Identifying key drivers of urban flood resilience for effective management: Insights and implications

Yongyang Wang , Yulei Xie , Lei Chen , Pan Zhang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100278

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100278 DOI: 10.1016/j.geosus.2025.100278
Research Article
review-article

Identifying key drivers of urban flood resilience for effective management: Insights and implications

Author information +
History +
PDF

Abstract

Enhancing urban resilience is a powerful strategy for mitigating floods caused by both intensive human activities and climate change. However, existing studies have limitations, highlighting the need for a more comprehensive framework for assessing flood resilience based on the resilience evolution process. Therefore, the objective of this study was to develop an integrated framework for evaluating urban flood resilience, incorporating Bayesian networks and Geographic Information Systems (GIS) to explore the driving mechanisms behind flood resilience with the Beijing-Tianjin-Hebei urban agglomeration in China as a case study. The results indicated that: (1) inundation risk, population risk, and flooding mitigation were the most critical indicators influencing urban flood resilience; (2) Chengde and Tangshan emerged as key areas with high resistance capabilities, while Zhangjiakou and Baoding showed notable strengths in functional recovery; (3) the average value of urban flood resilience decreased from 0.58 under a 5-year rainfall return period to 0.54 under a 100-year rainfall return period, representing a 5.6 % decrease, with Zhangjiakou exhibiting the highest flood resilience. These findings are of significant importance for policymakers involved in flood risk management.

Keywords

Urban flood resilience / BN-GIS model / Resilience theory / Multi-indicator system / The Beijing-Tianjin-Hebei region

Cite this article

Download citation ▾
Yongyang Wang, Yulei Xie, Lei Chen, Pan Zhang. Identifying key drivers of urban flood resilience for effective management: Insights and implications. Geography and Sustainability, 2025, 6(4): 100278 DOI:10.1016/j.geosus.2025.100278

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yongyang Wang: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Yulei Xie: Investigation. Lei Chen: Visualization. Pan Zhang: Funding acquisition.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants No. 52409016 and 52200212), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515110717). The authors would like to extend the appreciation to the editors and the anonymous reviewers for their efforts in helping improve the quality of this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100278.

References

[1]

Abebe, Y., Kabir, G., Tesfamariam, S., 2018. Assessing urban areas vulnerability to pluvial flooding using GIS applications and Bayesian belief network model. J. Clean. Prod. 174, 1629–1641. doi: 10.1016/j.jclepro.2017.11.066.

[2]

Arif, S, Massey, M. D. B., 2023. Reducing bias in experimental ecology through directed acyclic graphs. Ecol. Evol., 13 (3) , p. e9947. doi: 10.1002/ece3.9947.

[3]

Aven, T, Nokland, T. E., 2010. On the use of uncertainty importance measures in reliability and risk analysis. Reliab. Eng. Syst. Saf., 95 (2) , pp. 127-133. doi: 10.1016/j.ress.2009.09.002.

[4]

Cao, F, Xu, X, Zhang, C, Kong, W., 2023. Evaluation of urban flood resilience and its space-time evolution: a case study of Zhejiang Province, China. Ecol. Indic., 154 , Article 110643. doi: 10.1016/j.ecolind.2023.110643.

[5]

Datola, G., 2023. Implementing urban resilience in urban planning: a comprehensive framework for urban resilience evaluation. Sust. Cities Soc., 98 , Article 104821. doi: 10.1016/j.scs.2023.104821.

[6]

Fraser, A, Pelling, M, Scolobig, A, Mavrogenis, S., 2020. Relating root causes to local risk conditions: a comparative study of the institutional pathways to small-scale disasters in three urban flood contexts. Glob. Environ. Change, 63 , Article 102102. doi: 10.1016/j.gloenvcha.2020.102102.

[7]

Jiang, R, Lu, H, Yang, K, Chen, D, Zhou, J, Yamazaki, D, Pan, M, Li, W, Xu, N, Yang, Y, Guan, D, Tian, F., 2023. Substantial increase in future fluvial flood risk projected in China's major urban agglomerations. Commun. Earth Environ., 4 (1) , p. 389. doi: 10.1038/s43247-023-01049-0.

