Searching for the best post-land abandonment management to enhance long-term carbon storage in Mediterranean mountain areas

Melani Cortijos-López , Teodoro Lasanta , Erik Cammeraat , Estela Nadal-Romero

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100265

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100265 DOI: 10.1016/j.geosus.2025.100265
Research Article
review-article

Searching for the best post-land abandonment management to enhance long-term carbon storage in Mediterranean mountain areas

Author information +
History +
PDF

Abstract

The abandonment of rural activities in the Mediterranean mid-mountains has led to the activation of revegetation processes, as well as the subsequent implementation of various management measures to mitigate the associated ecosystem disservices. Focusing on soil environment and its growing importance in a climate change scenario, it is of great interest to study how land management and landscape changes can affect, not only the soil carbon storage process, but also its dynamics. A study was conducted in La Rioja (Iberian System, Spain), comparing three post-abandonment management strategies: secondary succession, forest management, and shrub clearing and extensive grazing. These strategies were analysed in two types of soil environments (acid and alkaline) and for two depth ranges (0–20 cm and 20–40 cm). Laboratory analyses were performed on aggregate stability and soil organic carbon fractionation with regard to three aggregate sizes (< 2 mm, 2–5 mm, > 5 mm) and three density fractions (free labile, occluded, and heavy fraction). The results showed that: 1) SOC content in aggregates < 2 mm (relative to total SOC) increases with shrub clearing and grazing strategy in acid environments; 2) aggregate stability benefits from the implementation of afforestation in acid environments and from all three study strategies in alkaline ones; 3) in acid environments, the percentage of labile fractions (free and occluded) in afforested sites is significantly higher compared with shrubland, while in alkaline environments, recalcitrant SOC is significantly higher in shrub clearing sites. Thus, land management should be focused on SOC storage after land abandonment in Mediterranean mountainous environments.

Keywords

Mediterranean mountain / Soil organic carbon / Afforestation / Pastures / Natural revegetation

Cite this article

Download citation ▾
Melani Cortijos-López, Teodoro Lasanta, Erik Cammeraat, Estela Nadal-Romero. Searching for the best post-land abandonment management to enhance long-term carbon storage in Mediterranean mountain areas. Geography and Sustainability, 2025, 6(2): 100265 DOI:10.1016/j.geosus.2025.100265

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Melani Cortijos-López: Writing – original draft, Visualization, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Teodoro Lasanta: Writing – review & editing, Supervision. Erik Cammeraat: Writing – review & editing, Supervision, Resources. Estela Nadal-Romero: Writing – review & editing, Supervision, Methodology, Investigation, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research project was supported by the MANMOUNT project (PID2019–105983RB-100) funded by the MICINN-FEDER (MICIU/AEI/10.13039/501100011033) and the 570 PRX21/00375 project funded by the Ministry of Universities of Spain from the “Salvador de Madariaga” programme. The ‘Geoenvironmental Processes and Global Change’ (E02_23R) research group is financed by the Aragón Government and the European Social Fund (ESF-FSE). The first author is working with an FPI contract (PRE2020–094509) from the Spanish Ministry of Economy and Competitiveness associated to the MANMOUNT project.

We are thankful for the help of laboratory and fieldwork technicians from the Pyrenean Institute of Ecology (IPE-CSIC) and the Institute of Biodiversity and Ecosystem Dynamics (IBED-UvA) for their assistance during the field and laboratory works.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100265.

References

[1]

AEMET, MTE, 2018. Agencia Estatal de Meteorología y Ministerio para la Transición Ecológica. Mapas Climáticos de España (1981–2010) y ETo (1996–2016). https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/MapasclimaticosdeEspana19812010/Mapasclimaticosde Espana19812010.pdf.

[2]

Arnáez, J, Lana-Renault, N, Ruiz-Flaño, P, Pascual, N, Lasanta, T., 2017. Mass soil movement on terraced landscapes of the Mediterranean mountain areas: a case study of the Iberian Range, Spain. Geogr. Res. Lett., 43 (1) , pp. 83-100. doi: 10.18172/cig.3211.

