Predicting suitable habitats for Asian elephant (Elephas maximus) in Tropical Asia under changing climatic scenarios

Kazi Al Muqtadir Abir , Biplob Dey , Mohammad Redowan , Ashraful Haque , Romel Ahmed

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100279

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100279 DOI: 10.1016/j.geosus.2025.100279
Research Article
review-article

Predicting suitable habitats for Asian elephant (Elephas maximus) in Tropical Asia under changing climatic scenarios

Author information +
History +
PDF

Abstract

Protecting rare, endemic, and endangered species requires careful habitat evaluation to set strategic plans for mitigating biodiversity loss and prioritizing conservation goals. The endangered Asian elephant (Elephas maximus) exemplifies the urgent need for targeted conservation efforts, given its challenging habitat conditions. This study examines the impact of climate and land use changes on the suitable habitat distribution of Asian elephants. Utilizing ten predictor variables, including climatic, topographic, and land use data, and employing six ensemble Species Distribution Models (SDMs) alongside Coupled Model Intercomparison Project Phase 6 data, the study estimates spatial changes and potential habitat expansions for Asian elephants across Tropical Asia. Occurrence data were gathered from field surveys in Bangladesh and the Global Biodiversity Information Facility database for Sri Lanka, Myanmar, Bhutan, Cambodia, India, Laos, Nepal, Thailand, and Vietnam. To evaluate habitat suitability, the analysis considered two distinct socioeconomic pathways (SSP 245 and SSP 370) across two future periods (2041–2060 and 2061–2080). Results reveal a strong correlation between isothermality and habitat suitability, with higher isothermality enhancing the habitat conditions for Asian elephants. Among the SDMs, the random forest model demonstrated the highest performance. Projected scenarios indicate significant habitat fragmentation by 2061–2080, heightening the risk of species’ vulnerability. Specifically, in SSP 245, the north zone is anticipated to experience a higher rate of habitat loss (588.443 km²/year), whereas, in SSP 370, the west zone is expected to face a more severe rate of habitat loss (1,798.56 km²/year). The eastern zone, which includes Cambodia, Vietnam, Laos, Thailand, and southern Myanmar, is notably at risk, with an estimated habitat loss of 14.8 million hectares. Anticipated changes in climate and land cover will impact the availability of essential resources such as food, water, and shelter, potentially driving the species to relocate to different elevation belts. The outcomes of the consensus map highlighting critical habitats and future fragmentation scenarios will support effective conservation and management strategies for the species.

Keywords

Climate change / Socioeconomic pathways / Habitat modelling / Transboundary conservation / Land use / Wildlife conservation

Cite this article

Download citation ▾
Kazi Al Muqtadir Abir, Biplob Dey, Mohammad Redowan, Ashraful Haque, Romel Ahmed. Predicting suitable habitats for Asian elephant (Elephas maximus) in Tropical Asia under changing climatic scenarios. Geography and Sustainability, 2025, 6(2): 100279 DOI:10.1016/j.geosus.2025.100279

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Kazi Al Muqtadir Abir: Writing – original draft, Methodology, Formal analysis, Data curation, Conceptualization. Biplob Dey: Writing – review & editing, Writing – original draft, Supervision, Resources, Methodology, Investigation, Formal analysis, Conceptualization. Mohammad Redowan: Writing – review & editing, Software, Resources, Methodology, Investigation. Ashraful Haque: Writing – review & editing, Validation, Resources, Project administration, Investigation, Conceptualization. Romel Ahmed: Writing – review & editing, Validation, Supervision, Software, Project administration, Investigation, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research is funded by USAID’s Community Partnerships to Strengthen Sustainable Development (Compass) Program implemented by U.S. Forest Service International Programs (Grant No. Compass-SA-2023–073).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100279.

References

[1]

Bai, D, Wan, X, Zhang, L, Campos-Arceiz, A, Wei, F, Zhang, Z., 2022. The recent Asian elephant range expansion in Yunnan, China, is associated with climate change and enforced protection efforts in human-dominated landscapes. Front. Ecol. Evol., 10 , Article 889077. doi: 10.3389/FEVO.2022.889077.

[2]

Benka, V. A., 2023. Expanding the scope of challenges to human-wildlife coexistence, and the implications for conservation: a case study of Laikipia, Kenya. Hum. Dimens. Wildl., 28 , pp. 585-601. doi: 10.1080/10871209.2022.2136421.