[8]

Lee, H, Song, K, Kim, G, Chon, J., 2021. Flood-adaptive green infrastructure planning for urban resilience. Landsc. Ecol. Eng., 17 (4) , pp. 427-437. doi: 10.1007/s11355-021-00458-7.

[9]

Li, C, Liu, M, Hu, Y, Wang, H, Zhou, R, Wu, W, Wang, Y., 2022. Spatial distribution patterns and potential exposure risks of urban floods in Chinese megacities. J. Hydrol., 610 , Article 127838. doi: 10.1016/j.jhydrol.2022.127838.

[10]

Li, W, Jiang, R, Wu, H, Xie, J, Zhao, Y, Song, Y, Li, F., 2023. A system dynamics model of urban rainstorm and flood resilience to achieve the sustainable development goals. Sust. Cities Soc., 96 , Article 104631. doi: 10.1016/j.scs.2023.104631.

[11]

Li, Z, Zhang, X, Ma, Y, Feng, C, Hajiyev, A., 2019. A multi-criteria decision making method for urban flood resilience evaluation with hybrid uncertainties. Int. J. Disaster Risk Reduct., 36 , Article 101140. doi: 10.1016/j.ijdrr.2019.101140.

[12]

Liu, D, Sun, T, Liu, D, Fu, Q, Zhang, L, Li, X, Li, M, Li, T, Cui, S., 2022. A new method to analyze the driving mechanism of flood disaster resilience and its management decision-making. J. Hydrol., 612 , Article 128134. doi: 10.1016/j.jhydrol.2022.128134.

[13]

Lu, H, Zhang, C, Jiao, L, Wei, Y, Zhang, Y., 2022. Analysis on the spatial-temporal evolution of urban agglomeration resilience: a case study in chengdu-chongqing urban agglomeration, China. Int. J. Disaster Risk Reduct., 79 , Article 103167. doi: 10.1016/j.ijdrr.2022.103167.

[14]

Lu, Q, P-Zhong, A, Xu, B, Zhu, F, Ma, Y, Wang, H, Xu, S., 2020. Risk analysis for reservoir flood control operation considering two-dimensional uncertainties based on Bayesian network. J. Hydrol., 589 , Article 125353. doi: 10.1016/j.jhydrol.2020.125353.

[15]

Moghadas, M, Asadzadeh, A, Vafeidis, A, Fekete, A, Kötter, T., 2019. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct., 35 , Article 101069. doi: 10.1016/j.ijdrr.2019.101069.

[16]

Pan, H, You, X, Liu, S, Zhang, D., 2021. Pearson correlation coefficient-based pheromone refactoring mechanism for multi-colony ant colony optimization. Appl. Intell., 51 (2) , pp. 752-774. doi: 10.1007/s10489-020-01841-x.

[17]

Sun, R, Shi, S, Reheman, Y, Li, S., 2022. Measurement of urban flood resilience using a quantitative model based on the correlation of vulnerability and resilience. Int. J. Disaster Risk Reduct., 82 , Article 103344. doi: 10.1016/j.ijdrr.2022.103344.

[18]

Sun, T, Liu, D, Liu, D, Zhang, L, Li, M, Khan, M. I., Li, T, Cui, S., 2023. A new method for flood disaster resilience evaluation: a hidden markov model based on bayesian belief network optimization. J. Clean. Prod., 412 , Article 137372. doi: 10.1016/j.jclepro.2023.137372.

[19]

Tayyab, M, Zhang, J, Hussain, M, Ullah, S, Liu, X, Khan, S. N., Baig, M. A., Hassan, W, Al-Shaibah, B., 2021. GIS-based urban flood resilience assessment using urban flood resilience model: a case study of Peshawar City, Khyber Pakhtunkhwa, Pakistan. Remote Sens., 13 (10) , p. 1864. doi: 10.3390/rs13101864.

[20]

Uusitalo, L., 2007. Advantages and challenges of Bayesian networks in environmental modelling. Ecol. Model., 203 (3–4) , pp. 312-318. doi: 10.1016/j.ecolmodel.2006.11.033.

[21]

Wang, H, Yun, R, Zhang, J, Zhao, R., 2022. Sensitivity analysis of the flash flood hazard by coupling variable fuzzy method and mutual entropy. J. Flood Risk Manag., 15 (2) , p. e12792. doi: 10.1111/jfr3.12792.