[3]

Bai, Y., Zhou, Y., He, H., 2020. Effects of rehabilitation through afforestation on soil aggregate stability and aggregate-associated carbon after forest fires in subtropical China. Geoderma 376, 114548. doi: 10.1016/j.geoderma.2020.114548.

[4]

Bell, S. M., Terrer, C, Barriocanal, C, Jackson, R, Rosell-Melé, A., 2021. Soil organic carbon accumulation rates on Mediterranean abandoned agricultural lands. Sci. Total Environ., 759 , Article 143535. doi: 10.1016/j.scitotenv.2020.143535.

[5]

Bernués, A, Rodríguez-Ortega, T, Ripoll-Bosch, R, Alfner, F., 2014. Socio-cultural and economic valuation of ecosystem services provided by Mediterranean mountain agroecosystems. PLoS One, 9 (7) , Article e102479. doi: 10.1371/journal.pone.0102479.

[6]

Blanco-Canqui, H, Lal, R., 2004. Mechanisms of carbon sequestration in soil aggregates. Crit. Rev. Plant Sci., 23 (6) , pp. 481-504. doi: 10.1080/07352680490886842.

[7]

Bonet, A., 2004. Secondary succession of semi-arid Mediterranean old fields in south-eastern Spain: insights for conservation and restoration of degraded lands. J. Arid Environ., 56 (2) , pp. 213-233. doi: 10.1016/S0140-1963(03)00048-X.

[8]

Bronick, C. J., Lal, R., 2005. Soil structure and management: a review. Geoderma, 124 (1–2) , pp. 3-22. doi: 10.1016/j.geoderma.2004.03.005.

[9]

Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. A., Kunstler, G, Liancourt, P, Tielbörger, K, Travis, J. M. J., Anthelme, F, Armas, C, Coll, L, Corcket, E, Delzon, S, Forey, E, Kikvidze, Z, Olofsson, J, Pugnaire, F, Quiroz, C. L., Saccone, P, Schiffers, K, Seifan, M, Touzard, B, Michalet, R., 2008. Facilitation in plant communities: the past, the present, and the future. J. Ecol., 96 (1) , pp. 18-34. doi: 10.1111/j.1365-2745.2007.01295.x.

[10]

Calvo Palacios, J.L., 1977. Los Cameros. De región homogénea a espacio plan. Instituto De Estudios Riojanos, Logroño.

[11]

Cerli, C, Celi, L, Kalbitz, K, Guggenberger, G, Kaiser, K., 2012. Separation of light and heavy organic matter fractions in soil—testing for proper density cut-off and dispersion level. Geoderma, 170 , pp. 403-416. doi: 10.1016/j.geoderma.2011.10.009.

[12]

Chen, Z, Lue, C, Fan, L, Wu, H., 2011. Effects of land use change on soil organic carbon: a review. Acta Ecol. Sin., 31(18), 5358-5371.

[13]

Cheng, Y, Xu, G, Wang, X, Li, P, Dang, X, Jiang, W, Ma, T, Wang, B, Gu, F, Li, Z., 2023. Contribution of soil aggregate particle size to organic carbon and the effect of land use on its distribution in a typical small watershed on Loess Plateau, China. Ecol. Indic., 155 , Article 110988. doi: 10.1016/j.ecolind.2023.110988.

[14]

Conti, G, Fagarazzi, L., 2004. Sustainable mountain development and the key-issue of abandonment of marginal rural areas. Planum 11, 1-20.

[15]

Cortijos-López, M., Sánchez-Navarrete, P., de la Parra-Muñoz, I., Lasanta, T., Nadal- Romero, E., 2024a. A strategy to enhance soil quality and soil organic carbon stock in abandoned lands: pasture regeneration through shrub clearing. Land Degrad. Dev. 35 (10), 3392–3406. doi: 10.1002/ldr.5139.