[3]

Budhathoki, S, Gautam, J, Budhathoki, S, Jaishi, P. P., 2023. Predicting the habitat suitability of Asian elephants (Elephas maximus) under future climate scenarios. Ecosphere, 14 (10) , p. e4678. doi: 10.1002/ecs2.4678.

[4]

Chaiyarat, R, Wettasin, M, Youngpoy, N, Cheachean, N., 2023. Use of human dominated landscape as connectivity corridors among fragmented habitats for wild Asian elephants (Elephas maximus) in the eastern part of Thailand. Diversity, 15 (1) , p. 6. doi: 10.3390/D15010006.

[5]

Cohen, J. M., Lajeunesse, M. J., Rohr, J. R., 2018. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change, 8 , pp. 224-228. doi: 10.1038/s41558-018-0067-3.

[6]

Cribb, R., 2021. 86-110. doi: 10.4324/9781315181929-5.

[7]

Dai, L, Guo, X, Ke, X, Lan, Y, Zhang, F, Li, Y, Lin, L, Li, Q, Cao, G, Fan, B, Qian, D, Zhou, H, Du, Y., 2020. Biomass allocation and productivity–richness relationship across four grassland types at the Qinghai Plateau. Ecol. Evol., 10 , pp. 506-516. doi: 10.1002/ece3.5920.

[8]

de Silva, S, Wu, T, Nyhus, P, Weaver, A, Thieme, A, Johnson, J, Wadey, J, Mossbrucker, A, Vu, T, Neang, T, Chen, B. S., Songer, M, Leimgruber, P., 2023. Land-use change is associated with multi-century loss of elephant ecosystems in Asia. Sci. Rep., 13 , p. 5996. doi: 10.1038/s41598-023-30650-8.

[9]

Dey, B., Abir, K.A.M., Ahmed, R., Salam, M.A., Redowan, M., Miah, M.D., Iqbal, M.A., 2023b. Monitoring groundwater potential dynamics of north-eastern Bengal Basin in Bangladesh using AHP-machine learning approaches. Ecol. Indic. 154, 110886. doi: 10.1016/j.ecolind.2023.110886.

[10]

Dey, B., Ahmed, R., Ferdous, J., Haque, M.M.U., Khatun, R., Hasan, F.E., Uddin, S.N., 2023a. Automated plant species identification from the stomata images using deep neural network: a study of selected mangrove and freshwater swamp forest tree species of Bangladesh. Ecol. Inform. 75, 102128. doi: 10.1016/J.ECOINF.2023.102128.

[11]

Dey, B., Ferdous, J., Ahmed, R., 2024. Machine learning based recommendation of agricultural and horticultural crop farming in India under the regime of NPK, soil pH and three climatic variables. Heliyon 10, e25112. doi: 10.1016/j.heliyon.2024.e25112.

[12]

Dinerstein, E, Olson, D, Joshi, A, Vynne, C, Burgess, N. D., Wikramanayake, E, Hahn, N, Palminteri, S, Hedao, P, Noss, R, Hansen, M, Locke, H, Ellis, E. C., Jones, B, Barber, C. V., Hayes, R, Kormos, C, Martin, V, Crist, E, Sechrest, W, Price, L, Baillie, J. E. M., Weeden, D, Suckling, K, Davis, C, Sizer, N, Moore, R, Thau, D, Birch, T, Potapov, P, Turubanova, S, Tyukavina, A, de Souza, N, Pintea, L, Brito, J. C., Llewellyn, O. A., Miller, A. G., Patzelt, A, Ghazanfar, S. A., Timberlake, J, Klöser, H, Shennan-Farpón, Y, Kindt, R, J-Lillesø, P. B., van Breugel, P, Graudal, L, Voge, M, Al-Shammari, K. F., Saleem, M., 2017. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience, 67 , pp. 534-545. doi: 10.1093/biosci/bix014.

[13]

Elahi, R, Edmunds, P. J., Gates, R. D., Kuffner, I. B., Barnes, B. B., Chollett, I, Courtney, T. A., Guest, J. R., Lenz, E. A., Toth, L. T., Viehman, T. S., Williams, I. D., 2022. Scale dependence of coral reef oases and their environmental correlates. Ecol. Appl., 32 , p. e2651. doi: 10.1002/EAP.2651.

