Global urbanization indirectly ‘enhances’ the carbon sequestration capacity of urban vegetation

Jieming Kang , Baolei Zhang , Qian Zhang , Chunlin Li , Jun Ma , Jiabo Yin , Kailiang Yu , Yuanman Hu , Elie Bou-Zeid

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100268

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100268 DOI: 10.1016/j.geosus.2025.100268
Research Article
review-article

Global urbanization indirectly ‘enhances’ the carbon sequestration capacity of urban vegetation

Author information +
History +
PDF

Abstract

Urbanization radically alters the climatic environment and landscape patterns of urban areas, but its impact on the carbon sequestration capacity of vegetation remains uncertain. Given the limitations of current small-scale ground-based in situ experiments, the response of vegetation carbon sequestration capacity to urbanization and the factors influencing it remain unclear at the global scale. Using multisource remote sensing data, we quantified and differentiated the direct and indirect impacts of urbanization on the carbon sequestration capacity of vegetation in 508 large urban areas globally from 2000 to 2020. The results revealed that the direct impacts of urbanization were generally negative. However, 446 cities experienced an indirect enhancement in vegetation carbon sequestration capacity during urbanization, averaging 19.6 % globally and offsetting 14.7 % of the direct loss due to urbanization. These positive indirect effects were most pronounced in environments with limited hydrothermal conditions and increased most in densely populated temperate and cold regions. Furthermore, indirect impacts were closely related to urbanization intensity, human footprint, and level of urban development. Our study enhances the understanding of how the carbon sequestration capacity of vegetation dynamically responds to changes in the urban environment, which is crucial for improving future urban vegetation management and building sustainable cities.

Keywords

Global urbanization / Vegetation carbon sequestration capacity / Net ecosystem productivity / Global change

Cite this article

Download citation ▾
Jieming Kang, Baolei Zhang, Qian Zhang, Chunlin Li, Jun Ma, Jiabo Yin, Kailiang Yu, Yuanman Hu, Elie Bou-Zeid. Global urbanization indirectly ‘enhances’ the carbon sequestration capacity of urban vegetation. Geography and Sustainability, 2025, 6(3): 100268 DOI:10.1016/j.geosus.2025.100268

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

All datasets used in this study are publicly available and download links are available in the corresponding citations.

CRediT authorship contribution statement

Jieming Kang: Writing – original draft, Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Baolei Zhang: . Qian Zhang: . Chunlin Li: Writing – review & editing, Visualization, Validation, Supervision, Funding acquisition. Jun Ma: . Jiabo Yin: . Kailiang Yu: . Yuanman Hu: . Elie Bou-Zeid:.

Declaration of competing interests

The authors declared that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grants No. 42471118 and 52078440) and the Youth Innovation Promotion Association of CAS (Grant No. 2021194).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100268.

References

[1]

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N, Berg, A, Wood, E. F., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5(1), 180214.

[2]

Bera, D, Chatterjee, N. D., Ghosh, S, Dinda, S, Bera, S., 2022. Recent trends of land surface temperature in relation to the influencing factors using Google Earth Engine platform and time series products in megacities of India. J. Clean. Prod., 379, 134735.

[3]

Bijoor, N. S., McCarthy, H. R., Zhang, D, Pataki, D. E., 2012. Water sources of urban trees in the Los Angeles metropolitan area. Urban Ecosyst., 15(1), 195-214.

[4]

Chang, X, Wang, D, Xing, Y, Wang, J, Gong, W., 2023. Dynamic responses of landscape pattern and vegetation coverage to urban expansion and greening: a case study of the severe cold region, China. Forests 14(4), 801.

[5]

Chen, J. M., Ju, W, Ciais, P, Viovy, N, Liu, R, Liu, Y, Lu, X., 2019. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun., 10(1), 4259.

[6]

Chen, Y, Lu, D, Xu, B, Ren, R, Wang, Z, Feng, Z., 2024. Determining the dominant contributions between direct and indirect impacts of long-term urbanization on plant net primary productivity in Beijing. Remote Sens., 16(3), 444.