[16]

Cortijos-López, M, Sánchez-Navarrete, P, Lasanta, T, Nadal-Romero, E., 2023. How do acid or alkaline soil environments affect soil organic carbon stocks in a post-abandonment secondary succession process in Mediterranean mountain areas?. Catena, 232 , Article 107384. doi: 10.1016/j.catena.2023.107384.

[17]

Cortijos-López, M., Sánchez-Navarrete, P., Lasanta, T., Cammeraat, E.L., Nadal-Romero, E., 2024b. Afforestation, natural secondary forest or Dehesas? Looking for the best post-abandonment forest management for soil organic carbon accumulation in Mediterranean Mountains. Forests 15 (1), 166. doi: 10.3390/f15010166.

[18]

Crespo, C, Wyngaard, N, Rozas, H. S., Studdert, G, Barraco, M, Gudelj, V, Barbagelata, P, Barbieri, P., 2021. Effect of the intensification of cropping sequences on soil organic carbon and its stratification ratio in contrasting environments. Catena, 200 , Article 105145. doi: 10.1016/j.catena.2021.105145.

[19]

Cuadrat, J. M., Vicente Serrano, S. M., 2008. Características espaciales del clima en La Rioja modelizadas a partir de sistemas de información geográfica y técnicas de regresión espacia. Zubia Monográfico 20, 119-141.

[20]

Delelegn, Y. T., Purahong, W, Blazevic, A, Yitaferu, B, Wubet, T, Göransson, H, Godbold, D. L., 2017. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Sci. Rep., 7 (1) , p. 13602. doi: 10.1038/s41598-017-14128-y.

[21]

Dexter, A. R., 1988. Advances in characterization of soil structure. Soil Tillage Res., 11 (3–4) , pp. 199-238. doi: 10.1016/0167-1987(88)90002-5.

[22]

Dorji, T, Field, D. J., Odeh, I. O., 2020. Soil aggregate stability and aggregate-associated organic carbon under different land use or land cover types. Soil Use Manag., 36 (2) , pp. 308-319. doi: 10.1111/sum.12549.

[23]

Eclesia, R. P., Jobbagy, E. G., Jackson, R. B., Biganzoli, F, Piñeiro, G., 2012. Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob. Change Biol., 18 (10) , pp. 3237-3251. doi: 10.1111/j.1365-2486.2012.02761.x.

[24]

Fernández Aldana, R., 2015. Mapa de los bosques de La Rioja. Gobierno de La Rioja 207 pp. + mapa E. 1:150.000.

[25]

Garcia-Pausas, J, Casals, P, Camarero, L, Huguet, C, Sebastia, M. T., Thompson, R, Romanya, J., 2007. Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biogeochemistry, 82 , pp. 279-289. doi: 10.1007/s10533-007-9071-9.

[26]

García-Ruiz, J. M., Lana-Renault, N., 2011. Hydrological and erosive consequences of farmland abandonment in Europe, with special references to the Mediterranean region – a review. Agric. Ecosyst. Environ., 140 (3–4) , pp. 317-338. doi: 10.1016/j.agee.2011.01.00.

[27]

García-Ruiz, J. M., Tomás-Faci, G, Diarte-Blasco, P, Montes, L, Domingo, R, Sebastián, M, Lasanta, T, González-Sampériz, P, López-Moreno, J. I., Arnáez, J, Beguería, S., 2020. Transhumance and long-term deforestation in the subalpine belt of central Spanish Pyrenees: an interdisciplinary approach. Catena, 195 , Article 104744. doi: 10.1016/j.catena.2020.104744.

[28]

Golchin, A, Oades, J. M., Skjemstad, J. O., Clarke, P., 1994. Study of free and occluded organic matter in soils by 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Aust. J. Soil Res., 32 , pp. 285-309. doi: 10.1071/SR9940285.

[29]

Gómez-Aparicio, L, Zamora, R, Gómez, J. M., Hódar, J. A., Castro, J, Baraza, E., 2004. Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol. Appl., 14 (4) , pp. 1128-1138. doi: 10.1890/03-5084.