[14]

Friedl, M., Sulla-Menashe, D., 2022. MODIS/Terra + Aqua land cover type yearly L3 Global 500 m SIN grid V061 - MCD12Q1. https://doi.org/10.5067/MODIS/MCD12Q1.061

[15]

Fritz, H., 2017. Long-term field studies of elephants: understanding the ecology and conservation of a long-lived ecosystem engineer. J. Mammal., 98 , pp. 603-611. doi: 10.1093/jmammal/gyx023.

[16]

Ghannam, R. B., Techtmann, S. M., 2021. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Comput. Struct. Biotechnol. J., 19 , pp. 1092-1107. doi: 10.1016/j.csbj.2021.01.028.

[17]

Guarnieri, M, Kumaishi, G, Brock, C, Chatterjee, M, Fabiano, E, Katrak-Adefowora, R, Larsen, A, Lockmann, T. M., Roehrdanz, P. R., 2024. Lockmann, P.R. Roehrdanz. Effects of climate, land use, and human population change on human-elephant conflict risk in Africa and Asia. Proc. Natl. Acad. Sci. U.S.A., 121 , Article e2312569121. doi: 10.1073/PNAS.2312569121.

[18]

Hama, A. A., Khwarahm, N. R., 2023. Predictive mapping of two endemic oak tree species under climate change scenarios in a semiarid region: range overlap and implications for conservation. Ecol. Inform., 73 , Article 101930. doi: 10.1016/j.ecoinf.2022.101930.

[19]

Hannah, L, Midgley, G. F., Millar, D., 2002. Climate change-integrated conservation strategies. Glob. Ecol. Biogeogr., 11 , pp. 485-495. doi: 10.1046/J.1466-822X.2002.00306.X.

[20]

Htet, N. N. P., Chaiyarat, R, Thongthip, N, Anuracpreeda, P, Youngpoy, N, Chompoopong, P., 2021. Population and distribution of wild Asian elephants (Elephas maximus) in Phu Khieo Wildlife Sanctuary, Thailand. PeerJ, 9 , p. e11896. doi: 10.7717/PEERJ.11896.

[21]

Islam, K. N., Rana, L. R. S., Islam, K, Hossain, M. S., Hossain, M. M., Hossain, M. A., 2021. Climate change and the distribution of two Ficus spp. in Bangladesh – predicting the spatial shifts. Trees For. People, 4 , Article 100086. doi: 10.1016/j.tfp.2021.100086.

[22]

Kanagaraj, R, Araujo, M. B., Barman, R, Davidar, P, De, R, Digal, D. K., Gopi, G. V., Johnsingh, A. J. T., Kakati, K, Kramer-Schadt, S, Lamichhane, B. R., Lyngdoh, S, Madhusudan, M. D., Ul Islam Najar, M, Parida, J, Pradhan, N. M. B., Puyravaud, J. P., Raghunath, R, Rahim, P. P. A., Muthamizh Selvan, K, Subedi, N, Trabucco, A, Udayraj, S, Wiegand, T, Williams, A. C., Goyal, S. P., 2019. Predicting range shifts of Asian elephants under global change. Divers. Distrib., 25 , pp. 822-838. doi: 10.1111/ddi.12898.

[23]

Kryshtafovych, A, Schwede, T, Topf, M, Fidelis, K, Moult, J., 2019. Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins, 87 , pp. 1011-1020. doi: 10.1002/prot.25823.

[24]

Li, B., Chen, Y., Shi, X., 2020. Does elevation dependent warming exist in high mountain Asia? Environ. Res. Lett. 15, 24012. doi: 10.1088/1748-9326/ab6d7f.

[25]

Li, L. L., Wang, Q. Y., Yang, H. P., Tao, Y. X., Wang, L. X., Yang, Z. B., Campos-Arceiz, A, Quan, R. C., 2023. Mobile animals and immobile protected areas: improving the coverage of nature reserves for Asian elephant conservation in China. Oryx, 57 , pp. 532-539. doi: 10.1017/S0030605322000515.

[26]

Li, W, Yu, Y, Liu, P, Tang, R, Dai, Y, Li, L, Zhang, L., 2019. Identifying climate refugia and its potential impact on small population of Asian elephant (Elephas maximus) in China. Glob. Ecol. Conserv., 19 , p. e00664. doi: 10.1016/j.gecco.2019.e00664.

[27]

McDermott, C. L., 2014. REDDuced: from sustainability to legality to units of carbon–the search for common interests in international forest governance. Environ. Sci. Policy, 35 , pp. 12-19. doi: 10.1016/j.envsci.2012.08.012.

