Advancing a climate smart strategy for biodiversity conservation in protected areas on the Qinghai-Xizang Plateau

Xuan Li , Yanzheng Yang , Pengxiang Zhao , Da Lv , Jun Zhao , Zijian Lu , Ping Huang , Jingyi Zhu , Hao Song , Binqiang Bao , Jalal Kassout , Ruonan Li , Weihua Xu , Hua Zheng

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100264

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100264 DOI: 10.1016/j.geosus.2025.100264
Research Article
review-article

Advancing a climate smart strategy for biodiversity conservation in protected areas on the Qinghai-Xizang Plateau

Author information +
History +
PDF

Abstract

The Qinghai-Xizang Plateau serves as an extensive gene pool for plateau species and a crucial focal point for global biodiversity conservation. Being a climate-sensitive region, the impacts of climate change have led to habitat loss, population extinction, and ecological imbalances, posing formidable challenges to the sustained effectiveness of existing protected areas. Despite substantial advancements in understanding species distribution, assessing habitat changes, and evaluating the efficiency of protected areas in recent decades, comprehensive evaluations encompassing all protected species are lacking, impeding conservation strategies. In this study, we gathered 137,856 observations, encompassing 2,605 species, and utilized the MaxEnt model to simulate changes in the current distribution patterns of endangered species and suitable habitats under future scenarios. We further proposed a climate smart approach to optimize the boundaries of protected areas in response to climate change. Key findings indicate that (1) the Qinghai-Xizang Plateau harbors 2,605 endangered species, constituting 34.04 % of the total endangered species catalog in China; (2) current high-adaptation habitats of Qinghai-Xizang Plateau cover a mere 7 % of the plateau, showing minimal alteration in protected efficiency under climate change scenarios (0.50 % increase); (3) incorporating the effects of climate change in adjusting protected area boundaries enhances their efficiency by an average of 20.52 %. Our proposed methodology holds promise for safeguarding endangered species on the Qinghai-Xizang Plateau and offers significant implications for analogous regions worldwide.

Keywords

Protected areas / Biodiversity assessment / Boundary optimization / Climate change / Qinghai-Xizang Plateau

Cite this article

Download citation ▾
Xuan Li, Yanzheng Yang, Pengxiang Zhao, Da Lv, Jun Zhao, Zijian Lu, Ping Huang, Jingyi Zhu, Hao Song, Binqiang Bao, Jalal Kassout, Ruonan Li, Weihua Xu, Hua Zheng. Advancing a climate smart strategy for biodiversity conservation in protected areas on the Qinghai-Xizang Plateau. Geography and Sustainability, 2025, 6(3): 100264 DOI:10.1016/j.geosus.2025.100264

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xuan Li: Writing – original draft, Software, Methodology, Investigation, Conceptualization, Formal analysis, Validation. Yanzheng Yang: Writing – review & editing, Conceptualization, Project administration, Supervision. Pengxiang Zhao: Resources, Data curation, Supervision. Da Lv: Software, Data curation. Jun Zhao: Data curation, Resources. Zijian Lu: Data curation, Resources. Ping Huang: Resources. Jingyi Zhu: Investigation. Hao Song: Investigation. Binqiang Bao: Investigation. Jalal Kassout: Writing – review & editing. Ruonan Li: Data curation, Resources. Weihua Xu: Resources. Hua Zheng: Conceptualization, Funding acquisition, Project administration, Supervision.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical statement

Ethical approval was not required for this study, as human participants were secured according to local laws and institutional requirements. All aspects of this study were conducted in accordance with the tenets of the Declaration of Helsinki. Participation in the surveys used in this study was anonymous and voluntary, and consent was obtained from potential respondents prior to participation. Data collected for this research was kept confidential.

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 41925005), the National Key R&D Program of China (Grant No. 2024YFF1306103), and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK0307).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100264.

References

[1]

Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A, Vilela, B, Anderson, R. P., 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38 (5) , pp. 541-545. doi: 10.1111/ecog.01132.

[2]

Araújo, M. B., Alagador, D, Cabeza, M, Nogués-Bravo, D, Thuiller, W., 2011. Climate change threatens European conservation areas. Ecol. Lett., 14 (5) , pp. 484-492. doi: 10.1111/j.1461-0248.2011.01610.x.

[3]

Asamoah, E. F., Beaumont, L. J., Maina, J. M., 2021. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change, 11 (12) , pp. 1105-1110. doi: 10.1038/S41558-021-01223-2.

