Coastal salt marsh changes in China: Landscape pattern, driving factors, and carbon dynamics

Jiali Gu , Jiaping Wu , Dongfeng Xie

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100281

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100281 DOI: 10.1016/j.geosus.2025.100281
Research Article
research-article

Coastal salt marsh changes in China: Landscape pattern, driving factors, and carbon dynamics

Author information +
History +
PDF

Abstract

Coastal salt marshes provide critical ecological services, including carbon sequestration. However, the landscape patterns, driving factors, and carbon dynamics associated with salt marsh losses and gains remain insufficiently explored, which is vital for effective restoration. This study conducted a comprehensive analysis of these aspects across China, with a focus on species-specific differences. Based on historical salt marsh data, landscape analysis was applied for identifying the spatiotemporal characteristics of changes. XGBoost algorithm was used for driving factor analysis. Carbon dynamics derived from salt marsh changes were estimated with statistical calculation. Our results indicated that the distribution patterns of salt marshes, as indicated by mean center, ellipse area, and landscape indices, varied significantly from 1985 to 2019, particularly between 2005 and 2010. Native species, such as Phragmites australis and Suaeda salsa, experienced significant losses with a 72 % reduction, while exotic species Spartina alterniflora showed substantial gains with a 680-fold. Human disturbances emerged as the primary driver of these changes, with mean temperature and precipitation influencing certain regions and years. Overall, salt marsh changes resulted in a net emission of 68.1 Mt CO2, with the highest emission in Shandong and linked to the loss of Phragmites australis. Conversely, carbon sequestration equivalent to 11.1 Mt CO2 mainly resulted from the expansion of Spartina alterniflora, with Shanghai contributing the most. This species-specific and site-specific analysis of landscape patterns, drivers, and carbon dynamics in China could enhance our understanding of salt marsh changes and offer valuable insights for targeted restoration efforts at both local and national levels.

Keywords

Salt marsh / Species-specific difference / Landscape index / Carbon emission/sequestration / Human disturbance / Environmental factor

Cite this article

Download citation ▾
Jiali Gu, Jiaping Wu, Dongfeng Xie. Coastal salt marsh changes in China: Landscape pattern, driving factors, and carbon dynamics. Geography and Sustainability, 2025, 6(4): 100281 DOI:10.1016/j.geosus.2025.100281

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Jiali Gu: Writing -review & editing, Writing -original draft, Visual- ization, Methodology, Formal analysis, Conceptualization.Jiaping Wu: Writing -review & editing, Conceptualization.Dongfeng Xie: Writing -review & editing, Funding acquisition.

Acknowledgements

This research was funded by the key project of Zhejiang Provincial Natural Science Foundation (Grant No. LZJWZ23E090003 ), and the National Natural Science Foundation of China (Grant No. 42176170 ).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100281.

References

[1]

Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C., Silliman, B.R.,2011. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81 (2), 169-193.

[2]

Bice, K., Schalles, J., Sheldon, J.E., Alber, M., Meile, C.,2023. Temporal patterns and causal drivers of aboveground plant biomass in a coastal wetland: insights from time-series analyses. Front. Mar. Sci. 10, 1130958.

[3]

Campbell, A.D.D., Fatoyinbo, L., Goldberg, L., Lagomasino, D.,2022. Global hotspots of salt marsh change and carbon emissions. Nature 612 (7941), 701-706.

[4]

Chen, G., Jin, R., Ye, Z., Li, Q., Gu, J., Luo, M., Luo, Y., Christakos, G., Morris, J., He, J., Li, D., Wang, H., Song, L., Wang, Q., Wu, J.,2022. Spatiotemporal mapping of salt marshes in the intertidal zone of China during 1985-2019. J. Remote Sens. 2022, 9793626.

[5]

Chen, T., Guestrin, C.,2016. XGBoost: a scalable tree boosting system. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, pp. 785-794.

[6]

Chen, W., Zeng, J.,2021. Decoupling analysis of land use intensity and ecosystem services intensity in China. J. Nat. Resour. 36 (11), 2853-2864 (in Chinese).