[7]

Chen, Z, Wang, W, Forzieri, G, Cescatti, A., 2024. Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake. Nat. Commun., 15(1), 1500.

[8]

Daniel, H, Lecamp, E., 2004. Distribution of three indigenous fern species along a rural–urban gradient in the city of Angers, France. Urban For. Urban Green., 3(1), 19-27.

[9]

DataBank 2020. World Development Indicators: GNI Per Capita. World Bank

[10]

Zhou, W, Yu, W, Yao, Y, Jing, C., 2023. Understanding the indirect impacts of urbanization on vegetation growth using the Continuum of Urbanity framework. Sci. Total Environ., 899, 165693.

[11]

Didan, K., 2015. MOD13A1-MODIS/Terra Vegetation Indices 16 - Day L3 Global 500 m SIN Grid V006. NASA EOSDIS LP DAAC . doi: 10.5067/MODIS/MOD13A1.006.

[12]

Dou, Y, Kuang, W., 2020. A comparative analysis of urban impervious surface and green space and their dynamics among 318 different size cities in China in the past 25 years. Sci. Total Environ., 706, 135828.

[13]

Crippa, M, Guizzardi, D, Schaaf, E, Monforti-Ferrario, F, Quadrelli, R, Risquez Martin, A, Rossi, S, Vignati, E, Muntean, M, Brandao De Melo, J, Oom, D, Pagani, F, Banja, M, Taghavi-Moharamli, P, Köykkä, J, Grassi, G, Branco, A, San-Miguel, J, Vignati, E., 2023. GHG Emissions of All World countries: 2023 Report. Publications Office of the European Union, Luxembourg. . doi: 10.2760/953322.

[14]

Fernández-Martínez, M, Sardans, J, Chevallier, F, Ciais, P, Obersteiner, M, Vicca, S, Canadell, J. G., Bastos, A, Friedlingstein, P, Sitch, S, Piao, S. L., Janssens, I. A., Peñuelas, J., 2019. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Chang., 9(1), 73-79.

[15]

Fini, A, Frangi, P, Mori, J, Donzelli, D, Ferrini, F., 2017. Nature based solutions to mitigate soil sealing in urban areas: results from a 4-year study comparing permeable, porous, and impermeable pavements. Environ. Res., 156, 443-454.

[16]

Flörke, M, Schneider, C, McDonald, R. I., 2018. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain., 1(1), 51-58.

[17]

Gao, S, Chen, Y, Chen, D, He, B, Gong, A, Hou, P, Li, K, Cui, Y., 2024. Urbanization-induced warming amplifies population exposure to compound heatwaves but narrows exposure inequality between global North and South cities. npj Clim. Atmos. Sci., 7(1), 154.

[18]

Gao, S, Chen, Y, Li, K, He, B, Hou, P, Guo, Z., 2023. Frequent heatwaves limit the indirect growth effect of urban vegetation in China. Sust. Cities Soc., 96, 104662.

[19]

Gong, P, Li, X, Wang, J, Bai, Y, Chen, B, Hu, T, Liu, X, Xu, B, Yang, J, Zhang, W, Zhou, Y., 2020. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ., 236, 111510.

[20]

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J, Bai, X, Briggs, J. M., 2008. Global change and the ecology of cities. Science 319(5864), 756-760.

[21]

Guo, J, Hong, D, Zhu, X. X., 2024. High-resolution satellite images reveal the prevalent positive indirect impact of urbanization on urban tree canopy coverage in South America. Landsc. Urban Plan., 247, 105076.

[22]

He, C, Liu, Z, Wu, J, Pan, X, Fang, Z, Li, J, Bryan, B. A., 2021. Future global urban water scarcity and potential solutions. Nat. Commun., 12(1), 4667.

