Non-negligible large impact of potential forestation on livestock production in China

Changjiang Wu , Xiaoping Liu , Fengsong Pei , Kangyao Liu , Yaotong Cai , Xiaocong Xu , Haoming Zhuang , Yiling Cai , Bingjie Li

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100270

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100270 DOI: 10.1016/j.geosus.2025.100270
Research Article
review-article

Non-negligible large impact of potential forestation on livestock production in China

Author information +
History +
PDF

Abstract

Forestation projects have been identified as an important component of climate mitigation strategy to reduce greenhouse gas emissions worldwide. However, most previous studies ignore the impacts of potential forestation projects on livestock production, which is crucial to the livelihoods of local people. In this study, we identified potential forestation areas in China by integrating random forest regression model and LPJ-GUESS model. The impacts of potential forestation on carbon storage and pasture-based livestock production were then analyzed. The results showed that China has a potential forestation area of 43.2 million hectares, accounting for about 19.6 % of the country’s forest area as reported in the 9th National Forest Inventory. If all these regions are reforested, China’s forest cover will increase to 27.4 %. Furthermore, 1.58 Pg C of new above- and below-ground carbon would be sequestered, about an increase of 17.2 % of current forest carbon storage. However, the potential forestation may result in a significant negative impact on existing pastures and the amount of livestock. It can reduce 4.7 % of beef, and 0.8 % of mutton products from China’s livestock sector each year. These significant declines will result in a huge gap in China’s livestock products supply, posing a serious threat to food security and the livelihoods of many people. Our findings highlight that potential forestation projects should further consider a reasonable pasture protection strategy to balance the potential carbon sequestration and the socio-economic benefits of livestock production.

Keywords

Forestation potential / Carbon storage / Livestock production / Socio-economic costs

Cite this article

Download citation ▾
Changjiang Wu, Xiaoping Liu, Fengsong Pei, Kangyao Liu, Yaotong Cai, Xiaocong Xu, Haoming Zhuang, Yiling Cai, Bingjie Li. Non-negligible large impact of potential forestation on livestock production in China. Geography and Sustainability, 2025, 6(4): 100270 DOI:10.1016/j.geosus.2025.100270

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Changjiang Wu: Writing – original draft, Software, Methodology, Formal analysis, Conceptualization. Xiaoping Liu: Supervision, Project administration, Funding acquisition, Conceptualization. Fengsong Pei: Writing – review & editing, Supervision, Conceptualization. Kangyao Liu: Validation, Formal analysis, Data curation. Yaotong Cai: Validation. Xiaocong Xu: Supervision, Funding acquisition. Haoming Zhuang: Software, Methodology. Yiling Cai: Validation, Data curation. Bingjie Li: Validation.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the National Science Fund for Distinguished Young Scholars (Grant No. 42225107), the Natural Science Foundation of Guangdong Province of China (Grant No. 2022A1515012207), and the National Natural Science Foundation of China (Grant No. 42401505).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100270.

References

[1]

Bai, Z, Ma, W, Ma, L, Velthof, G. L., Wei, Z, Havlík, P, Oenema, O, Lee, M. R. F., Zhang, F., 2018. China's livestock transition: driving forces, impacts, and consequences. Sci. Adv., 4 (7) , p. eaar8534. doi: 10.1126/sciadv.aar8534.

[2]

Bastin, J-F, Finegold, Y, Garcia, C, Mollicone, D, Rezende, M, Routh, D, Zohner, C. M., Crowther, T. W., 2019. The global tree restoration potential. Science, 365 (2019), pp. 76-79. doi: 10.1126/science.aax0848.

[3]

Breiman, L., 2001. Random forests. Mach. Learn., 45 (1) , pp. 5-32. doi: 10.1023/A:1010933404324.

[4]

Chang, X, Xing, Y, Wang, J, Yang, H, Gong, W., 2022. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl., 182 , Article 106333. doi: 10.1016/j.resconrec.2022.106333.

[5]

Chen, C, Park, T, Wang, X, Piao, S, Xu, B, Chaturvedi, R. K., Fuchs, R, Brovkin, V, Ciais, P, Fensholt, R, Tømmervik, H, Bala, G, Zhu, Z, Nemani, R. R., Myneni, R. B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2 (2) , p. 2. doi: 10.1038/s41893-019-0220-7.