[7]

Coldren, G.A., Barreto, C.R., Wykoff, D.D., Morrissey, E.M., Langley, J.A., Feller, I.C., Chapman, S.K.,2016. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology 97 (11), 3167-3175.

[8]

Crosby, S.C., Sax, D.F., Palmer, M.E., Booth, H.S., Deegan, L.A., Bertness, M.D., Leslie, H.M.,2016. Salt marsh persistence is threatened by predicted sea-level rise. Estuar. Coast. Shelf Sci. 181, 93-99.

[9]

Cunha, J., Cabecinha, E., Villasante, S., Goncalves, J.A., Balbi, S., Elliott, M., Ramos, S.,2024. Quantifying the role of saltmarsh as a vulnerable carbon sink: a case study from Northern Portugal. Sci. Total Environ. 923, 171443.

[10]

Dontis, E.E., Radabaugh, K.R., Chappel, A.R., Russo, C.E., Moyer, R.P.,2020. Carbon storage increases with site age as created salt marshes transition to mangrove forests in Tampa Bay, Florida (USA). Estuar. Coast. 43 (6), 1470-1488.

[11]

Duan, Y., Tian, B., Li, X., Liu, D., Sengupta, D., Wang, Y., Peng, Y.,2021. Tracking changes in aquaculture ponds on the China coast using 30 years of Landsat images. Int. J. Appl. Earth Obs. Geoinf. 102, 102383.

[12]

Emery, H.E., Angell, J.H., Tawade, A., Fulweiler, R.W.,2021. Tidal rewetting in salt marshes triggers pulses of nitrous oxide emissions but slows carbon dioxide emission. Soil Biol. Biochem. 156, 108197.

[13]

Fan, B., Li, Y.,2024. China’s conservation and restoration of coastal wetlands offset much of the reclamation-induced blue carbon losses. Glob. Change Biol. 30 (1), e17039.

[14]

Feher, L.C., Osland, M.J., Griffith, K.T., Grace, J.B., Howard, R.J., Stagg, C.L., Enwright, N.M., Krauss, K.W., Gabler, C.A., Day, R.H., Rogers, K.,2017. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 8 (10), e01956.

[15]

FitzGerald, D.M., Hughes, Z.,2019. Marsh processes and their response to climate change and sea-level rise. In: JeanlozR., FreemanK.H. (Annual Review of Earth and Planetary Sciences.Eds.),Annual Reviews Inc., pp. 481-517.

[16]

Foster-Martinez, M.R., Lacy, J.R., Ferner, M.C., Varian, E.A.,2018. Wave attenuation across a tidal marsh in San Francisco Bay. Coast. Eng. 136, 26-40.

[17]

Fu, C., Li, Y., Zeng, L., Zhang, H., Tu, C., Zhou, Q., Xiong, K., Wu, J., Duarte, C.M., Christie, P., Luo, Y.,2021. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Glob. Change Biol. 27 (1), 202-214.

[18]

Gao, Y., Lu, C., Zhong, L., Lin, X., Su, Y.,2019. Temporal and spatial characteristics of temperature and precipitation in China’s coastal areas from 1951 to 2016. J. For. Environ. 39 (5), 530-539 (in Chinese).

[19]

Gittman, R.K., Peterson, C.H., Currin, C.A., Fodrie, F.J., Piehler, M.F., Bruno, J.F.,2016. Living shorelines can enhance the nursery role of threatened estuarine habitats. Ecol. Appl. 26 (1), 249-263.

[20]

Granse, D., Suchrow, S., Jensen, K.,2021. Long-term invasion dynamics of Spartina increase vegetation diversity and geomorphological resistance of salt marshes against sea level rise. Biol. Invasions 23 (3), 871-883.

[21]

Gu, J., Jin, R., Chen, G., Ye, Z., Li, Q., Wang, H., Li, D., Christakos, G., Agusti, S., Duarte, C.M., Luo, Y., Wu, J.,2021. Areal extent, species composition, and spatial distribution of coastal saltmarshes in China. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 7085-7094.