[30]

Grandy, A. S., Robertson, G. P., 2007. Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems, 10 , pp. 59-74. doi: 10.1007/s10021-006-9010-y.

[31]

Guidi, C, Magid, J, Rodeghiero, M, Gianelle, D, Vesterdal, L., 2014. Effects of forest expansion on mountain grassland: changes within soil organic carbon fractions. Plant Soil, 385 , pp. 373-387. doi: 10.1007/s11104-014-2315-2.

[32]

Guo, G, Li, X, Zhu, X, Xu, Y, Dai, Q, Zeng, G, Lin, J., 2021. Effect of forest management operations on aggregate-associated SOC dynamics using a 137Cs tracing method. Forests, 12 (7) , p. 859. doi: 10.3390/f12070859.

[33]

Haddaway, N. R., Hedlund, K, Jackson, L. E., Kätterer, T, Lugato, E, Thomsen, I. K., Jørgensen, H. B., Isberg, P. E., 2017. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid., 6 (1) , p. 30. doi: 10.1186/s13750-017-0108-9.

[34]

Han, L, Sun, K, Jin, J, Xing, B., 2016. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biol. Biochem., 94 , pp. 107-121. doi: 10.1016/j.soilbio.2015.11.023.

[35]

Hao, X, You, M, Han, X, Li, H, Zou, W, Xing, B., 2017. Redistribution of different organic carbon fractions in the soil profile of a typical chinese mollisol with land-use change. Commun. Soil Sci. Plant Anal., 48 (20) , pp. 2369-2380. doi: 10.1080/00103624.2017.1358741.

[36]

Hinsinger, P, Plassard, C, Tang, C, Jaillard, B., 2003. Origins of rootmediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil, 248 (1) , pp. 43-59. doi: 10.1023/A:1022371130939.

[37]

Kavdir, Y., 2018. Impact of land cover types on soil aggregate stability and erodibility. Environ. Monit. Assess., 190 (9) , p. 525. doi: 10.1007/s10661-018-6847-4.

[38]

Imeson, A. C., Vis, M., 1984. Assessing soil aggregate stability by water-drop impact and ultrasonic dispersion. Geoderma, 34 (3–4) , pp. 185-200. doi: 10.1016/0016-7061(84)90038-7.

[39]

IUSS Working Group WRB, 2015.

[40]

Jiménez, J. J., Lorenz, K, Lal, R., 2011. Organic carbon and nitrogen in soil particle-size aggregates under dry tropical forests from Guanacaste, Costa Rica—implications for within-site soil organic carbon stabilization. Catena, 86 (3) , pp. 178-191. doi: 10.1016/j.catena.2011.03.011.

[41]

Johnson, D. W., Curtis, P. S., 2001. Effects of forest management on soil C and N storage: meta analysis. For. Ecol. Manage., 140 (2–3) , pp. 227-238. doi: 10.1016/S0378-1127(00)00282-6.

[42]

Kalhoro, S. A., Xu, X, Chen, W, Hua, R, Raza, S, Ding, K., 2017. Effects of different land-use systems on soil aggregates: a case study of the Loess Plateau (Northern China). Sustainability, 9 (8) , p. 1349. doi: 10.3390/su9081349.

[43]

Keesstra, S, Nunes, J, Novara, A, Finger, D, Avelar, D, Kalantari, Z, Cerdà, A., 2018. The superior effect of nature based solutions in land management for enhancing ecosystems services. Sci. Total Environ., 610 , pp. 997-1009. doi: 10.1016/j.scitotenv.2017.08.077.

[44]

Khandakar, T, Guppy, C, Rabbi, S. M., Daniel, H., 2021. Poorly crystalline iron and aluminium oxides contribute to the carbon saturation and sorption of dissolved organic carbon in the soil. Soil Use Manag., 37 , pp. 120-125. doi: 10.1111/sum.12662.

[45]

Khorchani, M, Nadal-Romero, E, Lasanta, T, Tague, C., 2021. Effects of vegetation succession and shrub clearing after land abandonment on the hydrological dynamics in the Central Spanish Pyrenees. Catena, 204 , Article 105374. doi: 10.1016/j.catena.2021.105374.