[4]

Blowes, S. A., Supp, S. R., Antao, L. H., Bates, A, Bruelheide, H, Chase, J. M., Moyes, F, Magurran, A, McGill, B, Myers-Smith, I. H., Winter, M, Bjorkman, A. D., Bowler, D. E., Byrnes, J. E. K., Gonzalez, A, Hines, J, Isbell, F, Jones, H. P., Navarro, L. M., Thompson, P. L., Vellend, M, Waldock, C, Dornelas, M., 2019. The geography of biodiversity change in marine and terrestrial assemblages. Science, 366 (2019), pp. 339-345. doi: 10.1126/science.aaw1620.

[5]

Buzzard, P. J., Zhang, H. B., Xue, D. H., Wong, H. M., 2010. A globally important wild yak Bos mutus population in the Arjinshan Nature Reserve, Xinjiang, China. Oryx, 44 (4) , pp. 577-580. doi: 10.1017/S0030605310000591.

[6]

Campos, J. C., Rodrigues, S, Sil, A, Hermoso, V, Freitas, T. R., Santos, J. A., Fernandes, P. M., Azevedo, J. C., Honrado, J. P., Regos, A., 2022. Climate regulation ecosystem services and biodiversity conservation are enhanced differently by climate- and fire-smart landscape management. Environ. Res. Lett., 17 (5) , Article 054014. doi: 10.1088/1748-9326/ac64b5.

[7]

Chen, Y, Zhang, J, Jiang, J, Nielsen, S. E., He, F., 2017. Assessing the effectiveness of China's protected areas to conserve current and future amphibian diversity. Divers. Distrib., 23 (2) , pp. 146-157. doi: 10.1111/ddi.12508.

[8]

Coldrey, K. M., Turpie, J. K., Midgley, G, Scheiter, S, Hannah, L, Roehrdanz, P. R., Foden, W. B., 2022. Assessing protected area vulnerability to climate change in a case study of South African national parks. Conserv. Biol., 36 (5) , p. e13941. doi: 10.1111/COBI.13941.

[9]

Combes, M, Vaz, S, Grehan, A, Morato, T, Arnaud-Haond, S, Dominguez-Carrio, C, Fox, A, Gonzalez-Irusta, J. M., Johnson, D, Callery, O, Davies, A, Fauconnet, L, Kenchington, E, Orejas, C, Roberts, J. M., Taranto, G, Menot, L., 2021. Systematic conservation planning at an ocean basin scale: identifying a viable network of deep-sea protected areas in the North Atlantic and the Mediterranean. Front. Mar. Sci., 8 , Article 611358. doi: 10.3389/fmars.2021.611358.

[10]

Cox, N, Young, B. E., Bowles, P, Fernandez, M, Marin, J, Rapacciuolo, G, Böhm, M, Brooks, T. M., Hedges, S. B., Hilton-Taylor, C, Hoffmann, M, Jenkins, R. K. B., Tognelli, M. F., Alexander, G. J., Allison, A, Ananjeva, N. B., Auliya, M, Avila, L. J., Chapple, D. G., Cisneros-Heredia, D. F., Cogger, H. G., Colli, G. R., de Silva, A, Eisemberg, C. C., Els, J, Fong, G. A., Grant, T. D., Hitchmough, R. A., Iskandar, D. T., Kidera, N, Martins, M, Meiri, S, Mitchell, N. J., Molur, S, Nogueira, C. D., Ortiz, J. C., Penner, J, Rhodin, A. G. J., Rivas, G. A., Rödel, M. O., Roll, U, Sanders, K. L., Santos-Barrera, G, Shea, G. M., Spawls, S, Stuart, B. L., Tolley, K. A., Trape, J. F., Vidal, M. A., Wagner, P, Wallace, B. P., Xie, Y., 2022. A global reptile assessment highlights shared conservation needs of tetrapods. Nature, 605 (2022), pp. 285-290. doi: 10.1038/S41586-022-04664-7.

[11]

Davison, C. W., Rahbek, C, Morueta-Holme, N., 2021. Land-use change and biodiversity: challenges for assembling evidence on the greatest threat to nature. Glob. Change Biol., 27 (21) , pp. 5414-5429. doi: 10.1111/GCB.15846.

[12]

Di Sacco, A, Hardwick, K. A., Blakesley, D, Brancalion, P. H. S., Breman, E, Rebola, L. C., Chomba, S, Dixon, K, Elliott, S, Ruyonga, G, Shaw, K, Smith, P, Smith, R. J., Antonelli, A., 2021. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol., 27 (7) , pp. 1328-1348. doi: 10.1111/GCB.15498.