[28]

Meinshausen, M, Nicholls, Z. R. J., Lewis, J, Gidden, M. J., Vogel, E, Freund, M, Beyerle, U, Gessner, C, Nauels, A, Bauer, N, Canadell, J. G., Daniel, J. S., John, A, Krummel, P. B., Luderer, G, Meinshausen, N, Montzka, S. A., Rayner, P. J., Reimann, S, Smith, S. J., Van Den Berg, M, Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., 2020. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13 , pp. 3571-3605. doi: 10.5194/GMD-13-3571-2020.

[29]

Mohd Taher, T, Lihan, T, Tajul Arifin, N. A., Khodri, N. F., Ahmad Mustapha, M, Abdul Patah, P, Razali, S. H. A., Mohd Nor, S., 2021. Characteristic of habitat suitability for the Asian elephant in the fragmented Ulu Jelai Forest Reserve, Peninsular Malaysia. Trop. Ecol., 62 , pp. 347-358. doi: 10.1007/s42965-021-00154-5.

[30]

Mumby, H. S., Courtiol, A, Mar, K. U., Lummaa, V., 2013. Climatic variation and age-specific survival in Asian elephants from Myanmar. Ecology, 94 , pp. 1131-1141. doi: 10.1890/12-0834.1.

[31]

Naimi, B, Araújo, M. B., 2016. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39 , pp. 368-375. doi: 10.1111/ECOG.01881.

[32]

Ndlovu, M, Madiri, T. H., Madhlamoto, D, Tadyanehondo, K. M., Vambe, A, Mungoni, E., 2023. Age-sex structure of drought-driven African elephant (Loxodonta africana) mortality in Hwange National Park, Zimbabwe. Sci. Afr., 19 , p. e01459. doi: 10.1016/j.sciaf.2022.e01459.

[33]

Ortega, J., Eggert, L., 2004. [Book review] The Living Elephants: Evolutionary Ecology, Behavior, and Conservation, Sukumar, R. Oxford University Press, New York (2003). (ISBN 0-19-510778-0). J. Mammal. 85 (3), 581–582. doi: 10.1644/1383960.

[34]

Platt, S. G., Bickford, D. P., Win, M. M., Rainwater, T. R., 2019. Water-filled Asian elephant tracks serve as breeding sites for anurans in Myanmar. Mammalia, 83 , pp. 287-289. doi: 10.1515/mammalia-2017-0174.

[35]

Radha, K. O., Khwarahm, N. R., 2022. An integrated approach to map the impact of climate change on the distributions of Crataegus azarolus and Crataegus monogyna in Kurdistan Region, Iraq. Sustainability, 14 , p. 14621. doi: 10.3390/su142114621.

[36]

Rao, R., 2022. The impact of global climate change on biodiversity distribution patterns. J. Res. Sci. Eng., 4 , pp. 15-17. doi: 10.53469/jrse.2022.04(03).01.

[37]

Ripple, W. J., Newsome, T. M., Wolf, C, Dirzo, R, Everatt, K. T., Galetti, M, Hayward, M. W., Kerley, G. I. H., Levi, T, Lindsey, P. A., Macdonald, D. W., Malhi, Y, Painter, L. E., Sandom, C. J., Terborgh, J, Van Valkenburgh, B., 2015. Collapse of the world’s largest herbivores. Sci. Adv., 1 , Article e1400103. doi: 10.1126/sciadv.1400103.

[38]

Schmitz, O. J., Lawler, J. J., Beier, P, Groves, C, Knight, G, Boyce, D. A., Bulluck, J, Johnston, K. M., Klein, M. L., Muller, K, Pierce, D. J., Singleton, W. R., Strittholt, J. R., Theobald, D. M., Trombulak, S. C., Trainor, A., 2015. Conserving biodiversity: practical guidance about climate change adaptation approaches in support of land-use planning. Nat. Areas J., 35 , pp. 190-203. doi: 10.3375/043.035.0120.

[39]

Shaffer, L. J., Khadka, K. K., Van Den Hoek, J, Naithani, K. J., 2019. Human-elephant conflict: a review of current management strategies and future directions. Front. Ecol. Evol., 6 , p. 235. doi: 10.3389/fevo.2018.00235.