[6]

Davies-Barnard, T, Meyerholt, J, Zaehle, S, Friedlingstein, P, Brovkin, V, Fan, Y, Fisher, R. A., Jones, C. D., Lee, H, Peano, D, Smith, B, Wårlind, D, Wiltshire, A. J., 2020. Nitrogen cycling in CMIP6 land surface models: progress and limitations. Biogeosciences, 17 (20) , pp. 5129-5148. doi: 10.5194/bg-17-5129-2020.

[7]

Delzeit, R, Pongratz, J, Schneider, J. M., Schuenemann, F, Mauser, W, Zabel, F., 2019. Forest restoration: expanding agriculture. Science, 366 (2019), pp. 316-317. doi: 10.1126/science.aaz0705.

[8]

Deng, L., Liu, G., Shangguan, Z., 2014. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: a synthesis. Glob. Change Biol. 20 (11), 3544–3556. doi: 10.1111/gcb.12508.

[9]

Dixon, R. K., Solomon, A. M., Brown, S, Houghton, R. A., Trexier, M. C., Wisniewski, J., 1994. Carbon pools and flux of global forest ecosystems. Science, 263 (1994), pp. 185-190. doi: 10.1126/science.263.5144.185.

[10]

Döscher, R, Acosta, M, Alessandri, A, Anthoni, P, Arsouze, T, Bergman, T, Bernardello, R, Boussetta, S, L-Caron, P, Carver, G, Castrillo, M, Catalano, F, Cvijanovic, I, Davini, P, Dekker, E, Doblas-Reyes, F. J., Docquier, D, Echevarria, P, Fladrich, U, Fuentes-Franco, R, Gröger, M, Hardenberg, J. V., Hieronymus, J, Karami, M. P, Keskinen, J-.P, Koenigk, T, Makkonen, R, Massonnet, F, Ménégoz, M, Miller, P. A., Moreno-Chamarro, E, Nieradzik, L, van Noije, T, Nolan, P, O'Donnell, D, Ollinaho, P, van den Oord, G, Ortega, P, Prims, O. T., Ramos, A, Reerink, T, Rousset, C, Ruprich-Robert, Y, Le Sager, P, Schmith, T, Schrödner, R, Serva, F, Sicardi, V, Madsen, M. S., Smith, B, Tian, T, Tourigny, E, Uotila, P, Vancoppenolle, M, Wang, S, Wårlind, D, Willén, U, Wyser, K, Yang, S, Yepes-Arbós, X, Zhang, Q., 2022. The EC-Earth3 Earth system model for the coupled model intercomparison project 6. Geosci. Model Dev., 15 (7) , pp. 2973-3020. doi: 10.5194/gmd-15-2973-2022.

[11]

Duffy, C, O'Donoghue, C, Ryan, M, Styles, D, Spillane, C., 2020. Afforestation: replacing livestock emissions with carbon sequestration. J. Environ. Manage., 264 , Article 110523. doi: 10.1016/j.jenvman.2020.110523.

[12]

Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., 2006. 2006 IPCC guidelines for national greenhouse gas inventories . https://www.ipcc-nggip.iges.or.jp/ public/2006gl/vol4.html.

[13]

Erbaugh, J. T., Pradhan, N, Adams, J, Oldekop, J. A., Agrawal, A, Brockington, D, Pritchard, R, Chhatre, A., 2020. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol., 4 (11) , pp. 1472-1476. doi: 10.1038/s41559-020-01282-2.

[14]

ESA 2017. Land Cover CCI Product User Guide Version 2. Tech. Rep.

[15]

FAO 2020. Global forest resources assessment, 2020: main report. Food and Agriculture Organization of the United Nations (2020). doi: 10.4060/ca9825en.

[16]

FAO 2015. Status of the world's soil resources: main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy

[17]

Fick, S. E., Hijmans, R. J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37 (12) , pp. 4302-4315. doi: 10.1002/joc.5086.

[18]

Friedl, M, Sulla-Menashe, D., 2019. MCD12Q1 modis/terra+ aqua land cover type yearly l3 global 500 m sin grid v006. NASA EOSDIS Land Processes DAAC . doi: 10.5067/MODIS/MCD12Q1.006.