[13]

Dinerstein, E, Vynne, C, Sala, E, Joshi, A. R., Fernando, S, Lovejoy, T. E., Mayorga, J, Olson, D, Asner, G. P., Baillie, J. E. M., Burgess, N. D., Burkart, K, Noss, R. F., Zhang, Y. P., Baccini, A, Birch, T, Hahn, N, Joppa, L. N., Wikramanayake, E., 2019. A Global Deal for Nature: guiding principles, milestones, and targets. Sci. Adv., 5 (4) , p. eaaw2869. doi: 10.1126/sciadv.aaw2869.

[14]

Doxa, A, Almpanidou, V, Katsanevakis, S, Queiros, A. M., Kaschner, K, Garilao, C, Kesner-Reyes, K, Mazaris, A. D., 2022. 4D marine conservation networks: combining 3D prioritization of present and future biodiversity with climatic refugia. Glob. Change Biol., 28 (15) , pp. 4577-4588. doi: 10.1111/gcb.16268.

[15]

Duarte, C. M., Agusti, S, Barbier, E, Britten, G. L., Castilla, J. C., Gattuso, J. P., Fulweiler, R. W., Hughes, T. P., Knowlton, N, Lovelock, C. E., Lotze, H. K., Predragovic, M, Poloczanska, E, Roberts, C, Worm, B., 2020. Rebuilding marine life. Nature, 580 (2020), pp. 39-51. doi: 10.1038/s41586-020-2146-7.

[16]

Du, Y-R, S-Guo, C, Z-Wang, F, H-Ci, X, Z-Cai, Y, Zhang, Q, J-Su, P, J-Liu, Q., 2010. Demographic history of the Tibetan antelope Pantholops hodgsoni (chiru). J. Syst. Evol., 48 (6) , pp. 490-496. doi: 10.1111/j.1759-6831.2010.00095.x.

[17]

Eddy, T. D., Lam, V. W. Y., Reygondeau, G, Cisneros-Montemayor, A. M., Greer, K, Palomares, M. L. D., Bruno, J. F., Ota, Y, Cheung, W. W. L., 2021. Global decline in capacity of coral reefs to provide ecosystem services. One Earth, 4 (9) , pp. 1278-1285. doi: 10.1016/j.oneear.2021.08.016.

[18]

Elsen, P. R., Monahan, W. B., Dougherty, E. R., Merenlender, A. M., 2020. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv., 6 (25) , p. eaay0814. doi: 10.1126/sciadv.aay0814.

[19]

Fick, S. E., Hijmans, R. J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37 (12) , pp. 4302-4315. doi: 10.1002/joc.5086.

[20]

Fjelds, J, Bowie, R. C. K., Rahbek, C., 2012. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst., 43 (1) , pp. 249-265. doi: 10.1146/annurev-ecolsys-102710-145113.

[21]

Fu, B, Ouyang, Z, Shi, P, Fan, J, Wang, X, Zheng, H, Wu, F., 2021. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier. Bull. Chin. Acad. Sci., 36 (11) , pp. 1298-1306. doi: 10.16418/j.issn.1000-3045.20210919001.

[22]

Gallardo, B, Aldridge, D. C., Gonzalez-Moreno, P, Pergl, J, Pizarro, M, Pysek, P, Thuiller, W, Yesson, C, Vila, M., 2017. Protected areas offer refuge from invasive species spreading under climate change. Glob. Change Biol., 23 (12) , pp. 5331-5343. doi: 10.1111/gcb.13798.

[23]

Garrabou, J, Gómez-Gras, D, Medrano, A, Cerrano, C, Ponti, M, Schlegel, R, Bensoussan, N, Turicchia, E, Sini, M, Gerovasileiou, V, Teixido, N, Mirasole, A, Tamburello, L, Cebrian, E, Rilov, G, Ledoux, J. B., Ben Souissi, J, Khamassi, F, Ghanem, R, Benabdi, M, Grimes, S, Ocaña, O, Bazairi, H, Hereu, B, Linares, C, Kersting, D. K., la Rovira, G, Ortega, J, Casals, D, Pagès-Escolà, M, Margarit, N, Capdevila, P, Verdura, J, Ramos, A, Izquierdo, A, Barbera, C, Rubio-Portillo, E, Anton, I, López-Sendino, P, Díaz, D, Vázquez-Luis, M, Duarte, C, Marbà, N, Aspillaga, E, Espinosa, F, Grech, D, Guala, I, Azzurro, E, Farina, S, Gambi, M. C., Chimienti, G, Montefalcone, M, Azzola, A, Mantas, T. P., Fraschetti, S, Ceccherelli, G, Kipson, S, Bakran-Petricioli, T, Petricioli, D, Jimenez, C, Katsanevakis, S, Kizilkaya, I. T., Kizilkaya, Z, Sartoretto, S, Elodie, R, Ruitton, S, Comeau, S, Gattuso, J. P., Harmelin, J. G., 2022. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Change Biol., 28 (19) , pp. 5708-5725. doi: 10.1111/GCB.16301.