[40]

Sharma, P, Adhikari, H, Tripathi, S, Ram, A. K., Bhattarai, R., 2019. Habitat suitability modeling of asian Elephant Elephas maximus (Mammalia: proboscidea: elephantidae) in Parsa National Park, Nepal and its buffer zone. J. Threat. Taxa, 11 , pp. 14643-14654. doi: 10.11609/jott.4467.11.13.14643-14654.

[41]

Sharma, P, Panthi, S, Yadav, S. K., Bhatta, M, Karki, A, Duncan, T, Poudel, M, Acharya, K. P., 2020. Suitable habitat of wild Asian elephant in Western Terai of Nepal. Ecol. Evol., 10 , pp. 6112-6119. doi: 10.1002/ece3.6356.

[42]

Srivathsa, A, Vasudev, D, Nair, T, Chakrabarti, S, Chanchani, P, DeFries, R, Deomurari, A, Dutta, S, Ghose, D, Goswami, V. R., Nayak, R, Neelakantan, A, Thatte, P, Vaidyanathan, S, Verma, M, Krishnaswamy, J, Sankaran, M, Ramakrishnan, U., 2023. Prioritizing India's landscapes for biodiversity, ecosystem services and human well-being. Nat. Sustain., 6 , pp. 568-577. doi: 10.1038/s41893-023-01063-2.

[43]

Steen, V. A., Tingley, M. W., Paton, P. W. C., Elphick, C. S., 2021. Spatial thinning and class balancing: key choices lead to variation in the performance of species distribution models with citizen science data. Methods Ecol. Evol., 12 , pp. 216-226. doi: 10.1111/2041-210X.13525.

[44]

te Wierik, S. A., Cammeraat, E. L. H., Gupta, J, Artzy-Randrup, Y. A., 2021. Artzy-Randrup. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns. Water Resour. Res., 57 , Article e2020WR029234. doi: 10.1029/2020WR029234.

[45]

Tebaldi, C, Debeire, K, Eyring, V, Fischer, E, Fyfe, J, Friedlingstein, P, Knutti, R, Lowe, J, O'Neill, B, Sanderson, B, Van Vuuren, D, Riahi, K, Meinshausen, M, Nicholls, Z, Tokarska, K, Hurtt, G, Kriegler, E, Meehl, G, Moss, R, Bauer, S, Boucher, O, Brovkin, V, Yhb, Y, Dix, M, Gualdi, S, Guo, H, John, J, Kharin, S, Kim, Y. H., Koshiro, T, Ma, L, Olivié, D, Panickal, S, Qiao, F, Rong, X, Rosenbloom, N, Schupfner, M, Séférian, R, Sellar, A, Semmler, T, Shi, X, Song, Z, Steger, C, Stouffer, R, Swart, N, Tachiiri, K, Tang, Q, Tatebe, H, Voldoire, A, Volodin, E, Wyser, K, Xin, X, Yang, S, Yu, Y, Ziehn, T., 2021. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn., 12 , pp. 253-293. doi: 10.5194/ESD-12-253-2021.

[46]

Teitelbaum, C. S., Fagan, W. F., Fleming, C. H., Dressler, G, Calabrese, J. M., Leimgruber, P, Mueller, T., 2015. How far to go? Determinants of migration distance in land mammals. Ecol. Lett., 18 , pp. 545-552. doi: 10.1111/ELE.12435.

[47]

Thant, Z. M., Leimgruber, P, Williams, A. C., Oo, Z. M., Røskaft, E, May, R., 2023. Factors influencing the habitat suitability of wild Asian elephants and their implications for human–elephant conflict in Myanmar. Glob. Ecol. Conserv., 43 , p. e02468. doi: 10.1016/j.gecco.2023.e02468.

[48]

Tiller, L. N., Humle, T, Amin, R, Deere, N. J., Lago, B. O., Leader-Williams, N, Sinoni, F. K., Sitati, N, Walpole, M, Smith, R. J., 2021. Changing seasonal, temporal and spatial crop-raiding trends over 15 years in a human-elephant conflict hotspot. Biol. Conserv., 254 , Article 108941. doi: 10.1016/J.BIOCON.2020.108941.

[49]

Ullah, S. M. A., Asahiro, K, Moriyama, M, Tsuchiya, J, Rahman, M. A., Mary, M, Tani, M., 2024. Causes and consequences of forest cover transformation on human-wildlife interaction in the Teknaf Wildlife Sanctuary, Bangladesh. Trees For. People, 15 , Article 100476. doi: 10.1016/j.tfp.2023.100476.

