Evaluating the effectiveness of the Shan-Shui Initiatives in China

Yutong Jiang , Xinghao Shan , Qingyu Liu , Yu Feng , Yuyang Lai , Kaiji Xu , Jinman Wang , Zhongke Bai , Xiaoming Feng

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100271

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100271 DOI: 10.1016/j.geosus.2025.100271
Research Article
review-article

Evaluating the effectiveness of the Shan-Shui Initiatives in China

Author information +
History +
PDF

Abstract

The Shan-Shui Initiative has attracted global attention in massively contained ecological deterioration and restored millions of hectares of land in China. There are high hopes for this new combination of protection, restoration, and management of ecosystems, its overall benefits, however, remain uncertain. Here, we employed ecosystem service (ES) indicators to quantitatively evaluate the effectiveness of all pilot projects since 2016 at the national scale. Results show that after the implementation of Shan-Shui Initiative, ES have significantly improved, with increases in water yield (14.3 %), carbon sequestration (13.7 %), soil conservation (6.5 %), windbreak sand fixation (5.0 %), and habitat quality (0.7 %). The changes in ES were driven by both the Shan-Shui Initiative and climate change. Projects with longer implementation periods showed a more pronounced trend of growth in ESs, particularly evident in the ecological space. The spillover effects were widely present and the prevalence of positive spillover effects was notably greater than that of negative ones. Furthermore, the diverse interventions implemented in the Shan-Shui project had varying impacts on ES across different regions. Overall, these interventions showed a positive influence on ESs, although the degree of trade-off showed a south-high and north-low pattern. This highlights the necessity for ecological restoration efforts to carefully consider regional differences. This study may provide policy guidance for optimizing the layout and sustainable management of Shan-Shui ecological restoration projects.

Keywords

Shan-Shui Initiative / Ecosystem services / Ecological restoration / Effectiveness evaluation

Cite this article

Download citation ▾
Yutong Jiang, Xinghao Shan, Qingyu Liu, Yu Feng, Yuyang Lai, Kaiji Xu, Jinman Wang, Zhongke Bai, Xiaoming Feng. Evaluating the effectiveness of the Shan-Shui Initiatives in China. Geography and Sustainability, 2025, 6(4): 100271 DOI:10.1016/j.geosus.2025.100271

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yutong Jiang: Writing – original draft, Visualization, Methodology, Formal analysis, Data curation. Xinghao Shan: Visualization, Methodology, Formal analysis, Data curation. Qingyu Liu: Writing – original draft, Visualization, Formal analysis, Data curation. Yu Feng: Writing – review & editing, Supervision, Project administration, Funding acquisition, Conceptualization. Yuyang Lai: Formal analysis, Data curation. Kaiji Xu: Writing – original draft. Jinman Wang: Supervision, Project administration, Conceptualization. Zhongke Bai: Supervision, Project administration. Xiaoming Feng: Supervision, Project administration.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFF1303205) and the Fundamental Research Funds for the Central Universities (Grant No. 2652022005).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100271.

References

[1]

AFR100, 2023. African Forest Landscape Restoration Initiative (AFR100). World Resources Institute.

[2]

American Prairie, 2024. Rewilding. American Prairie. https://americanprairie.org/rewilding/. (accessed 24 June 2024).

[3]

An, L, Liu, J, Zhang, Q, Song, C, Ezzine-de-Blas, D, Dai, J, Zhang, H, Lewison, R, Bohnett, E, Stow, D, Xu, W, Bryan, B. A., 2024. Global hidden spillover effects among concurrent green initiatives. Sci. Total Environ., 917 , Article 169880. doi: 10.1016/j.scitotenv.2024.169880.

[4]

Anselin, L., 1995. Local indicators of spatial association—LISA. Geogr. Anal., 27 , pp. 93-115. doi: 10.1111/j.1538-4632.1995.tb00338.x.

[5]

Bawa, K. S., Seidler, R., 2023. Sustainable pathways toward reimagining India's agricultural systems. Commun. Earth Environ., 4 , pp. 1-4. doi: 10.1038/s43247-023-00902-6.

[6]

Benayas, J. M. R., Newton, A. C., Diaz, A, Bullock, J. M., 2009. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science, 325 , pp. 1121-1124. doi: 10.1126/science.1172460.