[24]

Gilg, O, Yoccoz, N. G., 2010. Explaining bird migration. Science, 327 (2010), pp. 276-277. doi: 10.1126/science.1184964.

[25]

Haight, J, Hammill, E., 2019. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv., 241 , Article 108258. doi: 10.1016/j.biocon.2019.108258.

[26]

Harris, R. B., Loggers, C. O., 2004. Status of Tibetan Plateau mammals in Yeniugou, China. Wildlife Biol., 10 (2) , pp. 91-99. doi: 10.2981/wlb.2004.013.

[27]

Hu, Q, Hua, W, Yang, K, Ming, J, Ma, P, Zhao, Y, Fan, G., 2022. An assessment of temperature simulations by CMIP6 climate models over the Tibetan Plateau and differences with CMIP5 climate models. Theor. Appl. Climatol., 148 (1–2) , pp. 223-236. doi: 10.1007/s00704-022-03944-6.

[28]

Hurtt, G. C., Chini, L. P., Frolking, S, Betts, R. A., Feddema, J, Fischer, G, Fisk, J. P., Hibbard, K, Houghton, R. A., Janetos, A, Jones, C. D., Kindermann, G, Kinoshita, T, Goldewijk, K. K., Riahi, K, Shevliakova, E, Smith, S, Stehfest, E, Thomson, A, Thornton, P, van Vuuren, D. P., Wang, Y. P., 2011. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change, 109 (1–2) , pp. 117-161. doi: 10.1007/s10584-011-0153-2.

[29]

Jiang, D, Hu, D, Tian, Z, Lang, X., 2020. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon. Adv. Atmos. Sci., 37 (10) , pp. 1102-1118. doi: 10.1007/s00376-020-2034-y.

[30]

Jiang, W, Lv, J, Wang, C, Chen, Z, Liu, Y., 2017. Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China. Ecol. Indic., 82 , pp. 316-326. doi: 10.1016/j.ecolind.2017.06.059.

[31]

Jiang, Z-W, Ma, L, C-Mi, R, S-Tao, A, Guo, F, W-Du, G., 2023. Distinct responses and range shifts of lizard populations across an elevational gradient under climate change. Glob. Change Biol., 29 (10) , pp. 2669-2680. doi: 10.1111/GCB.16656.

[32]

Jones, K. R., Watson, J. E. M., Possingham, H. P., Klein, C. J., 2016. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv., 194 , pp. 121-130. doi: 10.1016/j.biocon.2015.12.008.

[33]

Kassout, J, J-Terral, F, El Ouahrani, A, Houssni, M, Ivorra, S, Kadaoui, K, El Mahroussi, M, Paradis, L, Ater, M., 2022. 21-43. doi: 10.1007/s00704-022-03944-6.

[34]

Koutroulis, A. G., Grillakis, M, Tsanis, I. K., Papadimitriou, L., 2016. Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Clim. Dyn., 47 , pp. 1881-1898. doi: 10.1007/s00382-015-2938-x.

[35]

Kujala, H, Moilanen, A, Araújo, M. B., Cabeza, M., 2013. Conservation planning with uncertain climate change projections. PLoS One, 8 (2) , Article e53315. doi: 10.1371/journal.pone.0053315.

[36]

Le Hen, G, Balzani, P, Haase, P, Kouba, A, Liu, C. L., Nagelkerke, L. A. J., Theissen, N, Renault, D, Soto, I, Haubrock, P. J., 2023. Alien species and climate change drive shifts in a riverine fish community and trait compositions over 35 years. Sci. Total Environ., 867 , Article 161486. doi: 10.1016/J.SCITOTENV.2023.161486.

[37]

Li, B, Liang, C, Song, P, Liu, D, Qin, W, Jiang, F, Gu, H, Gao, H, Zhang, T., 2023. Threatened birds face new distribution under future climate change on the Qinghai-Tibet Plateau (QTP). Ecol. Indic., 150 , Article 110217. doi: 10.1016/j.ecolind.2023.110217.

[38]

Li, S, Zhang, H, Zhou, X, Yu, H, Li, W., 2020. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai-Tibet Plateau. Ecosyst. Serv., 43 , Article 101090. doi: 10.1016/j.ecoser.2020.101090.