[46]

Lal, R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123 (1–2) , pp. 1-22. doi: 10.1016/j.geoderma.2004.01.032.

[47]

Lal, R., 2008. Carbon sequestration. Philos. Trans. R. Soc. B-Biol. Sci., 363 (2008), pp. 815-830. doi: 10.1098/rstb.2007.2185.

[48]

Lasanta-Martínez, T, Vicente-Serrano, S. M., Cuadrat-Prats, J. M., 2005. Vicente-Serrano, J.M. Cuadrat-Prats. Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Appl. Geogr., 25 (1) , pp. 47-65. doi: 10.1016/j.apgeog.2004.11.001.

[49]

Lasanta, T., 2019. Active management against shrubland expansion: seeking a balance between conservation and exploitation in the mountains. Geogr. Res. Lett., 45(2), 423-440..

[50]

Lasanta, T, Arnáez, J, Errea, M. P., Ortigosa, L, Ruiz-Flaño, P., 2009. Mountain pastures, environmental degradation, and landscape remediation: the example of a Mediterranean policy initiative. Appl. Geogr., 29 (3) , pp. 308-319. doi: 10.1016/j.apgeog.2008.09.006.

[51]

Lasanta, T, Cortijos-López, M, Errea, M. P., Llena, M, Sánchez-Navarrete, P, Zabalza, J, Nadal-Romero, E., 2024. Shrub clearing and extensive livestock as a strategy for enhancing ecosystem services in degraded Mediterranean mid-mountain areas. Sci. Total Environ., 906 , Article 167668. doi: 10.1016/j.scitotenv.2023.167668.

[52]

Li, B.Q., Li, G.L., Fu, Y., Wang, K., 2019a. Distribution of soil organic carbon within aggregate size fractions following the conversion of cropland to black locust forest on the southern Loess Plateau, China. J. Soil Water Conserv. 74 (1), 59–66. doi: 10.2489/jswc.74.1.59.

[53]

Li, J., Shangguan, Z., Deng, L., 2022. Free particulate organic carbon plays critical roles in carbon accumulations during grassland succession since grazing exclusion. Soil Tillage Res. 220, 105380. doi: 10.1016/j.still.2022.105380.

[54]

Li, X., Vogeler, I., Schwendenmann, L., 2019b. Soil aggregation and soil fraction associated carbon under different vegetation types in a complex landscape. Soil Res. 57 (3), 215– 227. doi: 10.1071/SR18193.

[55]

Lindenmayer, D, Hobbs, R. J., Montague-Drake, R, Alexandra, J, Bennett, A, Burgman, M, Cale, P, Calhoun, A, Cramer, V, Cullen, P, Driscoll, D, Fahrig, L, Fischer, J, Franklin, J, Haila, Y, Hunter, M, Gibbons, P, Lake, S, Luck, G, MacGregor, C, McIntyre, S, Mac Nally, R, Manning, A, Miller, J, Mooney, H, Noss, R, Possingham, H, Saunders, D, Schmiegelow, F, Scott, M, Simberloff, D, Sisk, T, Tabor, G, Walker, B, Wiens, J, Woinarski, J, Zavaleta, E., 2008. A checklist for ecological management of landscapes for conservation. Ecol. Lett., 11 (1) , pp. 78-91. doi: 10.1111/j.1461-0248.2007.01114.x.

[56]

Liu, M. Y., Chang, Q. R., Qi, Y. B., Liu, J, Chen, T., 2014. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. Catena, 115 , pp. 19-28. doi: 10.1016/j.catena.2013.11.002.

[57]

Liu, Y, Sui, X, Hua, H, Liu, X, Chang, Q, Xu, R, Li, M, Mu, L., 2024. Soil aggregate stability and organic carbon content among different forest types in temperate ecosystems in Northeastern China. Forests, 15 (2) , p. 279. doi: 10.3390/f15020279.