[7]

Bentley, S. B., Tomscha, S. A., Deslippe, J. R., 2022. Indictors of wetland health improve following small-scale ecological restoration on private land. Sci. Total Environ., 837 , Article 155760. doi: 10.1016/j.scitotenv.2022.155760.

[8]

Braun, D, Damm, A, Hein, L, Petchey, O. L., Schaepman, M. E., 2018. Schaepman. Spatio-temporal trends and trade-offs in ecosystem services: an Earth observation based assessment for Switzerland between 2004 and 2014. Ecol. Indic., 89 , pp. 828-839. doi: 10.1016/j.ecolind.2017.10.016.

[9]

Bryan, B. A., Gao, L, Ye, Y, Sun, X, Connor, J. D., Crossman, N. D., Stafford-Smith, M, Wu, J, He, C, Yu, D, Liu, Z, Li, A, Huang, Q, Ren, H, Deng, X, Zheng, H, Niu, J, Han, G, Hou, X., 2018. China's response to a national land-system sustainability emergency. Nature, 559 , pp. 193-204. doi: 10.1038/s41586-018-0280-2.

[10]

Buisson, E, Le Stradic, S, Silveira, F. A. O., Durigan, G, Overbeck, G. E., Fidelis, A, Fernandes, G. W., Bond, W. J, Hermann, J-.M, Mahy, G, Alvarado, S. T., Zaloumis, N. P., Veldman, J. W., 2019. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev., 94 , pp. 590-609. doi: 10.1111/brv.12470.

[11]

Burrell, A. L., Evans, J. P., Liu, Y., 2017. Detecting dryland degradation using Time Series Segmentation and Residual Trend analysis (TSS-RESTREND). Remote Sens. Environ., 197 , pp. 43-57. doi: 10.1016/j.rse.2017.05.018.

[12]

Cai, D, Ge, Q, Wang, X, Liu, B, Goudie, A. S., Hu, S., 2020. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett., 15 , Article 114046. doi: 10.1088/1748-9326/abbde9.

[13]

Chen, C, Park, T, Wang, X, Piao, S, Xu, B, Chaturvedi, R. K., Fuchs, R, Brovkin, V, Ciais, P, Fensholt, R, Tømmervik, H, Bala, G, Zhu, Z, Nemani, R. R., Myneni, R. B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2 , pp. 122-129. doi: 10.1038/s41893-019-0220-7.

[14]

Condé, T. M., Tonini, H, Higuchi, N, Higuchi, F. G., Lima, A. J. N., Barbosa, R. I., dos Santos Pereira, T, Haas, M. A., 2022. Effects of sustainable forest management on tree diversity, timber volumes, and carbon stocks in an ecotone forest in the northern Brazilian Amazon. Land Use Policy, 119 , Article 106145. doi: 10.1016/j.landusepol.2022.106145.

[15]

Evans, J, Geerken, R., 2004. Discrimination between climate and human-induced dryland degradation. J. Arid Environ., 57 , pp. 535-554. doi: 10.1016/S0140-1963(03)00121-6.

[16]

Fang, X, Zhao, W, Wang, L, Feng, Q, Ding, J, Liu, Y, Zhang, X., 2016. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China. Hydrol. Earth Syst. Sci., 20 , pp. 3309-3323. doi: 10.5194/hess-20-3309-2016.

[17]

Fang, Z, Xu, W, Zhang, J, Xiao, Y, Zhang, L., 2017. Planning of the natural protection system in the Qinling Mountain Range based on biodiversity and ecosystem service functions. Acta Ecol. Sin., 37, 5334-5341.

[18]

Feng, Q, Zhao, W, Fu, B, Ding, J, Wang, S., 2017. Ecosystem service trade-offs and their influencing factors: a case study in the Loess Plateau of China. Sci. Total Environ., 607–608 , pp. 1250-1263. doi: 10.1016/j.scitotenv.2017.07.079.

[19]

Fu, L, Zhang, G, Huang, J, Peng, M, Ding, L, Han, D., 2024. Prevalence of vegetation browning in China's drylands under climate change. Geogr. Sustain., 5 , pp. 405-414. doi: 10.1016/j.geosus.2024.04.002.

[20]

Geerken, R, Ilaiwi, M., 2004. Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sens. Environ., 90 , pp. 490-504. doi: 10.1016/j.rse.2004.01.015.