[50]

Wang, H, Wang, P, Zhao, X, Zhang, W, Li, J, Xu, C, Xie, P., 2021. What triggered the Asian elephant's northward migration across southwestern Yunnan?. Innovation, 2 (3) , Article 100142. doi: 10.1016/J.XINN.2021.100142.

[51]

Wettasin, M, Chaiyarat, R, Youngpoy, N, Jieychien, N, Sukmasuang, R, Tanhan, P., 2023. Environmental factors induced crop raiding by wild Asian elephant (Elephas maximus) in the Eastern Economic Corridor, Thailand. Sci. Rep., 13 , p. 13388. doi: 10.1038/s41598-023-40070-3.

[52]

Williams, A. C., Johnsingh, A. J. T., Krausman, P. R., 2001. Elephant-human conflicts in Rajaji National Park, NorthWestern India. Wildl. Soc. Bull., 29, 1097-1104.

[53]

Wisz, M. S., Hijmans, R. J., Li, J, Peterson, A. T., Graham, C. H., Guisan, A, Elith, J, Dudík, M, Ferrier, S, Huettmann, F, Leathwick, J. R., Lehmann, A, Lohmann, L, Loiselle, B. A., Manion, G, Moritz, C, Nakamura, M, Nakazawa, Y, Overton, J. M. C., Phillips, S. J., Richardson, K. S., Scachetti-Pereira, R, Schapire, R. E., Soberón, J, Williams, S. E., Zimmermann, N. E., 2008. Effects of sample size on the performance of species distribution models. Divers. Distrib., 14 , pp. 763-773. doi: 10.1111/j.1472-4642.2008.00482.x.

[54]

Wu, T, Yu, R, Lu, Y, Jie, W, Fang, Y, Zhang, J, Zhang, L, Xin, X, Li, L, Wang, Z, Liu, Y, Zhang, F, Wu, F, Chu, M, Li, J, Li, W, Shi, X, Zhou, W, Yao, J, Liu, X, Zhao, H, Yan, J, Wei, M, Xue, W, Huang, A, Shu, Q, Hu, A., 2021. BCC-CSM2-HR: a high-resolution version of the Beijing Climate Center Climate System Model. Geosci. Model Dev., 14 , pp. 2977-3006. doi: 10.5194/GMD-14-2977-2021.

[55]

Xin, X-G, T-Wu, W, Zhang, J, Zhang, F, W-Li, P, Y-Zhang, W, Y-Lu, X, Y-Fang, J, W-Jie, H, Zhang, L, Dong, M, X-Shi, L, J-Li, L, Chu, M, Q-Liu, X, J-Yan, H., 2019. Introduction of BCC models and its participation in CMIP6. Adv. Clim. Chang. Res., 15 , p. 533. doi: 10.12006/J.ISSN.1673-1719.2019.039.

[56]

Yang, W, Ma, Y, Jing, L, Wang, S, Sun, Z, Tang, Y, Li, H., 2022. Differential impacts of climatic and land use changes on habitat suitability and protected area adequacy across the Asian Elephant's Range. Sustainability, 14 (9) , p. 4933. doi: 10.3390/su14094933.

[57]

Yu, Q, Hu, Z, Huang, C, Xu, T, Onditi, K. O., Li, X, Jiang, X., 2024. Suitable habitats shifting toward human-dominated landscapes of Asian elephants in China. Biodivers. Conserv., 33 , pp. 685-704. doi: 10.1007/S10531-023-02766-W.

[58]

Yue, K, De Frenne, P, Fornara, D. A., Van Meerbeek, K, Li, W, Peng, X, Ni, X, Peng, Y, Wu, F, Yang, Y, Peñuelas, J., 2021. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob. Change Biol., 27 , pp. 3350-3357. doi: 10.1111/gcb.15644.

[59]

Zhang, H, Zhang, X, Cai, Y, Sinha, A, Spötl, C, Baker, J, Kathayat, G, Liu, Z, Tian, Y, Lu, J, Wang, Z, Zhao, J, Jia, X, Du, W, Ning, Y, An, Z, Edwards, R. L., Cheng, H., 2021. A data-model comparison pinpoints holocene spatiotemporal pattern of East Asian summer monsoon. Quat. Sci. Rev., 261 , Article 106911. doi: 10.1016/j.quascirev.2021.106911.

PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

/