[22]

Wang, T, Wang, H, Wang, Z, Huang, J., 2023. Dynamic risk assessment of urban flood disasters based on functional area division-a case study in Shenzhen, China. J. Environ. Manage., 345 , Article 118787. doi: 10.1016/j.jenvman.2023.118787.

[23]

Wang, Y, Cai, Y, Xie, Y, Chen, L, Zhang, P. 2023a. An integrated approach for evaluating dynamics of urban eco-resilience in urban agglomerations of China. Ecol. Indic., 146 (2023), Article 109859. doi: 10.1016/j.ecolind.2023.109859.

[24]

Wang, Y, Cai, Y, Xie, Y, Zhang, P, Chen, L. 2023b. A quantitative framework to evaluate urban ecological resilience: broadening understanding through multi-attribute perspectives. Front. Ecol. Evol., 11 (2023), Article 1144244. doi: 10.3389/fevo.2023.1144244.

[25]

Wang, Y, Cai, Y, Xie, Y, Zhang, P, Chen, L., 2024. Resilience and dynamism: innovative modeling of ecological group dynamics in urban landscapes. Environ. Impact Assess. Rev., 108 , Article 107613. doi: 10.1016/j.eiar.2024.107613.

[26]

Wang, Z, Chen, X, Qi, Z, Cui, C., 2023. Flood sensitivity assessment of super cities. Sci. Rep., 13 (1) , p. 5582. doi: 10.1038/s41598-023-32149-8.

[27]

Ye, C, Hu, M, Lu, L, Dong, Q, Gu, M., 2022. Spatio-temporal evolution and factor explanatory power analysis of urban resilience in the Yangtze River Economic Belt. Geogr. Sustain., 3 (4) , pp. 299-311. doi: 10.1016/j.geosus.2022.09.004.

[28]

Yu, S, Yuan, M, Wang, Q, Corcoran, J, Xu, Z, Peng, J., 2023. Dealing with urban floods within a resilience framework regarding disaster stages. Habitat Int., 136 , Article 102783. doi: 10.1016/j.habitatint.2023.102783.

[29]

Zhang, J, Teixeira, A. P., Guedes Soares, C, Yan, X, Liu, K., 2016. Maritime transportation risk assessment of Tianjin Port with Bayesian Belief Networks. Risk Anal., 36 (6) , pp. 1171-1187. doi: 10.1111/risa.12519.

[30]

Zhang, X, Mao, F, Gong, Z, Hannah, D. M., Cai, Y, Wu, J., 2023. A disaster-damage-based framework for assessing urban resilience to intense rainfall-induced flooding. Urban Clim., 48 , Article 101402. doi: 10.1016/j.uclim.2022.101402.

[31]

Zhao, N, Jiao, Y, Ma, T, Zhao, M, Fan, Z, Yin, X, Liu, Y, Yue, T., 2019. Estimating the effect of urbanization on extreme climate events in the Beijing-Tianjin-Hebei region, China. Sci. Total Environ., 688 , pp. 1005-1015. doi: 10.1016/j.scitotenv.2019.06.374.

[32]

Zheng, J, Huang, G., 2023. Towards flood risk reduction: commonalities and differences between urban flood resilience and risk based on a case study in the Pearl River Delta. Int. J. Disaster Risk Reduct., 86 , Article 103568. doi: 10.1016/j.ijdrr.2023.103568.

[33]

Zhu, S, Li, D, Feng, H, Zhang, N., 2023. The influencing factors and mechanisms for urban flood resilience in China: from the perspective of social-economic-natural complex ecosystem. Ecol. Indic., 147 , Article 109959. doi: 10.1016/j.ecolind.2023.109959.

[34]

Zhu, S, Li, D, Huang, G, Chhipi-Shrestha, G, Nahiduzzaman, K. M., Hewage, K, Sadiq, R., 2021. Enhancing urban flood resilience: a holistic framework incorporating historic worst flood to Yangtze River Delta, China. Int. J. Disaster Risk Reduct., 61 , Article 102355. doi: 10.1016/j.ijdrr.2021.102355.

PDF

338

Accesses

0

Citation

Detail

Sections
Recommended

/