[21]

Gong, J, Liu, D, Zhang, J, Xie, Y, Cao, E, Li, H., 2019. Tradeoffs/synergies of multiple ecosystem services based on land use simulation in a mountain-basin area, western China. Ecol. Indic., 99 , pp. 283-293. doi: 10.1016/j.ecolind.2018.12.027.

[22]

Hua, F, Bruijnzeel, L. A., Meli, P, Martin, P. A., Zhang, J, Nakagawa, S, Miao, X, Wang, W, McEvoy, C, Peña-Arancibia, J. L., Brancalion, P. H. S., Smith, P, Edwards, D. P., Balmford, A., 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 376 , pp. 839-844. doi: 10.1126/science.abl4649.

[23]

IPBES, 2019. Global Assessment Report on Biodiversity and Ecosystem Services. IPBES secretariat.

[24]

IPCC, 2019. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SRCCL). IPCC.

[25]

Jiang, C., Zhang, H., Zhang, Z., 2018. Spatially explicit assessment of ecosystem services in China’s Loess Plateau: patterns, interactions, drivers, and implications. Glob. Planet. Change 161, 41–52. doi: 10.1016/j.gloplacha.2017.11.014.

[26]

Jiang, X, Wang, K, Zheng, S, Hu, X, Chu, Z., 2019. cological protection and restoration system of mountain-river-forest-farmland-lake-grassland: practicing the theory of lucid waters and lush mountains are invaluable assets. J. Environ. Eng. Technol., 9, 475-481.

[27]

Jiang, L, Wang, Z, Zuo, Q, Du, H., 2023. Simulating the impact of land use change on ecosystem services in agricultural production areas with multiple scenarios considering ecosystem service richness. J. Clean. Prod., 397 , Article 136485. doi: 10.1016/j.jclepro.2023.136485.

[28]

, Y, Zhang, L, Feng, X, Zeng, Y, Fu, B, Yao, X, Li, J, Wu, B., 2015. Recent ecological transitions in China: greening, browning and influential factors. Sci. Rep., 5 , p. 8732. doi: 10.1038/srep08732.

[29]

Langhammer, P. F., Bull, J. W., Bicknell, J. E., Oakley, J. L., Brown, M. H., Bruford, M. W., Butchart, S. H. M., Carr, J. A., Church, D, Cooney, R, Cutajar, S, Foden, W, Foster, M. N., Gascon, C, Geldmann, J, Genovesi, P, Hoffmann, M, Howard-McCombe, J, Lewis, T, Macfarlane, N. B. W., Melvin, Z. E., Merizalde, R. S., Morehouse, M. G., Pagad, S, Polidoro, B, Sechrest, W, Segelbacher, G, Smith, K. G., Steadman, J, Strongin, K, Williams, J, Woodley, S, Brooks, T. M., 2024. The positive impact of conservation action. Science, 384 , pp. 453-458. doi: 10.1126/science.adj6598.

[30]

Leonardi, M, Boschin, F, Giampoudakis, K, Beyer, R. M., Krapp, M, Bendrey, R, Sommer, R, Boscato, P, Manica, A, Nogues-Bravo, D, Orlando, L., 2018. Late quaternary horses in Eurasia in the face of climate and vegetation change. Sci. Adv., 4 , p. eaar5589. doi: 10.1126/sciadv.aar5589.

[31]

Li, J, Ai, W., 2018. Examining environmental protection by the thought of the unity of heaven and man. Environ. Dev., 30 , p. 209+211. doi: 10.16647/j.cnki.cn15-1369/X.2018.03.124.

[32]

Li, A, Wu, J, Huang, J., 2012. 27 , pp. 969-982. doi: 10.1007/s10980-012-9751-2.

[33]

Li, T, , Y, Fu, B, Comber, A. J., Harris, P, Wu, L., 2017. Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: their effectiveness and socio-economic relationships. Sci. Total Environ., 607–608 , pp. 911-919. doi: 10.1016/j.scitotenv.2017.07.044.

[34]

Li, X, Wu, K, Liu, Y, Feng, Z, Xie, J., 2019. Ecological protection and restoration of mountains-rivers-forests-farmlands-lakesgrasslands based on ecosystem services-utilizing Heshan section of the south Taihang area as an example. Acta Ecol. Sin., 39, 8806-8816.