[39]

Li, X-L, Gao, J, Brierley, G, Y-Qiao, M, Zhang, J, Y-Yang, W., 2013. Rangeland degradation on the Qinghai-Tibet Plateau: implications for rehabilitation. Land Degrad. Dev., 24 (1) , pp. 72-80. doi: 10.1002/ldr.1108.

[40]

Liang, X, Liu, X. P., Chen, G. L., Leng, J. Y., Wen, Y. Y., Chen, G. Z., 2020. Coupling fuzzy clustering and cellular automata based on local maxima of development potential to model urban emergence and expansion in economic development zones. Int. J. Geogr. Inf. Sci., 34 (10) , pp. 1930-1952. doi: 10.1080/13658816.2020.1741591.

[41]

Liang, X, Liu, X, Li, X, Chen, Y, Tian, H, Yao, Y. 2018a. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan., 177, pp. 47-63. doi: 10.1016/j.landurbplan.2018.04.016.

[42]

Liang, X, Liu, X, Li, D, Zhao, H, Chen, G. 2018b. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci., 32 (11–12) (2018), pp. 2294-2316. doi: 10.1080/13658816.2018.1502441.

[43]

Liu, X, Liang, X, Li, X, Xu, X, Wang, S., 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan., 168 , pp. 94-116. doi: 10.1016/j.landurbplan.2017.09.019.

[44]

Liu, Y-W, Zhao, L, G-Tan, R, X-Shen, Y, S-Nie, P, Q-Li, Q, Zhang, L., 2022. Evaluation of multidimensional simulations of summer air temperature in China from CMIP5 to CMIP6 by the BCC models: from trends to modes. Adv. Clim. Change Res., 13 (1) , pp. 28-41. doi: 10.1016/j.accre.2021.12.001.

[45]

Lu, Z, Wang, L, Meng, N, Dai, X, Zhu, J, Yang, Y, Li, R, Ma, J, Zheng, H., 2022. Consideration of climate change impacts will improve the efficiency of protected areas on the Qinghai-Tibet Plateau. Ecosyst. Health Sustain., 8 (1) , Article 2117089. doi: 10.1080/20964129.2022.2117089.

[46]

Malhi, Y, Lander, T, le Roux, E, Stevens, N, Macias-Fauria, M, Wedding, L, Girardin, C, Kristensen, J, Sandom, C. J., Evans, T. D., Svenning, J. C., Canney, S., 2022. The role of largewild animals in climate change mitigation and adaptation. Curr. Biol., 32 (4) , pp. R181-R196. doi: 10.1016/j.cub.2022.01.041.

[47]

Maxwell, S. L., Cazalis, V, Dudley, N, Hoffmann, M, Rodrigues, A. S. L., Stolton, S, Visconti, P, Woodley, S, Kingston, N, Lewis, E, Maron, M, Strassburg, B. B. N., Wenger, A, Jonas, H. D., Venter, O, Watson, J. E. M., 2020. Area-based conservation in the twenty-first century. Nature, 586 (2020), pp. 217-227. doi: 10.1038/S41586-020-2773-Z.

[48]

McDowell, N. G., Allen, C. D., Anderson-Teixeira, K, Aukema, B. H., Bond-Lamberty, B, Chini, L, Clark, J. S., Dietze, M, Grossiord, C, Hanbury-Brown, A, Hurtt, G. C., Jackson, R. B., Johnson, D. J., Kueppers, L, Lichstein, J. W., Ogle, K, Poulter, B, Pugh, T. A. M., Seidl, R, Turner, M. G., Uriarte, M, Walker, A. P., Xu, C. G., 2020. Pervasive shifts in forest dynamics in a changing world. Science, 368 (2020), pp. 964-974. doi: 10.1126/science.aaz9463.

[49]

Mi, C, Ma, L, Yang, M, Li, X, Meiri, S, Roll, U, Oskyrko, O, Pincheira-Donoso, D, Harvey, L. P., Jablonski, D, Safaei-Mahroo, B, Ghaffari, H, Smid, J, Jarvie, S, Kimani, R. M., Masroor, R, Kazemi, S. M., Nneji, L. M., Fokoua, A. M. T., Tasse Taboue, G. C., Bauer, A, Nogueira, C, Meirte, D, Chapple, D. G., Das, I, Grismer, L, Avila, L. J., Ribeiro Junior, M. A., Tallowin, O. J. S., Torres-Carvajal, O, Wagner, P, Ron, S. R., Wang, Y, Itescu, Y, Nagy, Z. T., Wilcove, D. S., Liu, X, Du, W., 2023. Global Protected Areas as refuges for amphibians and reptiles under climate change. Nat. Commun., 14 (1) , p. 1389. doi: 10.1038/S41467-023-36987-Y.

