei, F. L., Li, S, Ma, L, Wang, Y. Y., Liu, L. B., Zhang, Y. J. 2023b. Understanding the spatial relationships and drivers of ecosystem service supply-demand mismatches towards spatially-targeted management of social-ecological system. J. Clean. Prod., 406 (2023), Article 136882. doi: 10.1016/j.jclepro.2023.136882.

[55]

Shen, P, Zhao, S, Ma, Y, Liu, S. 2023a. Urbanization-induced Earth's surface energy alteration and warming: a global spatiotemporal analysis. Remote Sens. Environ., 284 (2023), Article 113361. doi: 10.1016/j.rse.2022.113361.

[56]

Shen, Z, Gao, Y, Wang, L, Xia, Z, Liu, H, Deng, T., 2025. Non-stationary response of complex ecosystem service networks to urbanization: evidence from a typical eco-fragile area in China. Geogr. Sustain., 6 (1) , Article 100214. doi: 10.1016/j.geosus.2024.07.005.

[57]

Singh, S, Kumar, P, Parijat, R, Gonengcil, B, Rai, A., 2024. Establishing the relationship between land use land cover, normalized difference vegetation index and land surface temperature: a case of lower son River Basin, India. Geogr. Sustain., 5 (2) , pp. 265-275. doi: 10.1016/j.geosus.2023.11.006.

[58]

Soergel, B, Kriegler, E, Weindl, I, Rauner, S, Dirnaichner, A, Ruhe, C, Hofmann, M, Bauer, N, Bertram, C, Bodirsky, B. L., Leimbach, M, Leininger, J, Levesque, A, Luderer, G, Pehl, M, Wingens, C, Baumstark, L, Beier, F, Dietrich, J. P., Humpenöder, F, von Jeetze, P, Klein, D, Koch, J, Pietzcker, R, Strefler, J, Lotze-Campen, H, Popp, A., 2021. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Chang., 11 (8) , pp. 656-664. doi: 10.1038/s41558-021-01098-3.

[59]

Srivathsa, A, Vasudev, D, Nair, T, Chakrabarti, S, Chanchani, P, DeFries, R, Deomurari, A, Dutta, S, Ghose, D, Goswami, V. R., Nayak, R, Neelakantan, A, Thatte, P, Vaidyanathan, S, Verma, M, Krishnaswamy, J, Sankaran, M, Ramakrishnan, U., 2023. Prioritizing India's landscapes for biodiversity, ecosystem services and human well-being. Nat. Sustain., 6 (5) , pp. 568-577. doi: 10.1038/s41893-023-01063-2.

[60]

Stock, A, Gregr, E. J., Chan, K. M. A., 2023. Data leakage jeopardizes ecological applications of machine learning. Nat. Ecol. Evol., 7 (11) , pp. 1743-1745. doi: 10.1038/s41559-023-02162-1.

[61]

Sun, L, Chen, J, Li, Q, Huang, D., 2020. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun., 11 (1) , p. 5366. doi: 10.1038/s41467-020-19158-1.

[62]

Sun, X, Yang, P, Tao, Y, Bian, H., 2022. Improving ecosystem services supply provides insights for sustainable landscape planning: a case study in Beijing, China. Sci. Total Environ., 802 , Article 149849. doi: 10.1016/j.scitotenv.2021.149849.

[63]

Tang, X, Huang, X, Tian, J, Jiang, Y, Ding, X, Liu, W., 2024. A spatiotemporal framework for the joint risk assessments of urban flood and urban heat island. Int. J. Appl. Earth Obs., 127 , Article 103686. doi: 10.1016/j.jag.2024.103686.

[64]

United Nations (UN) 2015 United Nations (UN). Transforming Our world: The 2030 Agenda for Sustainable Development. United States, New York.

[65]

UNEA 2019 UNEA. Resolution 73/284: United Nations Decade on Ecosystem Restoration (20212030). United States, New York.

[66]

Wang, J, Zhou, W, Pickett, S. T. A., Yu, W, Li, W., 2019. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ., 662 , pp. 824-833. doi: 10.1016/j.scitotenv.2019.01.260.

[67]

Wang, K, Gao, J, Liu, C, Zhang, Y, Wang, C., 2024. Understanding the effects of socio-ecological factors on trade-offs and synergies among ecosystem services to support urban sustainable management: a case study of Beijing, China. Sust. Cities Soc., 100 , Article 105024. doi: 10.1016/j.scs.2023.105024.

[68]

Watson, J. E. M., Evans, T, Venter, O, Williams, B, Tulloch, A, Stewart, C, Thompson, I, Ray, J. C., Murray, K, Salazar, A, McAlpine, C, Potapov, P, Walston, J, Robinson, J. G., Painter, M, Wilkie, D, Filardi, C, Laurance, W. F., Houghton, R. A., Maxwell, S, Grantham, H, Samper, C, Wang, S, Laestadius, L, Runting, R. K., Silva-Chavez, G. A., Ervin, J, Lindenmayer, D., 2018. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol., 2 (4) , pp. 599-610. doi: 10.1038/s41559-018-0490-x.