[35]

Li, R, Han, G, Sun, J, Zhou, T, Chen, J, He, W, Wang, Y., 2023. Dynamics and controls of ecosystem multiserviceability across the Qingzang Plateau. Geogr. Sustain., 4 , pp. 318-328. doi: 10.1016/j.geosus.2023.06.004.

[36]

Liang, C, Cao, Q, Yang, L, Wu, T, Wang, Q., 2021. Construction of ecological restoration evaluation index system including mountains rivers–forests–farmlands–lakes–grasslands: taking Tongchuan City as an example. China Energy Environ. Prot., 43 , pp. 105-113. doi: 10.19389/j.cnki.1003-0506.2021.07.019.

[37]

Liu, M, Dries, L, Huang, J, Min, S, Tang, J., 2019. The impacts of the eco-environmental policy on grassland degradation and livestock production in Inner Mongolia, China: an empirical analysis based on the simultaneous equation model. Land Use Policy, 88 , Article 104167. doi: 10.1016/j.landusepol.2019.104167.

[38]

Liu, L., Wang, H., Yue, Q., 2020. China’s coastal wetlands: ecological challenges, restoration, and management suggestions. Reg. Stud. Mar. Sci. 37, 101337. doi: 10.1016/j.rsma.2020.101337.

[39]

Liu, T, Yu, L, Chen, X, Wu, H, Lin, H, Li, C, Hou, J., 2023. Environmental laws and ecological restoration projects enhancing ecosystem services in China: a meta-analysis. J. Environ. Manage., 327 , Article 116810. doi: 10.1016/j.jenvman.2022.116810.

[40]

Locher, K., Lautenbach, S., Volk, M., 2017. Spatio-temporal change of ecosystem services as a key to understand natural resource utilization in Southern Chile. Reg. Environ. Change 17, 2477–2493. doi: 10.1007/s10113-017-1180-y.

[41]

Luo, L, Ma, W, Zhuang, Y, Zhang, Y, Yi, S, Xu, J, Long, Y, Ma, D, Zhang, Z., 2018. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecol. Indic., 93 , pp. 24-35. doi: 10.1016/j.ecolind.2018.04.067.

[42]

Luo, Y, , Y, Fu, B, Zhang, Q, Li, T, Hu, W, Comber, A., 2019. Half century change of interactions among ecosystem services driven by ecological restoration: quantification and policy implications at a watershed scale in the Chinese Loess Plateau. Sci. Total Environ., 651 , pp. 2546-2557. doi: 10.1016/j.scitotenv.2018.10.116.

[43]

Lyu, R, Zhang, J, Xu, M, Li, J., 2018. Impacts of urbanization on ecosystem services and their temporal relations: a case study in Northern Ningxia, China. Land Use Policy, 77 , pp. 163-173. doi: 10.1016/j.landusepol.2018.05.022.

[44]

Lyu, F, Tang, J, Olhnuud, A, Hao, F, Gong, C., 2024. The impact of large-scale ecological restoration projects on trade-offs/synergies and clusters of ecosystem services. J. Environ. Manage., 365 , Article 121591. doi: 10.1016/j.jenvman.2024.121591.

[45]

Macias-Fauria, M., 2018. Satellite images show China going green. Nature 553, 411–413. doi: 10.1038/d41586-018-00996-5.

[46]

Millennium Ecosystem Assessment, 2005. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being. World Resources Institute.

[47]

Ministry of Ecology and Envionment of the People’s Republic of China, 2019. The notice on issuing “Construction Indicators for ecological civilization construction demonstration cities ”, and “clear waters and green mountains are as valuable as mountains of gold and silver ” practice and innovation base construction management regulations (trial). (in Chinese). https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201909/t20190919_734509.html#

[48]

Moreno-Mateos, D, Alberdi, A, Morriën, E, van der Putten, W. H., Rodríguez-Uña, A, Montoya, D., 2020. The long-term restoration of ecosystem complexity. Nat. Ecol. Evol., 4 , pp. 676-685. doi: 10.1038/s41559-020-1154-1.

[49]

Nahlik, A. M., Fennessy, M. S., 2016. Carbon storage in US wetlands. Nat. Commun., 7 , p. 13835. doi: 10.1038/ncomms13835.