[50]

Miller, R. L., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Kelley, M, Ruedy, R, Russell, G. L., Ackerman, A. S., Aleinov, I, Bauer, M, Bleck, R, Canuto, V, Cesana, G, Cheng, Y, Clune, T. L., Cook, B. I., Cruz, C. A., Del Genio, A. D., Elsaesser, G. S., Faluvegi, G, Kiang, N. Y., Kim, D, Lacis, A. A., Leboissetier, A, LeGrande, A. N., Lo, K. K., Marshall, J, Matthews, E. E., McDermid, S, Mezuman, K, Murray, L. T., Oinas, V, Orbe, C, Perez Garcia-Pando, C, Perlwitz, J. P., Puma, M. J., Rind, D, Romanou, A, Shindell, D. T., Sun, S, Tausnev, N, Tsigaridis, K, Tselioudis, G, Weng, E, Wu, J, M-Yao, S., 2021. CMIP6 historical simulations (1850–2014) with GISS-E2.1. J. Adv. Model. Earth Syst., 13 (1) , Article e2019MS002034. doi: 10.1029/2019MS002034.

[51]

Nachtergaele, F, Velthuizen, H. V., Verelst, L, Batjes, N. H., Dijkshoorn, K, Engelen, V. W. P. V., Fischer, G, Jones, A, Montanarela, L., 2010. The Harmonized World Soil Database.

[52]

Outhwaite, C. L., McCann, P, Newbold, T., 2022. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature, 605 (2022), pp. 97-102. doi: 10.1038/S41586-022-04644-X.

[53]

Pascual, U., 2022. Climate-smart conservation: an opportunity for transformative change in the mainstream conservation movement. One Earth, 5 (6) , pp. 609-611. doi: 10.1016/J.ONEEAR.2022.05.015.

[54]

Pearce-Higgins, J. W., Eglington, S. M., Martay, B, Chamberlain, D. E., Both, C., 2015. Drivers of climate change impacts on bird communities. J. Anim. Ecol., 84 (4) , pp. 943-954. doi: 10.1111/1365-2656.12364.

[55]

Peters, M. K., Hemp, A, Appelhans, T, Becker, J. N., Behler, C, Classen, A, Detsch, F, Ensslin, A, Ferger, S. W., Frederiksen, S. B., Gebert, F, Gerschlauer, F, Gütlein, A, Helbig-Bonitz, M, Hemp, C, Kindeketa, W. J., Kühnel, A, Mayr, A. V., Mwangomo, E, Ngereza, C, Njovu, H. K., Otte, I, Pabst, H, Renner, M, Röder, J, Rutten, G, Costa, D. S., Sierra-Cornejo, N, Vollstädt, M. G. R., Dulle, H. I., Eardley, C. D., Howell, K. M., Keller, A, Peters, R. S., Ssymank, A, Kakengi, V, Zhang, J, Bogner, C, Böhning-Gaese, K, Brandl, R, Hertel, D, Huwe, B, Kiese, R, Kleyer, M, Kuzyakov, Y, Nauss, T, Schleuning, M, Tschapka, M, Fischer, M, Steffan-Dewenter, I., 2019. Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568 (2019), pp. 88-92. doi: 10.1038/s41586-019-1048-z.

[56]