[22]

Gu, J., Luo, M., Zhang, X., Christakos, G., Agusti, S., Duarte, C.M., Wu, J.,2018. Losses of salt marsh in China: trends, threats and management. Estuar. Coast. Shelf Sci. 214, 98-109.

[23]

Gu, J., Wu, J.,2023. Blue carbon effects of mangrove restoration in subtropics where Spartina alterniflora invaded. Ecol. Eng. 186, 106822.

[24]

Guthrie, A.G., Bilkovic, D.M., Mitchell, M., Chambers, R., Thompson, J.S., Isdell, R.E.,2022. Ecological equivalency of living shorelines and natural marshes for fish and crustacean communities. Ecol. Eng. 176, 106511.

[25]

Hardy, T., Wu, W., Peterson, M.S.,2021. Analyzing spatial variability of drivers of coastal wetland loss in the northern Gulf of Mexico using bayesian multi-level models. GISci. Remote Sens. 58 (6), 831-851.

[26]

He, K., Li, W., Zhang, Y., Sun, G., McNulty, S.G., Flanagan, N.E., Richardson, C.J.,2023. Identifying driving hydrogeomorphic factors of coastal wetland downgrading using random forest classification models. Sci. Total Environ. 894, 164995.

[27]

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.-N.,2017. Complete ERA 5 from 1940: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service (C3S) Data Store (CDS) doi: 10.24381/cds.143582cf.

[28]

Huang, R., He, J., Wang, N., Christakos, G., Gu, J., Song, L., Luo, J., Agusti, S., Duarte, C.M., Wu, J.,2023. Carbon sequestration potential of transplanted mangroves and exotic saltmarsh plants in the sediments of subtropical wetlands. Sci. Total Environ. 904, 166185.

[29]

IPCC,2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC’s 49th Session, Kyoto, Japan.

[30]

Kang, Y., Ding, X., Xu, F., Zhang, C., Ge, X.,2017. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method. Estuar. Coast. Shelf Sci. 190, 11-22.

[31]

Kim, T., Noh, J., Kwon, B.-O., Lee, C., Kim, B., Kwon, I., Hong, S., Chang, G.S., Chang, W.K., Nam, J., Khim, J.S.,2020. Natural purification capacity of tidal flats for organic matters and nutrients: a mesocosm study. Mar. Pollut. Bull. 154, 111046.

[32]

Kutcher, T.E., Raposa, K.B.,2023. Assessing long-term outcomes of tidal restoration in New England salt marshes. J. Environ. Manage. 338, 117832.

[33]

Leonardi, N., Camacina, I., Donatelli, C., Ganju, N.K., Plater, A.J., Schuerch, M., Temmerman, S.,2018. Dynamic interactions between coastal storms and salt marshes: a review. Geomorphology 301, 92-107.

[34]

Li, J., Qu, W., Han, G., Lu, F., Zhou, Y., Song, W., Xie, B., Eller, F.,2020a. Effects of drying-rewetting frequency on vertical and lateral loss of soil organic carbon in a tidal salt marsh. Wetlands 40 (5), 1433-1443.

[35]

Li, F., Ding, D., Chen, Z., Chen, H., Shen, T., Wu, Q., Zhang, C.,2020b. Change of sea reclamation and the sea-use management policy system in China. Mar. Pol. 115, 103861.

[36]

Li, J., Yan, D., Yao, X., Liu, Y., Xie, S., Sheng, Y., Luan, Z.,2022. Dynamics of carbon storage in saltmarshes across China’s eastern coastal wetlands from 1987 to 2020. Front. Mar. Sci. 9, 915727.

[37]

Li, S., Ge, Z., Tan, L., Zhou, K., Hu, Z.,2021. Coupling Scirpus recruitment with Spartina control guarantees recolonization of native sedges in coastal wetlands. Ecol. Eng. 166, 106246.