[19]

Friedlingstein, P, O'Sullivan, M, Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J, Landschützer, P, Le Quéré, C, Luijkx, I. T., Peters, G. P., Peters, W, Pongratz, J, Schwingshackl, C, Sitch, S, Canadell, J. G., Ciais, P, Jackson, R. B., Alin, S. R., Anthoni, P, Barbero, L, Bates, N. R., Becker, M, Bellouin, N, Decharme, B, Bopp, L, Brasika, I. B. M., Cadule, P, Chamberlain, M. A., Chandra, N, T-T-Chau, T, Chevallier, F, Chini, L. P., Cronin, M, Dou, X, Enyo, K, Evans, W, Falk, S, Feely, R. A., Feng, L, Ford, D. J., Gasser, T, Ghattas, J, Gkritzalis, T, Grassi, G, Gregor, L, Gruber, N, Gürses, Ö, Harris, I, Hefner, M, Heinke, J, Houghton, R. A., Hurtt, G. C., Iida, Y, Ilyina, T, Jacobson, A. R., Jain, A, Jarníková, T, Jersild, A, Jiang, F, Jin, Z, Joos, F, Kato, E, Keeling, R. F., Kennedy, D, Goldewijk, K. K., Knauer, J, Korsbakken, J. I., Körtzinger, A, Lan, X, Lefèvre, N, Li, H, Liu, J, Liu, Z, Ma, L, Marland, G, Mayot, N, McGuire, P. C., McKinley, G. A., Meyer, G, Morgan, E. J., Munro, D. R, Nakaoka, S-.I, Niwa, Y, O'Brien, K. M., Olsen, A, Omar, A. M., Ono, T, Paulsen, M, Pierrot, D, Pocock, K, Poulter, B, Powis, C. M., Rehder, G, Resplandy, L, Robertson, E, Rödenbeck, C, Rosan, T. M., Schwinger, J, Séférian, R, Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R, Sun, Q, Sutton, A. J., Sweeney, C, Takao, S, Tans, P. P., Tian, H, Tilbrook, B, Tsujino, H, Tubiello, F, van der Werf, G. R., van Ooijen, E, Wanninkhof, R, Watanabe, M, Wimart-Rousseau, C, Yang, D, Yang, X, Yuan, W, Yue, X, Zaehle, S, Zeng, J, Zheng, B., 2023. Global carbon budget 2023. Earth Syst. Sci. Data, 15 (12) , pp. 5301-5369. doi: 10.5194/essd-15-5301-2023.

[20]

Golub, A. A., Henderson, B. B., Hertel, T. W., Gerber, P. J., Rose, S. K., Sohngen, B., 2013. Global climate policy impacts on livestock, land use, livelihoods, and food security. Proc. Natl. Acad. Sci. U.S.A., 110 (52) , pp. 20894-20899. doi: 10.1073/pnas.1108772109.

[21]

Grassi, G, House, J, Kurz, W. A., Cescatti, A, Houghton, R. A., Peters, G. P., Sanz, M. J., Viñas, R. A., Alkama, R, Arneth, A, Bondeau, A, Dentener, F, Fader, M, Federici, S, Friedlingstein, P, Jain, A. K., Kato, E, Koven, C. D., Lee, D, Nabel, J. E. M. S., Nassikas, A. A., Perugini, L, Rossi, S, Sitch, S, Viovy, N, Wiltshire, A, Zaehle, S., 2018. Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nat. Clim. Change, 8 (10) , pp. 914-920. doi: 10.1038/s41558-018-0283-x.

[22]

Griscom, B. W., Adams, J, Ellis, P. W., Houghton, R. A., Lomax, G, Miteva, D. A., Schlesinger, W. H., Shoch, D, Siikamäki, J. V., Smith, P, Woodbury, P, Zganjar, C, Blackman, A, Campari, J, Conant, R. T., Delgado, C, Elias, P, Gopalakrishna, T, Hamsik, M. R., Herrero, M, Kiesecker, J, Landis, E, Laestadius, L, Leavitt, S. M., Minnemeyer, S, Polasky, S, Potapov, P, Putz, F. E., Sanderman, J, Silvius, M, Wollenberg, E, Fargione, J., 2017. Natural climate solutions. Proc. Natl. Acad. Sci. U.S.A., 114 (44) , pp. 11645-11650. doi: 10.1073/pnas.1710465114.

[23]

Guirado, E, Delgado-Baquerizo, M, Martínez-Valderrama, J, Tabik, S, Alcaraz-Segura, D, Maestre, F. T., 2022. Climate legacies drive the distribution and future restoration potential of dryland forests. Nat. Plants, 8 (8) , pp. 879-886. doi: 10.1038/s41477-022-01198-8.