Phillips, H. R. P., Guerra, C. A., Bartz, M. L. C., Briones, M. J. I., Brown, G, Crowther, T. W., Ferlian, O, Gongalsky, K. B., den Hoogen, J, Krebs, J, Orgiazzi, A, Routh, D, Schwarz, B, Bach, E. M., Bennett, J, Brose, U, Decaens, T, König-Ries, B, Loreau, M, Mathieu, J, Mulder, C, van der Putten, W. H., Ramirez, K. S., Rillig, M. C., Russell, D, Rutgers, M, Thakur, M. P., de Vries, F. T., Wall, D. H., Wardle, D. A., Arai, M, Ayuke, F. O., Baker, G. H., Beauséjour, R, Bedano, J. C., Birkhofer, K, Blanchart, E, Blossey, B, Bolger, T, Bradley, R. L., Callaham, M. A., Capowiez, Y, Caulfield, M. E., Choi, A, Crotty, F. V., Dávalos, A, Cosin, D. J. D., Dominguez, A, Duhour, A. E., van Eekeren, N, Emmerling, C, Falco, L. B., Fernández, R, Fonte, S. J., Fragoso, C, Franco, A. L. C., Fugere, M, Fusilero, A. T., Gholami, S, Gundale, M. J., Lopez, M. G., Hackenberger, D. K., Hernández, L. M., Hishi, T, Holdsworth, A. R., Holmstrup, M, Hopfensperger, K. N., Lwanga, E. H., Huhta, V, Hurisso, T. T., Iannone, B. V., Iordache, M, Joschko, M, Kaneko, N, Kanianska, R, Keith, A. M., Kelly, C. A., Kernecker, M. L., Klaminder, J, Koné, A. W., Kooch, Y, Kukkonen, S. T., Lalthanzara, H, Lammel, D. R., Lebedev, I. M., Li, Y. Q., Lidon, J. B. J., Lincoln, N. K., Loss, S. R., Marichal, R, Matula, R, Moos, J. H., Moreno, G, Morón-Ríos, A, Muys, B, Neirynck, J, Norgrove, L, Novo, M, Nuutinen, V, Nuzzo, V, Rahman, P. M., Pansu, J, Paudel, S, Pérès, G, Perez-Camacho, L, Pineiro, R, Ponge, J. F., Rashid, M. I., Rebollo, S, Rodeiro-Iglesias, J, Rodriguez, M. A., Roth, A. M., Rousseau, G. X., Rozen, A, Sayad, E, Schaik, L, Scharenbroch, B. C., Schirrmann, M, Schmidt, O, Schröder, B, Seeber, J, Shashkov, M. P., Singh, J, Smith, S. M., Steinwandter, M, Talavera, J. A., Trigo, D, Tsukamoto, J, de Valença, A. W., Vanek, S. J., Virto, I, Wackett, A. A., Warren, M. W., Wehr, N. H., Whalen, J. K., Wironen, M. B., Wolters, V, Zenkova, I. V., Zhang, W. X., Cameron, E. K., Eisenhauer, N., 2019. Global distribution of earthworm diversity. Science, 366 (2019), pp. 480-485. doi: 10.1126/science.aax4851.

[57]

Phillips, S. J., Anderson, R. P., Schapire, R. E., 2006. Schapire. Maximum entropy modeling of species geographic distributions. Ecol. Model., 190 (3–4) , pp. 231-259. doi: 10.1016/j.ecolmodel.2005.03.026.

[58]

Pinsky, M. L., Selden, R. L., Kitchel, Z. J., 2020. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci., 12 , pp. 153-179. doi: 10.1146/annurev-marine-010419-010916.

[59]

Plumptre, A. J., Fuller, R. A., Rwetsiba, A, Wanyama, F, Kujirakwinja, D, Driciru, M, Nangendo, G, Watson, J. E. M., Possingham, H. P., 2014. Possingham. Efficiently targeting resources to deter illegal activities in protected areas. J. Appl. Ecol., 51 (3) , pp. 714-725. doi: 10.1111/1365-2664.12227.

[60]

Powers, R. P., Jetz, W., 2019. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change, 9 (4) , pp. 323-329. doi: 10.1038/s41558-019-0406-z.

[61]

Qian, D, Li, Q, Fan, B, Lan, Y, Cao, G., 2021. Characterization of the spatial distribution of plateau pika burrows along an alpine grassland degradation gradient on the Qinghai-Tibet Plateau. Ecol. Evol., 11 (21) , pp. 14905-14915. doi: 10.1002/ece3.8176.

[62]

Rahbek, C, Borregaard, M. K., Antonelli, A, Colwell, R. K., Holt, B. G., Nogues-Bravo, D, Rasmussen, C. M. O., Richardson, K, Rosing, M. T., Whittaker, R. J., Fjeldså, J. 2019a. Building mountain biodiversity: geological and evolutionary processes. Science, 365 (6458) (2019), pp. 1114-1119. doi: 10.1126/science.aax0151.

[63]

Rahbek, C, Borregaard, M. K., Colwell, R. K., Dalsgaard, B, Holt, B. G., Morueta-Holme, N, Nogues-Bravo, D, Whittaker, R. J., Fjeldså, J. 2019b. Humboldt's enigma: what causes global patterns of mountain biodiversity?. Science, 365 (6458) (2019), pp. 1108-1113. doi: 10.1126/science.aax0149.

[64]

Renner, I. W., Warton, D. I., 2013. Equivalence of MAXENT and poisson point process models for species distribution modeling in ecology. Biometrics, 69 (1) , pp. 274-281. doi: 10.1111/j.1541-0420.2012.01824.x.

[65]

Reside, A. E., Butt, N, Adams, V. M., 2018. Adapting systematic conservation planning for climate change. Biodivers. Conserv., 27 (1) , pp. 1-29. doi: 10.1007/s10531-017-1442-5.