[58]

Lizaga, I, Quijano, L, Gaspar, L, Ramos, M. C., Navas, A., 2019. Linking land use changes to variation in soil properties in a Mediterranean mountain agroecosystem. Catena, 172 , pp. 516-527. doi: 10.1016/j.catena.2018.09.019.

[59]

Machín, J., 1994. Los suelos. In: García-Ruiz, J.M., Arnáez, J. (Eds.), Geografía De La Rioja, Vol. Tomo 1. Caja de Ahorros de La Rioja, Logroño, pp. 223–249.

[60]

Marschner, B, Brodowski, S, Dreves, A, Gleixner, G, Gude, A, Grootes, P. M., Hamer, U, Heim, A, Jandl, G, Ji, R, Kaiser, K, Kalbitz, K, Kramer, C, Leinweber, P, Rethemeyer, J, Schäffer, A, Schmidt, M. W. I., Schwark, L, Wiesenberg, G. L. B., 2008. How relevant is recalcitrance for the stabilization of organic matter in soils?. J. Plant Nutr. Soil Sci., 171 (1) , pp. 91-110. doi: 10.1002/jpln.200700049.

[61]

Martin, D, Lal, T, Sachdev, C. B., Sharma, J. P., 2010. Sachdev, J.P. Sharma. Soil organic carbon storage changes with climate change, landform and land use conditions in Garhwal hills of the Indian Himalayan mountains. Agric. Ecosyst. Environ., 138 (1–2) , pp. 64-73. doi: 10.1016/j.agee.2010.04.001.

[62]

Martínez-Sastre, R, Ravera, F, González, J. A., Santiago, C. L., Bidegain, I, Munda, G., 2017. Mediterranean landscapes under change: combining social multicriteria evaluation and the ecosystem services framework for land use planning. Land Use Policy, 67 , pp. 472-486. doi: 10.1016/j.landusepol.2017.06.001.

[63]

Miao, J, Xie, T, Han, S, Zhang, H, He, X, Ren, W, Song, M, He, L., 2022. Characteristics of soil organic carbon in croplands and affecting factors in Hubei Province. Agronomy, 12 (12) , p. 3025. doi: 10.3390/agronomy12123025.

[64]

Mujuru, L, Mureva, A, Velthorst, E. J., Hoosbeek, M. R., 2013. Land use and management effects on soil organic matter fractions in Rhodic Ferralsols and Haplic Arenosols in Bindura and Shamva districts of Zimbabwe. Geoderma, 209 , pp. 262-272. doi: 10.1016/j.geoderma.2013.06.025.

[65]

Nadal-Romero, E, Cammeraat, E, Pérez-Cardiel, E, Lasanta, T., 2016. How do soil organic carbon stocks change after cropland abandonment in Mediterranean humid mountain areas?. Sci. Total Environ., 566 , pp. 741-752. doi: 10.1016/j.scitotenv.2016.05.031.

[66]

Nadal-Romero, E., Llena, M., Cortijos-López, M., Lasanta, T., 2023a. Afforestation after land abandonment as a nature-based solution in Mediterranean mid-mountain areas: implications and research gaps. Curr. Opin. Environ. Sci. Health 34, 100481. doi: 10.1016/j.coesh.2023.100481.

[67]

Nadal-Romero, E., Khorchani, M., Gaspar, L., Arnáez, J., Cammeraat, E., Navas, A., Lasanta, T., 2023b. How do land use and land cover changes after farmland abandonment affect soil properties and soil nutrients in Mediterranean mountain agroecosystems? Catena 226, 107062. doi: 10.1016/j.catena.2023.107062.

[68]

Nadal-Romero, E, Rubio, P, Kremyda, V, Absalah, S, Cammeraat, E, Jansen, B, Lasanta, T., 2021. Effects of agricultural land abandonment on soil organic carbon stocks and composition of soil organic matter in the Central Spanish Pyrenees. Catena, 205 , Article 105441. doi: 10.1016/j.catena.2021.105441.