[24]

Harris, I. C., 2020. CRU JRA v2.1: a forcings dataset of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data; Jan.1901—Dec.2019. Centre for Environmental Data Analysis

[25]

He, J, Li, Z, Zhang, X, Wang, H, Dong, W, Chang, S, Ou, X, Guo, S, Tian, Z, Gu, A, Teng, F, Yang, X, Chen, S, Yao, M, Yuan, Z, Zhou, L, Zhao, X., 2020. Comprehensive report on China's long-term low-carbon development strategies and pathways. Chin. J. Popul. Resour. Environ., 18 (4) , pp. 263-295. doi: 10.1016/j.cjpre.2021.04.004.

[26]

Hengl, T, de Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M, Blagotić, A, Shangguan, W, Wright, M. N., Geng, X, Bauer-Marschallinger, B, Guevara, M. A., Vargas, R, MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E, Wheeler, I, Mantel, S, Kempen, B., 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS One, 12 (2) , Article e0169748. doi: 10.1371/journal.pone.0169748.

[27]

Hickler, T, Smith, B, Sykes, M. T., Davis, M. B., Sugita, S, Walker, K., 2004. Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology 85(2), 519-530.

[28]

Holl, K. D., Brancalion, P. H. S., 2020. Tree planting is not a simple solution. Science, 368 (2020), pp. 580-581. doi: 10.1126/science.aba8232.

[29]

Hong, S, Yin, G, Piao, S, Dybzinski, R, Cong, N, Li, X, Wang, K, Peñuelas, J, Zeng, H, Chen, A., 2020. Divergent responses of soil organic carbon to afforestation. Nat. Sustain., 3 (9) , pp. 694-700. doi: 10.1038/s41893-020-0557-y.

[30]

Jiang, X., Ziegler, A.D., Liang, S., Wang, D., Zeng, Z., 2022. Forest restoration potential in China: implications for carbon capture. J. Remote Sens. 2022, 0006. doi: 10.34133/remotesensing. 0006.

[31]

Lan, X., Tans, P., Thoning K.W., 2023. Trends in globally-averaged CO2 determined from NOAA global monitoring laboratory measurements. Version 2023-11. https://doi.org/10.15138/9N0H-ZH07.

[32]

Lange, S, Büchner, M., 2021. ISIMIP3b bias-adjusted atmospheric climate input data (v1. 1). ISIMIP Repository . doi: 10.48364/ISIMIP.842396.1.

[33]

Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A., Koch, A., 2019. Restoring natural forests is the best way to remove atmospheric carbon. Nature, 568 (2019), pp. 25-28. doi: 10.1038/d41586-019-01026-8.

[34]

Li, X, Yuan, Q, Wan, L, Feng, H., 2008. Perspectives on livestock production systems in China. Rangeland J., 30 (2) , pp. 211-220. doi: 10.1071/RJ08011.

[35]

Lin, J, Hu, Y, Cui, S, Kang, J, Xu, L., 2015. Carbon footprints of food production in China (1979–2009). J. Clean. Prod., 90 , pp. 97-103. doi: 10.1016/j.jclepro.2014.11.072.

[36]

Lu, F, Hu, H, Sun, W, Zhu, J, Liu, G, Zhou, W, Zhang, Q, Shi, P, Liu, X, Wu, X, Zhang, L, Wei, X, Dai, L, Zhang, K, Sun, Y, Xue, S, Zhang, W, Xiong, D, Deng, L, Liu, B, Zhou, L, Zhang, C, Zheng, X, Cao, J, Huang, Y, He, N, Zhou, G, Bai, Y, Xie, Z, Tang, Z, Wu, B, Fang, J, Liu, G, Yu, G., 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 20doi: 10. Proc. Natl. Acad. Sci. U.S.A., 115 (16) , pp. 4039-4044, 10.1073/pnas.1700294115.

[37]

Lu, N, Tian, H, Fu, B, Yu, H, Piao, S, Chen, S, Li, Y, Li, X, Wang, M, Li, Z, Zhang, L, Ciais, P, Smith, P., 2022. Biophysical and economic constraints on China's natural climate solutions. Nat. Clim. Change, 12 (9) , pp. 847-853. doi: 10.1038/s41558-022-01432-3.