[38]

Li, S., Hopkinson, C.S., Schubauer-Berigan, J.P., Pennings, S.C.,2018. Climate drivers of zizaniopsis miliacea biomass in a Georgia, U.S.A. tidal fresh marsh. Limnol. Oceanogr. 63 (5), 2266-2276.

[39]

Li, W., Wu, M., Niu, Z.,2024. Spatialization and analysis of China’s GDP based on NPP/VIIRS from 2013 to 2023. Appl. Sci. 14 (19), 8559.

[40]

Liang, C., Yu, Q., Liu, Y., Zhang, Z.,2015. Effects of air temperature circadian on the NDVI of Nansi Lake wetland vegetation. Trop. Geogr. 35, 422-426 436(in Chinese).

[41]

Liu, Z., Fagherazzi, S., He, Q., Gourgue, O., Bai, J., Liu, X., Miao, C., Hu, Z., Cui, B.,2024. A global meta-analysis on the drivers of salt marsh planting success and implications for ecosystem services. Nat. Commun. 15 (1), 3643.

[42]

Lovelock, C.E., Atwood, T., Baldock, J., Duarte, C.M., Hickey, S., Lavery, P.S., Masque, P., Macreadie, P.I., Ricart, A.M., Serrano, O., Steven, A.,2017. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15 (5), 257-265.

[43]

Macreadie, P.I., Anton, A., Raven, J.A., Beaumont, N., Connolly, R.M., Friess, D.A., Kelleway, J.J., Kennedy, H., Kuwae, T., Lavery, P.S., Lovelock, C.E., Smale, D.A., Apostolaki, E.T., Atwood, T.B., Baldock, J., Bianchi, T.S., Chmura, G.L., Eyre, B.D., Fourqurean, J.W., Hall-Spencer, J.M., Huxham, M., Hendriks, I.E., Krause-Jensen, D., Laffoley, D., Luisetti, T., Marba, N., Masque, P., McGlathery, K.J., Megonigal, J.P., Murdiyarso, D., Russell, B.D., Santos, R., Serrano, O., Silliman, B.R., Watanabe, K., Duarte, C.M.,2019. The future of Blue Carbon science. Nat. Commun. 10, 3998.

[44]

Macreadie, P.I., Costa, M.D.P., Atwood, T.B., Friess, D.A., Kelleway, J.J., Kennedy, H., Lovelock, C.E., Serrano, O., Duarte, C.M.,2021. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2 (12), 826-839.

[45]

Mason, V.G., Burden, A., Epstein, G., Jupe, L.L., Wood, K.A., Skov, M.W.,2023. Blue carbon benefits from global saltmarsh restoration. Glob. Change Biol. 29 (23), 6517-6545.

[46]

McCall, B.D., Pennings, S.C.,2012. Geographic variation in salt marsh structure and function. Oecologia 170 (3), 777-787.

[47]

McLeod, E., Chmura, G.L., Bouillon, S., Salm, R., Bjork, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., Silliman, B.R.,2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9 (10), 552-560.

[48]

Millard, K., Redden, A.M., Webster, T., Stewart, H.,2013. Use of GIS and high resolution LiDAR in salt marsh restoration site suitability assessments in the upper Bay of Fundy, Canada. Wetl. Ecol. Manag. 21 (4), 243-262.

[49]

Moeller, I., Kudella, M., Rupprecht, F., Spencer, T., Paul, M., van Wesenbeeck, B.K., Wolters, G., Jensen, K., Bouma, T.J., Miranda-Lange, M., Schimmels, S.,2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 7 (10), 727-731.

[50]

Pannozzo, N., Leonardi, N., Carnacina, I., Smedley, R.,2021. Salt marsh resilience to sea-level rise and increased storm intensity. Geomorphology 389, 107825.

[51]

Peng, S., Piao, S., Ciais, P., Myneni, R.B., Chen, A., Chevallier, F., Dolman, A.J., Janssens, I.A., Peñuelas, J., Zhang, G., Vicca, S., Wan, S., Wang, S., Zeng, H.,2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501, 88-92.