[69]

Nogueira-Pinheiro, E, Costa-Campos, M. C., Gomes de Brito-Filho, E, da Cunha, J. M., Ferreira-Leite de Lima, A, Silva-Martins, T, de Oliveira-Dias, B, Freire-da Silva, R, Gomes-de Almeida, R, Vinício-dos Santos, R., 2023. Fracionamento físico do carbono e suas interações com os atributos do solo em áreas de pastagens cultivadas e floresta na Amazônia Ocidental. Revista Brasileira de Geografía Física 16(6), 2978-2993.

[70]

Oades, J. M., 1984. Soil organic matter and structural stability, mechanisms and implications for management. Plant Soil, 76 , pp. 319-337. doi: 10.1007/978-94-009-6101-2_28.

[71]

Ortigosa, L. M., García-Ruiz, J. M., Gil, E., 1990. Land reclamation by reforestation in the Central Pyrenees. Mt. Res. Dev., 10 (3) , pp. 281-288. doi: 10.2307/3673607.

[72]

Padilla, F. M., Vidal, B, Sánchez, J, Pugnaire, F. I., 2010. Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: implications for land management. J. Environ. Manage., 91 (12) , pp. 2688-2695. doi: 10.1016/j.jenvman.2010.07.031.

[73]

Pelorosso, R, Della Chiesa, S, Tappeiner, U, Leone, A, Rocchini, D., 2011. Stability analysis for defining management strategies in abandoned mountain landscapes of the Mediterranean basin. Landsc. Urban Plan., 103 (3–4) , pp. 335-346. doi: 10.1016/j.landurbplan.2011.08.007.

[74]

Pereira, H. M., Navarro, L. M., 2015. Rewilding European Landscapes. Springer International Publishing, Heidelberg . doi: 10.1007/978-3-319-12039-3.

[75]

Pueyo, Y, Beguería, S., 2007. Modelling the rate of secondary succession after farmland abandonment in a Mediterranean mountain area. Landsc. Urban Plan., 83 , pp. 245-254. doi: 10.1659/0276-4741(2003)023.

[76]

Pulido-Fernández, M, Schnabel, S, Lavado-Contador, J. F., Mellado, I. M., Pérez, R. O., 2013. Soil organic matter of Iberian open woodland rangelands as influenced by vegetation cover and land management. Catena, 109 , pp. 13-24. doi: 10.1016/j.catena.2013.05.002.

[77]

Rabot, E, Wiesmeier, M, Schlüter, S, Vogel, H. J., 2018. Soil structure as an indicator of soil functions: a review. Geoderma, 314 , pp. 122-137. doi: 10.1016/j.geoderma.2017.11.009.

[78]

Sanderman, J, Baldock, J. A., Dangal, S. R., Ludwig, S, Potter, S, Rivard, C, Savage, K., 2021. Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy. Biogeochemistry, 156 (1) , pp. 97-114. doi: 10.1007/s10533-021-00755-1.

[79]

Sil, Â, Fonseca, F, Gonçalves, J, Honrado, J, Marta-Pedroso, C, Alonso, J, Ramos, M, Azevedo, J. C., 2017. Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: insights for management and planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage., 13 (2) , pp. 82-104. doi: 10.1080/21513732.2017.1297331.

[80]

Sirami, C, Nespoulous, A, Cheylan, J. P., Marty, P, Hvenegaard, G. T., Geniez, P, Schatz, B, Martin, J. L., 2010. Long-term anthropogenic and ecological dynamics of a Mediterranean landscape: impacts on multiple taxa. Landsc. Urban Plan, 96 (4) , pp. 214-223. doi: 10.1016/j.landurbplan.2010.03.007.

[81]

Six, J, Conant, R. T., Paul, E. A., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil, 241 , pp. 155-176. doi: 10.1023/A:1016125726789.

[82]

Six, J, Paustian, K, Elliott, E. T., Combrink, C., 2000. Soil structure and organic matter. I. Distribution of aggregate-size classes and aggregate associated carbon. Soil Sci. Soc. Am. J., 64 , pp. 681-689. doi: 10.2136/sssaj2000.642681x.