[38]

Luedeling, E, Börner, J, Amelung, W, Schiffers, K, Shepherd, K, Rosenstock, T., 2019. Forest restoration: overlooked constraints. Science, 366 (2019), p. 315. doi: 10.1126/science.aay7988.

[39]

Meinshausen, M, Lewis, J, McGlade, C, Gütschow, J, Nicholls, Z, Burdon, R, Cozzi, L, Hackmann, B., 2022. Realization of Paris Agreement pledges may limit warming just below 2°C. Nature, 604, 304–309 . doi: 10.1038/s41586-022-04553-z.

[40]

Ministry of Agriculture and Rural Affairs 2013. Gazette of The Ministry of Agriculture of the People's Republic of China.

[41]

Ministry of Ecology and Environment of the People’s Republic of China, 2019. The People’s Republic of China Third national communication on climate change. Available at: https://unfccc.int/sites/default/files/resource/China_NC3_Chinese_0.pdf (accessed 14 April 2024).

[42]

National Bureau of Statistics, 2023. National Bureau of Statistics information disclosure . Available at: https://www.stats.gov.cn/xxgk/jd/sjjd2020/202301/t20230118_1892279.html (accessed 4 May 2024).

[43]

National Development and Reform Commission & Ministry of Natural Resources of China, 2020. The master plan for Major Projects of National Important Ecosystem Protection and Restoration (2021–2035), pp. 10–11 . Available at: https://www.ndrc.gov.cn/xxgk/zcfb/tz/202006/P020200611354032680531.pdf (accessed 20 June 2023).

[44]

National Forestry and Grassland Administration 2016. National Forest Management Plan (2016–2050).

[45]

National Forestry and Grassland Administration 2019. Forest Resources Report of China: 2014–2018. China Forestry Publishing House

[46]

NDRC 2013. Guidelines for the Development of Low Carbon and Provincial Greenhouse Gas Inventories. National Development and Reform Commission of China.

[47]

Nord, J, Anthoni, P, Gregor, K, Gustafson, A, Hantson, S, Lindeskog, M, Meyer, B, Miller, P, Nieradzik, L, Olin, S, Papastefanou, P, Smith, B, Tang, J, Wårlind, D, past LPJ-contributors, GUESS., 2021. LPJ-GUESS Release v4.1.1 model code (4.1.1). Zenodo . doi: 10.5281/zenodo.8065737.

[48]

Olin, S, Schurgers, G, Lindeskog, M, Wårlind, D, Smith, B, Bodin, P, Holmér, J, Arneth, A., 2015. Modelling the response of yields and tissue C: N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe. Biogeosciences, 12 (8) , pp. 2489-2515. doi: 10.5194/bg-12-2489-2015.

[49]

Pan, Y, Birdsey, R. A., Fang, J, Houghton, R, Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A, Lewis, S. L., Canadell, J. G., Ciais, P, Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S, Rautiainen, A, Sitch, S, Hayes, D., 2011. A large and persistent carbon sink in the world's forests. Science, 333 (2011), pp. 988-993. doi: 10.1126/science.1201609.

[50]

Piao, S, He, Y, Wang, X, Chen, F., 2022. Estimation of China's terrestrial ecosystem carbon sink: methods, progress and prospects. Sci. China Earth Sci., 65 (4) , pp. 641-651. doi: 10.1007/s11430-021-9892-6.

[51]

Robinson, T. P., Wint, G. R. W., Conchedda, G, Boeckel, T. P. V., Ercoli, V, Palamara, E, Cinardi, G, D'Aietti, L, Hay, S. I., Gilbert, M., 2014. Mapping the global distribution of livestock. PLoS One, 9 (5) , p. e96084. doi: 10.1371/journal.pone.0096084.

[52]

Russell, M. B., Fraver, S, Aakala, T, Gove, J. H., Woodall, C. W., D'Amato, A. W., Ducey, M. J., 2015. Quantifying carbon stores and decomposition in dead wood: a review. For. Ecol. Manage., 350 , pp. 107-128. doi: 10.1016/j.foreco.2015.04.033.

[53]

Schmidt, M. W. I., Torn, M. S., Abiven, S, Dittmar, T, Guggenberger, G, Janssens, I. A., Kleber, M, Kögel-Knabner, I, Lehmann, J, Manning, D. A. C., Nannipieri, P, Rasse, D. P., Weiner, S, Trumbore, S. E., 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478 (2011), pp. 49-56. doi: 10.1038/nature10386.