[23]

He, Q, Ju, W, Dai, S, He, W, Song, L, Wang, S, Li, X, Mao, G., 2021. Drought risk of global terrestrial gross primary productivity over the last 40 years detected by a remote sensing-driven process model. J. Geophys. Res.-Biogeosci., 126(6), e2020JG005944.

[24]

He, Y, Liang, Y, Liu, L, Yin, Z, Huang, J., 2023. Loss of green landscapes due to urban expansion in China. Resour. Conserv. Recycl., 199, 107228.

[25]

Hersbach, H, Bell, B, Berrisford, P, Hirahara, S, Horányi, A, Muñoz-Sabater, J, Nicolas, J, Peubey, C, Radu, R, Schepers, D, Simmons, A, Soci, C, Abdalla, S, Abellan, X, Balsamo, G, Bechtold, P, Biavati, G, Bidlot, J, Bonavita, M, De Chiara, G, Dahlgren, P, Dee, D, Diamantakis, M, Dragani, R, Flemming, J, Forbes, R, Fuentes, M, Geer, A, Haimberger, L, Healy, S, Hogan, R. J., Hólm, E, Janisková, M, Keeley, S, Laloyaux, P, Lopez, P, Lupu, C, Radnoti, G, de Rosnay, P, Rozum, I, Vamborg, F, Villaume, S, J-Thépaut, N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 146(730), 1999-2049.

[26]

Higgins, S. I., Conradi, T, Muhoko, E., 2023. Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends. Nat. Geosci., 16(2), 147-153.

[27]

Huang, H, Rodriguez-Iturbe, I, Calabrese, S., 2024. Widespread temporal and spatial variability in net ecosystem productivity under climate change. One Earth 7(3), 473-482.

[28]

Hunjra, A. I., Hassan, M. K., Zaied, Y. B., Managi, S., 2023. Nexus between green finance, environmental degradation, and sustainable development: evidence from developing countries. Resour. Policy 81, 103371.

[29]

Jia, W, Zhao, S, Liu, S., 2018. Vegetation growth enhancement in urban environments of the Conterminous United States. Glob. Change Biol., 24(9), 4084-4094.

[30]

Jiang, Z, Huete, A. R., Didan, K, Miura, T., 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ., 112(10), 3833-3845.

[31]

Kabano, P, Lindley, S, Harris, A., 2021. Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landsc. Urban Plan., 206, 103989.

[32]

Kang, J, Li, C, Zhang, B, Zhang, J, Li, M, Hu, Y., 2023. How do natural and human factors influence ecosystem services changing? A case study in two most developed regions of China. Ecol. Indic., 146, 109891.

[33]

Li, X, Gong, P, Zhou, Y, Wang, J, Bai, Y, Chen, B, Hu, T, Xiao, Y, Xu, B, Yang, J, Liu, X, Cai, W, Huang, H, Wu, T, Wang, X, Lin, P, Li, X, Chen, J, He, C, Li, X, Yu, L, Clinton, N, Zhu, Z., 2020. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett., 15(9), 094044.

[34]

Liu, O. Y., Russo, A., 2021. Assessing the contribution of urban green spaces in green infrastructure strategy planning for urban ecosystem conditions and services. Sust. Cities Soc., 68, 102772.

[35]

Luo, X, Bing, H, Luo, Z, Wang, Y, Jin, L., 2019. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: a review. Environ. Pollut., 255, 113138.

[36]

Lynam, A, Li, F, Xiao, G, Fei, L, Huang, H, Utzig, L., 2023. Capturing socio-spatial inequality in planetary urbanisation: a multi-dimensional methodological framework. Cities 132, 104076.

[37]

Ma, H, Mo, L, Crowther, T. W., Maynard, D. S., van den Hoogen, J, Stocker, B. D., Terrer, C, Zohner, C. M., 2021. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol., 5(8), 1110-1122.