[69]

WEF 2011. Water Security: The Water-Energy-Food-Climate Nexus.

[70]

Wentz, E. A., York, A. M., Alberti, M, Conrow, L, Fischer, H, Inostroza, L, Jantz, C, Pickett, S. T. A., Seto, K. C., Taubenböck, H., 2018. Six fundamental aspects for conceptualizing multidimensional urban form: a spatial mapping perspective. Landsc. Urban Plan., 179 , pp. 55-62. doi: 10.1016/j.landurbplan.2018.07.007.

[71]

Willcock, S, Hooftman, D. A. P., Neugarten, R. A., Chaplin-Kramer, R, Barredo, J. I., Hickler, T, Kindermann, G, Lewis, A. R., Lindeskog, M, Martinez-Lopez, J, Bullock, J. M., 2023. Model ensembles of ecosystem services fill global certainty and capacity gaps. Sci. Adv., 9 (14) , p. eadf5492. doi: 10.1126/sciadv.adf5492.

[72]

Xia, H, Yuan, S, Prishchepov, A. V., 2023. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: implications for spatial planning and management. Resour. Conserv. Recy., 189 , Article 106767. doi: 10.1016/j.resconrec.2022.106767.

[73]

Xu, Y. Y., Olmos, L. E., Mateo, D, Hernando, A, Yang, X. K., Gonzalez, M. C., 2023. Urban dynamics through the lens of human mobility. Nat. Comput. Sci., 3 (7) , pp. 611-620. doi: 10.1038/s43588-023-00484-5.

[74]

Xu, Z, Peng, J, Dong, J, Liu, Y, Liu, Q, Lyu, D, Qiao, R, Zhang, Z., 2022. Spatial correlation between the changes of ecosystem service supply and demand: an ecological zoning approach. Landsc. Urban Plan., 217 , Article 104258. doi: 10.1016/j.landurbplan.2021.104258.

[75]

Yan, M, Yang, J, Ni, X, Liu, K, Wang, Y, Xu, F., 2024. Urban waterlogging susceptibility assessment based on hybrid ensemble machine learning models: a case study in the metropolitan area in Beijing, China. J. Hydrol., 630 , Article 130695. doi: 10.1016/j.jhydrol.2024.130695.

[76]

Yang, M, Ren, C, Wang, H, Wang, J, Feng, Z, Kumar, P, Haghighat, F, S-Cao, J., 2024. Mitigating urban heat island through neighboring rural land cover. Nat. Cities, 1 (8) , pp. 522-532. doi: 10.1038/s44284-024-00091-z.

[77]

Yang, W, Zhang, J, Hua, P, Krebs, P., 2023. Global framework for flood risk management under climate change and urbanization. Innovation, 1 (1) , Article 100009. doi: 10.59717/j.xinn-geo.2023.100009.

[78]

Yang, Y, Wu, J. G., Wang, Y, Huang, Q. X., He, C. Y., 2021. Quantifying spatiotemporal patterns of shrinking cities in urbanizing China: a novel approach based on time-series nighttime light data. Cities, 118 , Article 103346. doi: 10.1016/j.cities.2021.103346.

[79]

Yao, Z. J., Huang, G. R., 2023. Effects of land use changes across different urbanization periods on summer rainfall in the Pearl River Delta core area. Int. J. Disaster Risk Sci., 14 (3) , pp. 458-474. doi: 10.1007/s13753-023-00497-8.

[80]

Yu, C, Huang, X, Chen, H, Godfray, H. C. J., Wright, J. S., Hall, J. W., Gong, P, Ni, S, Qiao, S, Huang, G, Xiao, Y, Zhang, J, Feng, Z, Ju, X, Ciais, P, Stenseth, N. C., Hessen, D. O., Sun, Z, Yu, L, Cai, W, Fu, H, Huang, X, Zhang, C, Liu, H, Taylor, J., 2019. Managing nitrogen to restore water quality in China. Nature, 567 (2019), pp. 516-520. doi: 10.1038/s41586-019-1001-1.

[81]

Yu, P, Zhang, S, Yung, E. H. K., Chan, E. H. W., Luan, B, Chen, Y., 2023. On the urban compactness to ecosystem services in a rapidly urbanising metropolitan area: highlighting scale effects and spatial non–stationary. Environ. Impact Assess. Rev., 98 , Article 106975. doi: 10.1016/j.eiar.2022.106975.