[54]

Skidmore, A. K., Wang, T, de Bie, K, Pilesjö, P., 2019. Comment on “the global tree restoration potential”. Science, 366 (2019), p. eaaz0111. doi: 10.1126/science.aaz0111.

[55]

Sloat, L. L., Gerber, J. S., Samberg, L. H., Smith, W. K., Herrero, M, Ferreira, L. G., Godde, C. M., West, P. C., 2018. Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change, 8 (3) , pp. 214-218. doi: 10.1038/s41558-018-0081-5.

[56]

Smith, B, Prentice, I. C., Sykes, M. T., 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr., 10(6), 621-637.

[57]

Smith, B, Wårlind, D, Arneth, A, Hickler, T, Leadley, P, Siltberg, J, Zaehle, S., 2014. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences, 11 (7) , pp. 2027-2054. doi: 10.5194/bg-11-2027-2014.

[58]

Spawn, S. A., Sullivan, C. C., Lark, T. J., Gibbs, H. K., 2020. Harmonized global maps of above and belowground biomass carbon density in the year 20doi: 10. Sci. Data, 7 (1) , p. 1, 10.1038/s41597-020-0444-4.

[59]

Strassburg, B. B. N., Beyer, H. L., Crouzeilles, R, Iribarrem, A, Barros, F, de Siqueira, M. F., Sánchez-Tapia, A, Balmford, A, Sansevero, J. B. B., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Filho, A. O., Gardner, T. A., Gordon, A, Latawiec, A, Loyola, R, Metzger, J. P., Mills, M, Possingham, H. P., Rodrigues, R. R., Scaramuzza, C. A. M., Scarano, F. R., Tambosi, L, Uriarte, M., 2019. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nat. Ecol. Evol., 3 (1) , pp. 62-70. doi: 10.1038/s41559-018-0743-8.

[60]

Strassburg, B. B. N., Iribarrem, A, Beyer, H. L., Cordeiro, C. L., Crouzeilles, R, Jakovac, C. C., Braga Junqueira, A, Lacerda, E, Latawiec, A. E., Balmford, A, Brooks, T. M., Butchart, S. H. M., Chazdon, R. L, Erb, K-.H, Brancalion, P, Buchanan, G, Cooper, D, Díaz, S, Donald, P. F., Kapos, V, Leclère, D, Miles, L, Obersteiner, M, Plutzar, C, de, M, Scaramuzza, C. A., Scarano, F. R., Visconti, P., 2020. Global priority areas for ecosystem restoration. Nature, 586 , pp. 724-729. doi: 10.1038/s41586-020-2784-9.

[61]

UNEP-WCMC 2024. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM) [Online]. UNEP-WCMC and IUCN, Cambridge, UK

[62]

van Beek, C. L., Meerburg, B. G., Schils, R. L. M., Verhagen, J, Kuikman, P. J., 2010. Feeding the world's increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth. Environ. Sci. Policy, 13 (2) , pp. 89-96. doi: 10.1016/j.envsci.2009.11.001.

[63]

Walker, W. S., Gorelik, S. R., Cook-Patton, S. C., Baccini, A, Farina, M. K., Solvik, K. K., Ellis, P. W., Sanderman, J, Houghton, R. A., Leavitt, S. M., Schwalm, C. R., Griscom, B. W., 2022. The global potential for increased storage of carbon on land. Proc. Natl. Acad. Sci. U.S.A., 119 (23) , Article e2111312119. doi: 10.1073/pnas.2111312119.

[64]

Wang, H. H., 2022. The perspective of meat and meat-alternative consumption in China. Meat Sci., 194 , Article 108982. doi: 10.1016/j.meatsci.2022.108982.

[65]

Wang, X, Ge, Q, Geng, X, Wang, Z, Gao, L, Bryan, B. A., Chen, S, Su, Y, Cai, D, Ye, J, Sun, J, Lu, H, Che, H, Cheng, H, Liu, H, Liu, B, Dong, Z, Cao, S, Hua, T, Chen, S, Sun, F, Luo, G, Wang, Z, Hu, S, Xu, D, Chen, M, Li, D, Liu, F, Xu, X, Han, D, Zheng, Y, Xiao, F, Li, X, Wang, P, Chen, F., 2023. Unintended consequences of combating desertification in China. Nat. Commun., 14 (1) , p. 1139. doi: 10.1038/s41467-023-36835-z.