[38]

Marchionni, V, Fatichi, S, Tapper, N, Walker, J. P., Manoli, G, Daly, E., 2021. Assessing vegetation response to irrigation strategies and soil properties in an urban reserve in southeast Australia. Landsc. Urban Plan., 215, 104198.

[39]

Mu, H, Li, X, Wen, Y, Huang, J, Du, P, Su, W, Miao, S, Geng, M., 2022. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 9(1), 176.

[40]

Peng, X, Jiang, S, Liu, S, Valbuena, R, Smith, A, Zhan, Y, Shi, Y, Ning, Y, Feng, S, Gao, H, Wang, Z., 2023. Long-term satellite observations show continuous increase of vegetation growth enhancement in urban environment. Sci. Total Environ., 898, 165515.

[41]

Potapov, P, Hansen, M. C., Pickens, A, Hernandez-Serna, A, Tyukavina, A, Turubanova, S, Zalles, V, Li, X, Khan, A, Stolle, F., 2022. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: first results. Front. Remote Sens., 3, 856903.

[42]

Qi, Y, Wei, W, Chen, C, Chen, L., 2019. Plant root-shoot biomass allocation over diverse biomes: a global synthesis. Glob. Ecol. Conserv., 18, e00606.

[43]

Quigley, M. F., 2004. Street trees and rural conspecifics: will long-lived trees reach full size in urban conditions?. Urban Ecosyst., 7(1), 29-39.

[44]

Roy, A, Mandal, M, Das, S, Popek, R, Rakwal, R, Agrawal, G. K., Awasthi, A, Sarkar, A., 2024. The cellular consequences of particulate matter pollutants in plants: safeguarding the harmonious integration of structure and function. Sci. Total Environ., 914, 169763.

[45]

Sage, R. F., Kubien, D. S., 2007. The temperature response of C3 and C4 photosynthesis. Plant Cell. Environ., 30(9), 1086-1106.

[46]

Shahzadi, I, Yaseen, M. R., Iqbal Khan, M. T., Amjad Makhdum, M. S., Ali, Q., 2022. The nexus between research and development, renewable energy and environmental quality: evidence from developed and developing countries. Renew. Energy 190, 1089-1099.

[47]

Takagi, M, Gyokusen, K., 2004. Light and atmospheric pollution affect photosynthesis of street trees in urban environments. Urban For. Urban Green., 2(3), 167-171.

[48]

Vicente-Serrano, S. M., Miralles, D. G., McDowell, N, Brodribb, T, Domínguez-Castro, F, Leung, R, Koppa, A., 2022. The uncertain role of rising atmospheric CO2 on global plant transpiration. Earth Sci. Rev., 230, 104055.

[49]

Vico, G, Tang, F. H. M., Brunsell, N. A., Crews, T. E., Katul, G. G., 2023. Photosynthetic capacity, canopy size and rooting depth mediate response to heat and water stress of annual and perennial grain crops. Agric. For. Meteorol., 341, 109666.

[50]

Wan, Z., Hook, S., Hulley, G., 2021. MODIS/Terra Land Surface Temperature/ Emissivity 8-Day L3 Global 1 km SIN Grid V061. NASA EOSDIS LP DAAC doi: 10.5067/MODIS/MOD11A2.061.

[51]

Wang, J, Xiang, Z, Wang, W, Chang, W, Wang, Y., 2021. Impacts of strengthened warming by urban heat island on carbon sequestration of urban ecosystems in a subtropical city of China. Urban Ecosyst., 24(6), 1165-1177.

[52]

Wang, S, Ju, W, Peñuelas, J, Cescatti, A, Zhou, Y, Fu, Y, Huete, A, Liu, M, Zhang, Y., 2019. Urban−rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nat. Ecol. Evol., 3(7), 1076-1085.

[53]

Wang, Z, Liang, C, Liu, J, Liu, H, Xu, X, Xue, P, Gong, H, Jiao, F, Zhang, M., 2024. How urbanization shapes the ecosystem carbon sink of vegetation in China: a spatiotemporal analysis of direct and indirect effects. Urban Clim., 55, 101896.