[83]

Smith, P, Martino, D, Cai, Z, Gwary, D, Janzen, H, Kumar, P, McCarl, B, Ogle, S, O'Mara, F, Rice, C, Scholes, B, Sirotenko, O, Howden, M, McAllister, T, Pan, G, Romanenkov, V, Schneider, U, Towprayoon, S, Wattenbach, M, Smith, J., 2008. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B-Biol. Sci., 363 (2008), pp. 789-813. doi: 10.1098/rstb.2007.2184.

[84]

Stockmann, U, Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N, Jenkins, M, Minasny, B, McBratney, A. B., Courcelles, V. D. R. D., Singh, K, Wheeler, I, Abbott, L, Angers, D. A., Baldock, J, Bird, M, Brookes, P. C., Chenu, C, Jastrow, J. D., Lal, R, Lehmann, J, O'Donnell, A. G., Parton, W. J., Whitehead, D, Zimmermann, M., 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ., 164 , pp. 80-99. doi: 10.1016/j.agee.2012.10.001.

[85]

Throop, H. L., Lajtha, K, Kramer, M., 2013. Density fractionation and 13C reveal changes in soil carbon following woody encroachment in a desert ecosystem. Biogeochemistry, 112 , pp. 409-422. doi: 10.1007/s10533-012-9735-y.

[86]

Tisdall, J. M., Oades, J. M., 1982. Organic matter and water stable aggregates in soils. J. Soil Sci., 33 , pp. 141-163. doi: 10.1111/j.1365-2389.1982.tb01755.x.

[87]

Tomaz, C, Alegria, C, Monteiro, J. M., Teixeira, M. C., 2013. Land cover change and afforestation of marginal and abandoned agricultural land: a 10 year analysis in a Mediterranean region. For. Ecol. Manage., 308 , pp. 40-49. doi: 10.1016/j.foreco.2013.07.044.

[88]

von Haden, A. C., Kucharik, C. J., Jackson, R. D., Marín-Spiotta, E., 2019. Litter quantity, litter chemistry, and soil texture control changes in soil organic carbon fractions under bioenergy cropping systems of the North Central U.S. Biogeochemistry, 143 (3) , pp. 313-326. doi: 10.1007/s10533-019-00564-7.

[89]

Wright, A. L., Hons, F. M., 2004. Soil aggregation and carbon and nitrogen storage under soybean cropping sequences. Soil Sci. Soc. Am. J., 68 (2) , pp. 507-513. doi: 10.2136/sssaj2004.5070.

[90]

Yang, B, Zhang, W, Lu, Y, Zhang, W, Wang, Y., 2019. Carbon storage dynamics of secondary forest succession in the central Loess Plateau of China. Forests, 10 (4) , p. 342. doi: 10.3390/f10040342.

[91]

Yang, S, Cammeraat, E, Jansen, B, den Haan, M, van Loon, E, Recharte, J., 2018. Soil organic carbon stocks controlled by lithology and soil depth in a Peruvian alpine grassland of the Andes. Catena, 171 , pp. 11-21. doi: 10.1016/j.catena.2018.06.038.

[92]

Yang, S, Jansen, B, Kalbitz, K, Chunga Castro, F. O., van Hall, R. L., Cammeraat, E. L. H., 2020. Chunga Castro, R.L. van Hall, E.L.H. Cammeraat. Lithology controlled soil organic carbon stabilization in an alpine grassland of the Peruvian Andes. Environ. Earth Sci., 79 (2) , p. 66. doi: 10.1007/s12665-019-8796-9.

[93]

Zalegh, I, Akssira, M, Bourhia, M, Mellouki, F, Rhallabi, N, Salamatullah, A. M., Alkaltham, M. S., Khalil Alyahya, H, Mhand, R. A., 2021. A review on Cistus sp.: phytochemical and antimicrobial activities. Plants, 10 (6) , p. 1214. doi: 10.3390/plants10061214.

PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

/