[50]

Ouyang, Z, Zheng, H, Polasky, S, Liu, J, Xu, W, Wang, Q, Zhang, L, Rao, E, Jiang, L, Lu, F, Wang, X, Yang, G, Gong, S, Wu, B, Zeng, Y, Yang, W, Daily, G. C., 2016. Improvements in ecosystem services from investments in natural capital. Science, 352 , pp. 1455-1459. doi: 10.1126/science.aaf2295.

[51]

Parr, C. L., te Beest, M, Stevens, N., 2024. Conflation of reforestation with restoration is widespread. Science, 383 , pp. 698-701. doi: 10.1126/science.adj0899.

[52]

Ren, Y, , Y, Fu, B., 2016. 95 , pp. 542-550. doi: 10.1016/j.ecoleng.2016.06.082.

[53]

Seddon, A. W. R., Macias-Fauria, M, Long, P. R., Benz, D, Willis, K. J., 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531 , pp. 229-232. doi: 10.1038/nature16986.

[54]

Shao, Y., Xiao, Y., Sang, W., 2022. Land use trade-offs and synergies based on temporal and spatial patterns of ecosystem services in South China. Ecol. Indic. 143, 109335. doi: 10.1016/j.ecolind.2022.109335.

[55]

Shen, Y, Liu, G, Zhou, W, Liu, Y, Cheng, H, Su, X., 2022. Protected areas have remarkable spillover effects on forest conservation on the Qinghai-Tibet Plateau. Divers. Distrib., 28, 2944-2955.

[56]

Shi, S, Yu, J, Wang, F, Wang, P, Zhang, Y, Jin, K., 2021. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ., 755 , Article 142419. doi: 10.1016/j.scitotenv.2020.142419.

[57]

Song, W, Wang, C, Chen, W, Zhang, X, Li, H, Li, J., 2020. Unlocking the spatial heterogeneous relationship between per Capita GDP and nearby air quality using bivariate local indicator of spatial association. Resour. Conserv. Recycl., 160 , Article 104880. doi: 10.1016/j.resconrec.2020.104880.

[58]

Spake, R, Ezard, T. H. G., Martin, P. A., Newton, A. C., Doncaster, C. P., 2015. A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv. Biol., 29, 1695-1703.

[59]

Su, Y, Li, W, Chen, M, Wu, C, Tan, X., 2023. Innovation policy and ecological welfare performance: evidence from a quasi-natural experiment of China. Environ. Sci. Pollut. Res., 30 , pp. 100994-101013. doi: 10.1007/s11356-023-29307-w.

[60]

Sun, Y, Yang, Y, Zhang, L, Wang, Z., 2015. The relative roles of climate variations and human activities in vegetation change in North China. Phys. Chem. Earth Parts A/B/C, 87–88 , pp. 67-78. doi: 10.1016/j.pce.2015.09.017.

[61]

Tian, Y, Feng, Q, Tang, M, Zheng, S, Liu, C, Wu, D, Wang, L., 2019. Ecological protection and restoration of forest, wetland, grassland and cropland based on the perspective of ecosystem assessment: a case study in Wuliangsuhai Watershed. Acta Ecol. Sin., 39, 8826-8836.

[62]

Turner, M. G., Donato, D. C., Romme, W. H., 2013. Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landsc. Ecol., 28 , pp. 1081-1097. doi: 10.1007/s10980-012-9741-4.

[63]

Valderrábano, M, Nelson, C, Nicholson, E, Etter, A, Carwardine, J, Hallett, J, McBreen, J, Botts, E. 2021. Using ecosystem risk assessment science in ecosystem restoration: a guide to applying the Red List of Ecosystems to ecosystem restoration. IUCN, Gland, Switzerland. doi: 10.2305/IUCN.CH.2021.19.en.

[64]

Wang, J, Zhong, L., 2019. Application of ecosystem service theory for ecological protection and restoration of mountain–river–forest–field–lake–grassland. Acta Ecol. Sin., 39, 8702-8708.

[65]

Wang, L, Wang, Q, Wei, S, Shao, M, Li, Y., 2008. Soil desiccation for Loess soils on natural and regrown areas. For. Ecol. Manag., 255 , pp. 2467-2477. doi: 10.1016/j.foreco.2008.01.006.