[54]

Wu, B, Zhang, Y, Wang, Y, Lin, X, Wu, Y, Wang, J, Wu, S, He, Y., 2024. Urbanization promotes carbon storage or not? The evidence during the rapid process of China. J. Environ. Manage., 359, 121061.

[55]

Xia, J, Yuan, W, Y-Wang, P, Zhang, Q., 2017. Adaptive carbon allocation by plants enhances the terrestrial carbon sink. Sci. Rep., 7(1), 3341.

[56]

Yang, L, Zhao, S., 2023. A stronger advance of urban spring vegetation phenology narrows vegetation productivity difference between urban settings and natural environments. Sci. Total Environ., 868, 161649.

[57]

Youngsteadt, E, Dale, A. G., Terando, A. J., Dunn, R. R., Frank, S. D., 2015. Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob. Change Biol., 21(1), 97-105.

[58]

Zahra, N, Hafeez, M. B., Ghaffar, A, Kausar, A, Zeidi, M. A., Siddique, K. H. M., Farooq, M., 2023. Plant photosynthesis under heat stress: effects and management. Environ. Exp. Bot., 206, 105178.

[59]

Zhang, X, Brandt, M, Tong, X, Ciais, P, Yue, Y, Xiao, X, Zhang, W, Wang, K, Fensholt, R., 2022. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain., 5(4), 321-328.

[60]

Zhang, B, Xiong, W, Ma, M, Wang, M, Wang, D, Huang, X, Yu, L, Zhang, Q, Lu, H, Hong, D, Yu, F, Wang, Z, Wang, J, Li, X, Gong, P, Huang, X., 2022. Super-resolution reconstruction of a 3 arc-second global DEM dataset. Sci. Bull., 67(24), 2526-2530.

[61]

Zhang, L, Yang, L, Zohner, C. M., Crowther, T. W., Li, M, Shen, F, Guo, M, Qin, J, Yao, L, Zhou, C., 2022. Direct and indirect impacts of urbanization on vegetation growth across the world's cities. Sci. Adv., 8(27), eabo0095.

[62]

Zhang, S, Jia, W, Zhu, H, You, Y, Zhao, C, Gu, X, Liu, M., 2023. Vegetation growth enhancement modulated by urban development status. Sci. Total Environ., 883, 163626.

[63]

Zhang, D, Zhao, Y, Wu, J., 2023. Assessment of carbon balance attribution and carbon storage potential in China's terrestrial ecosystem. Resour. Conserv. Recycl., 189, 106748.

[64]

Zhang, Z, Zhao, W, Liu, Y, Pereira, P., 2023. Impacts of urbanisation on vegetation dynamics in Chinese cities. Environ. Impact Assess. Rev., 103, 107227.

[65]

Zhao, L, Oppenheimer, M, Zhu, Q, Baldwin, J. W., Ebi, K. L., Bou-Zeid, E, Guan, K, Liu, X., 2018. Interactions between urban heat islands and heat waves. Environ. Res. Lett., 13(3), 034003.

[66]

Zhao, S, Liu, S, Zhou, D., 2016. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. U.S.A., 113(22), 6313-6318.

[67]

Zhong, Q, Ma, J, Zhao, B, Wang, X, Zong, J, Xiao, X., 2019. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ., 233, 111374.

[68]

Zhou, T, Liu, H, Gou, P, Xu, N., 2023. Conflict or Coordination? measuring the relationships between urbanization and vegetation cover in China. Ecol. Indic., 147, 109993.

[69]

Zhuang, Q, Shao, Z, Li, D, Huang, X, Li, Y, Altan, O, Wu, S., 2023. Impact of global urban expansion on the terrestrial vegetation carbon sequestration capacity. Sci. Total Environ., 879, 163074.

[70]

Ziska, L. H., Bunce, J. A., Goins, E. W., 2004. Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia 139(3), 454-458.

PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

/