[66]

Wen, J, Chuai, X, Zuo, T, Huifen Cai, H, Cai, L, Zhao, R, Chen, Y., 2023. Land use change on the surface area and the influence on carbon. Ecol. Indic., 153 , Article 110400. doi: 10.1016/j.ecolind.2023.110400.

[67]

Wilkinson, J. M., Lee, M. R. F., 2018. Review: use of human-edible animal feeds by ruminant livestock. Animal, 12 (8) , pp. 1735-1743. doi: 10.1017/S175173111700218X.

[68]

Xiong, C, Su, W, Li, H, Guo, Z., 2022. Influencing mechanism of non-CO2 greenhouse gas emissions and mitigation strategies of livestock sector in developed regions of eastern China: a case study of Jiangsu province. Environ. Sci. Pollut. Res., 29 (26) , pp. 39937-39947. doi: 10.1007/s11356-022-18937-1.

[69]

Xiong, D, Shi, P, Zhang, X, Zou, C. B., 2016. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China—a meta-analysis. Ecol. Eng., 94 , pp. 647-655. doi: 10.1016/j.ecoleng.2016.06.124.

[70]

Xu, H, Yue, C, Zhang, Y, Liu, D, Piao, S., 2023. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc. Natl. Acad. Sci. U.S.A., 120 (41) , Article e2304988120. doi: 10.1073/pnas.2304988120.

[71]

Xu, J, Xie, S, Han, A, Rao, R, Huang, G, Chen, X, Hu, J, Liu, Q, Yang, X, Zhang, L., 2019. Forest resources in China—the 9th national forest inventory. National Forestry and Grassland Administration, Beijing, China

[72]

Yu, Z, Ciais, P, Piao, S, Houghton, R. A., Lu, C, Tian, H, Agathokleous, E, Kattel, G. R., Sitch, S, Goll, D, Yue, X, Walker, A, Friedlingstein, P, Jain, A. K., Liu, S, Zhou, G., 2022. Forest expansion dominates China's land carbon sink since 1980. Nat. Commun., 13 (1) , p. 5374. doi: 10.1038/s41467-022-32961-2.

[73]

Zabel, F, Delzeit, R, Schneider, J. M., Seppelt, R, Mauser, W, Václavík, T., 2019. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun., 10 (1) , p. 2844. doi: 10.1038/s41467-019-10775-z.

[74]

Zeng, L, Liu, X, Li, W, Ou, J, Cai, Y, Chen, G, Li, M, Li, G, Zhang, H, Xu, X., 2022. Global simulation of fine resolution land use/cover change and estimation of aboveground biomass carbon under the shared socioeconomic pathways. J. Environ. Manage., 312 , Article 114943. doi: 10.1016/j.jenvman.2022.114943.

[75]

Zhang, L, Sun, P, Huettmann, F, Liu, S., 2022. Where should China practice forestry in a warming world?. Glob. Change Biol., 28 (7) , pp. 2461-2475. doi: 10.1111/gcb.16065.

[76]

Zhao, Z, Chen, J, Bai, Y, Wang, P., 2020. Assessing the sustainability of grass-based livestock husbandry in Hulun Buir, China. Phys. Chem. Earth Parts A/B/C 120 , Article 102907. doi: 10.1016/j.pce.2020.102907.

[77]

Zhao, Z, Wang, G, Chen, J, Wang, J, Zhang, Y., 2019. Assessment of climate change adaptation measures on the income of herders in a pastoral region. J. Clean. Prod., 208 , pp. 728-735. doi: 10.1016/j.jclepro.2018.10.088.

[78]

Zhou, W, Guan, K, Peng, B, Margenot, A, Lee, D, Tang, J, Jin, Z, Grant, R, DeLucia, E, Qin, Z, Wander, M. M., Wang, S., 2023. How does uncertainty of soil organic carbon stock affect the calculation of carbon budgets and soil carbon credits for croplands in the U.S. Midwest?. Geoderma, 429 , Article 116254. doi: 10.1016/j.geoderma.2022.116254.

[79]

Zhu, J, Hu, H, Tao, S, Chi, X, Li, P, Jiang, L, Ji, C, Zhu, J, Tang, Z, Pan, Y, Birdsey, R. A., He, X, Fang, J., 2017. Carbon stocks and changes of dead organic matter in China's forests. Nat. Commun., 8 (1) , p. 151. doi: 10.1038/s41467-017-00207-1.

PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

/