[66]

Wang, J, Peng, J, Zhao, M, Liu, Y, Chen, Y., 2017. Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in north-western Yunnan, China. Sci. Total Environ., 574 , pp. 57-64. doi: 10.1016/j.scitotenv.2016.09.026.

[67]

Wang, Y, Dai, E, Ge, Q, Zhang, X, Yu, C., 2021. Spatial heterogeneity of ecosystem services and their trade-offs in the Hengduan Mountain region, Southwest China. Catena, 207 , Article 105632. doi: 10.1016/j.catena.2021.105632.

[68]

Wang, X, Ge, Q, Geng, X, Gao, L, Bryan, B. A., Su, Y, Cai, D, Ye, J, Sun, J, Lu, H, Che, H, Cheng, H, Liu, H, Liu, B, Dong, Z, Cao, S, Hua, T, Sun, F, Luo, G, Hu, S, Xu, D, Chen, M, Li, D, Liu, F, Xu, X, Han, D, Zheng, Y, Xiao, F, Li, X, Wang, P, Chen, F., 2023. Unintended consequences of combating desertification in China. Nat. Commun., 14 , p. 1139. doi: 10.1038/s41467-023-36835-z.

[69]

Wang, X, Wang, X, Zhang, X, Zhou, J, Jia, Z, Ma, J, Yao, W, Tu, Y, Sun, Z, Wei, Y., 2024. Ecological barriers: an approach to ecological conservation and restoration in China. Ambio, 53 , pp. 1077-1091. doi: 10.1007/s13280-024-01988-8.

[70]

Wu, G, Zhao, M, Wang, C., 2019. Research on the theoretical support system of ecological protection and restoration of full-array ecosystems. Acta Ecol. Sin., 39, 8685-8691.

[71]

Xu, L, Zhang, H, Zhang, M, Wang, K., 2015. Spatial and temporal changes in soil conservation function and its economic value in southern hilly mountainous areas. Resour. Environ. Yangtze Basin 24, 1599-1605.

[72]

Xue, Z., Meng, X., Liu, B., 2024. Spatiotemporal evolution and driving factors of ecosystem services in the upper Fenhe watershed, China. Ecol. Indic. 160, 111803. doi: 10.1016/j.ecolind.2024.111803.

[73]

Young, T. P., Chase, J. M., Huddleston, R. T., 2001. Community succession and assembly: comparing, contrasting and combining paradigms in the context of ecological restoration. Ecol. Restor., 19, 5-18.

[74]

Yu, C, Zhang, Z, Jeppesen, E, Gao, Y, Liu, Y, Liu, Y, Lu, Q, Wang, C, Sun, X., 2024. Assessment of the effectiveness of China's protected areas in enhancing ecosystem services. Ecosyst. Serv., 65 , Article 101588. doi: 10.1016/j.ecoser.2023.101588.

[75]

Zhang, Z, Huisingh, D., 2018. Combating desertification in China: monitoring, control, management and revegetation. J. Clean. Prod., 182 , pp. 765-775. doi: 10.1016/j.jclepro.2018.01.233.

[76]

Zhang, H, Hao, H, Shu, C, Wang, Y., 2017. Scientifically implementing ecosystem conservation and restoration projects to promote community of Human and nature. J. Environ. Sci., 45 , pp. 31-34. doi: 10.14026/j.cnki.0253-9705.2017.06.007.

[77]

Zhang, Y, Zhao, X, Gong, J, Luo, F, Pan, Y., 2024. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ., 910 , Article 168676. doi: 10.1016/j.scitotenv.2023.168676.

[78]

Zhou, Y, Su, X, Ying, L, Zhou, X, Zhang, C, Kang, Y., 2023. Research of priority areas and technical strategies of the integrated protection and restoration projects for full-array ecosystems with carbon peak and carbon neutrality goals in China. Acta Ecol. Sin., 43, 3371-3383.

[79]

Zhou, R., 2019. Research on the soil conservation service effects in typical areas of the Loess Plateau. Remote Sens. Land Resour., 31, 131-139.

[80]

Zou, C, Wang, Y, Wang, W, Xu, D, lin, N, Li, W., 2018. Theory of mountain-river-forest-farmland-lake-grass system and ecological protection and restoration research. J. Ecol. Rural Environ., 34, 961-967.

PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

/