[52]

Qiu, M., Liu, Y., Chen, P., He, N., Wang, S., Huang, X., Fu, B.,2024a. Spatio-temporal changes and hydrological forces of wetland landscape pattern in the Yellow River Delta during 1986-2022. Landsc. Ecol. 39 (3), 51.

[53]

Qiu, C., Yang, J., Li, Y., Zhou, Y., Xu, W., Wang, C., Wright, A., Naylor, L., Liu, H.,2024b. Research on Grus japonensis habitat requirements for developing restoration plans. Ocean Coastal Manage. 249, 1-10.

[54]

Raposa, K.B., Weber, R.L., Ferguson, W., Hollister, J., Rozsa, R., Maher, N., Gettman, A.,2019. Drainage enhancement effects on a waterlogged Rhode Island (USA) salt marsh. Estuar. Coast. Shelf Sci. 231, 106435.

[55]

Ren, Y., Wang, Y., Liao, A., Yan, S., Liu, M.,2023. Salt marsh vegetation dynamics and its mechanism in coastal wetlands in Jiangsu Province. Chin. J. Ecol. 42 (10), 2327-2335 (in Chinese).

[56]

Song, J., Liang, Z., Li, X., Wang, X., Chu, X., Zhao, M., Zhang, X., Li, P., Song, W., Huang, W., Han, G.,2024. Precipitation changes alter plant dominant species and functional groups by changing soil salinity in a coastal salt marsh. J. Environ. Manage. 368, 122235.

[57]

Tan, L., Ge, Z., Li, S., Zhou, K., Lai, D.Y.F., Temmerman, S., Dai, Z.,2023. Impacts of land-use change on carbon dynamics in China’s coastal wetlands. Sci. Total Environ. 890, 164206.

[58]

Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M.J., Ysebaert, T., De Vriend, H.J.,2013. Ecosystem-based coastal defence in the face of global change. Nature 504 (7478), 79-83.

[59]

Thura, K., Serrano, O., Gu, J., Fang, Y., Htwe, H.Z., Zhu, Y., Huang, R., Agusti, S., Duarte, C.M., Wang, H., Wu, J.,2023. Mangrove restoration built soil organic carbon stocks over six decades: a chronosequence study. J. Soils Sediments 23 (3), 1193-1203.

[60]

Wan, S., Qin, P., Liu, J., Zhou, H.,2009. The positive and negative effects of exotic Spartina alterniflora in China. Ecol. Eng. 35 (4), 444-452.

[61]

Wang, A., Gao, S., Ja, J.,2006. Impact of the cordgrass spartina alterniflora on sedimentary, and morphological evolution of tidal salt marshes on the Jiangsu coast, China. Acta Oceanol. Sin. 25 (4), 32-42 (in Chinese).

[62]

Wang, C., Wang, J.,2022a. Kilometer grid dataset of China’s historical GDP spatial distribution (1990-2015). V1.0. A Big Earth Data Platform for Three Poles. https://poles.tpdc.ac.cn/zh-hans/data/c91fd466-1f60-4bdb-8cdb-de6f663b0ae7/.

[63]

Wang, C., Wang, J.,2022b. Kilometer grid dataset of China’s historical population spatial distribution (1990-2015). A Big Earth Data Platform for Three Poles. https://poles.tpdc.ac.cn/zh-hans/data/d8c4df4c-eff1-495c-86c0-0ac33f4c57df/.

[64]

Wang, F., Sanders, C.J., Santos, I.R., Tang, J., Schuerch, M., Kirwan, M.L., Kopp, R.E., Zhu, K., Li, X., Yuan, J., Liu, W., Li, Z.,2021. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. 8 (9), nwaa296.

[65]

Wang, J., Li, X., Lin, S., Ma, Y.,2022. Economic evaluation and systematic review of salt marsh restoration projects at a global scale. Front. Ecol. Evol. 10, 865516.