[82]

Yu, X, Gu, X, Kong, D, Zhang, Q, Cao, Q, Slater, L. J., Ren, G, Luo, M, Li, J, Liu, J, Cheng, J, Li, Y., 2022. Asymmetrical shift toward less light and more heavy precipitation in an urban agglomeration of East China: intensification by urbanization. Geophys. Res. Lett., 49 (4) , Article e2021GL097046. doi: 10.1029/2021GL097046.

[83]

Yao, X, Jin, S, Zhao, Z, Sun, R, Wang, C, Yu, Z., 2024. A novel integrated socio-ecological-economic index for assessing heat health risk. Ecol. Indic., 169 , p. 112840. doi: 10.1016/j.ecolind.2024.112840.

[84]

Yu, Z, Chen, J, Chen, J, Zhan, W, Wang, C, Ma, W, Yao, X, Zhou, S, Zhu, K, Sun, R. 2024a. Enhanced observations from an optimized soil-canopy-photosynthesis and energy flux model revealed evapotranspiration-shading cooling dynamics of urban vegetation during extreme heat. Remote Sens. Environ., 305 (2024), Article 114098. doi: 10.1016/j.rse.2024.114098.

[85]

Yu, Z., Yang, G., Lin, T., Zhao, B., Xu, Y., Yao, X., Ma, W., Vejre, H., Jiang, B., 2024b. Exposure ecology drives a unified understanding of the nexus of (urban) natural ecosystem, ecological exposure, and health. Ecosyst. Health Sustain. 10, 0165. doi: 10.34133/ehs.0165.

[86]

Yu, Z, Yang, G, Zuo, S, Jørgensen, G, Koga, M, Vejre, H., 2020. Critical review on the cooling effect of urban blue-green space: a threshold-size perspective. Urban For. Urban Green., 49 , Article 126630. doi: 10.1016/j.ufug.2020.126630.

[87]

Zhang, J, Ma, L, Bai, Z, Ma, W., 2024. Using the nexus approach to realise sustainable food systems. Curr. Opin. Environ. Sustain., 67 , Article 101427. doi: 10.1016/j.cosust.2024.101427.

[88]

Zhang, L., Yang, L., Zohner, C.M., Crowther, T.W., Li, M., Shen, F., Guo, M., Qin, J., Yao, L., Zhou, C., 2022a. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Sci. Adv. 8 (27), eabo0095. doi: 10.1126/sciadv. abo0095.

[89]

Zhang, N.Y., Zhang, J.J., Chen, W., Su, J.J., 2022b. Block-based variations in the impact of characteristics of urban functional zones on the urban heat island effect: a case study of Beijing. Sust. Cities Soc. 76, 103529. doi: 10.1016/j.scs.2021.103529.

[90]

Zhang, Z.J., Zhao, W.W., Liu, Y., Pereira, P., 2023. Impacts of urbanisation on vegetation dynamics in Chinese cities. Environ. Impact Assess. Rev. 103, 107227. doi: 10.1016/j.eiar.2023.107227.

[91]

Zhao, X, Xu, Y, Pu, J, Tao, J, Chen, Y, Huang, P, Shi, X, Ran, Y, Gu, Z., 2024. Achieving the supply-demand balance of ecosystem services through zoning regulation based on land use thresholds. Land Use Policy, 139 , Article 107056. doi: 10.1016/j.landusepol.2024.107056.

[92]

Zhaxi, D, Zhou, W, Pickett, S. T. A., Guo, C, Yao, Y., 2024. Urbanity mapping reveals the complexity, diffuseness, diversity, and connectivity of urbanized areas. Geogr. Sustain., 5 (3) , pp. 357-369. doi: 10.1016/j.geosus.2024.03.004.

[93]

Zheng, M. C., Huang, W. L., Xu, G, Li, X, Jiao, L. M., 2023. Spatial gradients of urban land density and nighttime light intensity in 30 global megacities. Hum. Soc. Sci. Commun., 10 (1) , p. 404. doi: 10.1057/s41599-023-01884-8.

[94]

Zhou, S, Shi, T, Li, S, Dong, Y, Sun, J., 2023. The impact of urban morphology on multiple ecological effects: coupling relationships and collaborative optimization strategies. Build. Simul., 16 (8) , pp. 1539-1557. doi: 10.1007/s12273-023-1057-6.

[95]

Zhou, Z, Zhang, L, Zhang, Q, Hu, C, Wang, G, She, D, Chen, J., 2024. Global increase in future compound heat stress-heavy precipitation hazards and associated socio-ecosystem risks. Npj Clim. Atmos. Sci., 7 (1) , p. 33. doi: 10.1038/s41612-024-00579-4.

[96]

Zscheischler, J, Westra, S, van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A, AghaKouchak, A, Bresch, D. N., Leonard, M, Wahl, T, Zhang, X., 2018. Future climate risk from compound events. Nat. Clim. Chang., 8 (6) , pp. 469-477. doi: 10.1038/s41558-018-0156-3.

PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

/