[66]

Wang, W., Liu, H., Li, Y., Su, J.,2014. Development and management of land reclamation in China. Ocean Coastal Manage. 102, 415-425.

[67]

Wang, X., Xiao, X., Zhang, X., Wu, J., Li, B.,2023. Rapid and large changes in coastal wetland structure in China’s four major river deltas. Glob. Change Biol. 29 (8), 2286-2300.

[68]

Wang, X., Zhang, H., Zhan, L., Lao, C., Xin, P.,2024. Salt marsh morphological evolution under plant species invasion. Estuar. Coast. 47 (4), 949-962.

[69]

Xia, S., Song, Z., Van Zwieten, L., Guo, L., Yu, C., Wang, W., Li, Q., Hartley, I.P., Yang, Y., Liu, H., Wang, Y., Ran, X., Liu, C., Wang, H.,2022. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China. Glob. Change Biol. 28 (20), 6065-6085.

[70]

Xu, X.,2017a. Annual dataset of China’s nighttime light. Resource and Environmental Science Data Platform. doi: 10.12078/2022090902.

[71]

Xu, X.,2017b. Kilometer grid dataset of China’s GDP spatial distribution. Resource and Environmental Science Data Platform. doi: 10.12078/2017121102.

[72]

Xu, X.,2017c. Kilometer grid dataset of China’s population spatial distribution. Resource and Environmental Science Data Platform. doi: 10.12078/2017121101.

[73]

Xu, X., Liu, J., Zhang, S., Li, R., Yan, C., Wu, S.,2017. Multiple periods of China’s land use cover change remote sensing monitor dataset (CNLUCC). Resource and Environmental Science Data Platform. doi: 10.12078/2018070201.

[74]

Xue, L., Li, X., Shi, B., Yang, B., Lin, S., Yuan, Y., Ma, Y., Peng, Z.,2021. Pattern-regulated wave attenuation by salt marshes in the Yangtze Estuary, China. Ocean Coastal Manage. 209, 105686.

[75]

Yang, L., Xiao, Y., Jie, J., Chen, Y., Yan, G., Zhang, S.,2021. Remote sensing method for extracting topographic information on tidal flats using spatial distribution features. Mar. Geod. 44 (5), 408-431.

[76]

Yang, Y., Chui, T.F.M.,2018. Combined ecohydrological effects of wind regime change and land reclamation on a tidal marsh in semi-enclosed bay. Ecol. Eng. 124, 123-134.

[77]

Yin, H., Hu, Y., Liu, M., Li, C., Chang, Y.,2022. Evolutions of 30-year spatio-temporal distribution and influencing factors of Suaeda salsa in Bohai Bay, China. Remote Sens. 14 (1), 138.

[78]

Zhang, G., Bai, J., Jia, J., Wang, X., Wang, W., Zhao, Q., Zhang, S.,2018. Soil organic carbon contents and stocks in coastal salt marshes with Spartina alterniflora following an invasion chronosequence in the Yellow River Delta, China. Chin. Geogr. Sci. 28 (3), 374-385.

[79]

Zhang, L., Ren, Z., Chen, B., Gong, P., Fu, H., Xu, B.,2021. A prolonged artificial nighttimelight dataset of China (1984-2020). A Big Earth Data Platform for Three Poles. doi: 10.11888/Socioeco.tpdc.271202.

[80]

Zhang, L., Ren, Z., Chen, B., Gong, P., Xu, B., Fu, H.,2024a. A prolonged artificial nighttime- light dataset of China (1984-2020). Sci. Data 11 (1), 414.

[81]

Zhang, X., Tian, H., Chen, X., Yang, H., Ding, R., Zhao, M., You, W.,2024b. Vegetation growth characteristics and the blue carbon effect of restored salt marshes at different developmental ages in Hengsha,the Yangtze River Estuary. J. East China Normal Univ. (Nat. Sci.) 2024 (1), 1000-5641 (in Chinese).

PDF

270

Accesses

0

Citation

Detail

Sections
Recommended

/