[66]

Rhodes, J. R., Armsworth, P. R., Iacona, G, Shah, P, Gordon, A, Wilson, K. A., Runting, R. K., Bryan, B. A., 2022. Flexible conservation decisions for climate adaptation. One Earth, 5 (6) , pp. 622-634. doi: 10.1016/J.ONEEAR.2022.05.010.

[67]

Roman-Palacios, C, Wiens, J. J., 2020. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. U.S.A., 117 (8) , pp. 4211-4217. doi: 10.1073/pnas.1913007117.

[68]

Romero-Munoz, A, Benitez-Lopez, A, Zurell, D, Baumann, M, Camino, M, Decarre, J, del Castillo, H, Giordano, A. J., Gomez-Valencia, B, Levers, C, Noss, A. J., Quiroga, V, Thompson, J. J., Torres, R, Velilla, M, Weiler, A, Kuemmerle, T., 2020. Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography, 43 (7) , pp. 954-966. doi: 10.1111/ecog.05053.

[69]

Runge, C. A., Watson, J. E. M., Butchart, S. H. M., Hanson, J. O., Possingham, H. P., Fuller, R. A., 2015. Possingham, R.A. Fuller. Protected areas and global conservation of migratory birds. Science, 350 (2015), pp. 1255-1258. doi: 10.1126/science.aac9180.

[70]

Santora, J. A., Mantua, N. J., Schroeder, I. D., Field, J. C., Hazen, E. L., Bograd, S. J., Sydeman, W. J., Wells, B. K., Calambokidis, J, Saez, L, Lawson, D, Forney, K. A., 2020. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun., 11 (1) , p. 536. doi: 10.1038/s41467-019-14215-w.

[71]

Santos, C. F., Agardy, T, Andrade, F, Calado, H, Rosa, R., 2020. Integrating climate change in ocean planning. Nat. Sustain., 3 (7) , pp. 505-516. doi: 10.1038/s41893-020-0513-x.

[72]

Sherman, C. S., Simpfendorfer, C. A., Pacoureau, N, Matsushiba, J. H., Yan, H. F., Walls, R. H. L., Rigby, C. L., VanderWright, W. J., Jabado, R. W., Pollom, R. A., Carlson, J. K., Charvet, P, Bin Ali, A, Cheok, J, Derrick, D. H., Herman, K. B., Finucci, B, Eddy, T. D., Palomares, M. L. D., Avalos-Castillo, C. G., Kinattumkara, B, Blanco-Parra, M. D. P., Espinoza, M, Fernando, D, Haque, A. B., Mejía-Falla, P. A., Navia, A. F., Pérez-Jiménez, J. C., Utzurrum, J, Yuneni, R. R., Dulvy, N. K., 2023. Half a century of rising extinction risk of coral reef sharks and rays. Nat. Commun., 14 (1) , p. 15. doi: 10.1038/S41467-022-35091-X.

[73]

Soroye, P., Newbold, T., Kerr, J., 2020. Climate change contributes to widespread declines among bumble bees across continents. Science 367 (6478), 685–688. doi: 10.1126/science. aax8591.

[74]

Tang, C. Q., Matsui, T, Ohashi, H, Dong, Y. F., Momohara, A, Herrando-Moraira, S, Qian, S, Yang, Y. C., Ohsawa, M, Luu, H. T., Grote, P. J., Krestov, P. V., LePage, B, Werger, M, Robertson, K, Hobohm, C, Wang, C. Y., Peng, M. C., Chen, X, Wang, H. C., Su, W. H., Zhou, R, Li, S. F., He, L. Y., Yan, K, Zhu, M. Y., Hu, J, Yang, R. H., Li, W. J., Tomita, M, Wu, Z. L., Yan, H. Z., Zhang, G. F., He, H, Yi, S. R., Gong, H. D., Song, K, Song, D, Li, X. S., Zhang, Z. Y., Han, P. B., Shen, L. Q., Huang, D. S., Luo, K, López-Pujol, J., 2018. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun., 9 , p. 4488. doi: 10.1038/s41467-018-06837-3.

[75]

Timmermann, A, Yun, K. S., Raia, P, Ruan, J. Y., Mondanaro, A, Zeller, E, Zollikofer, C, de León, M. P., Lemmon, D, Willeit, M, Ganopolski, A., 2022. Climate effects on archaic human habitats and species successions. Nature, 604 (2022), pp. 495-501. doi: 10.1038/S41586-022-04600-9.

[76]

Tittensor, D. P., Beger, M, Boerder, K, Boyce, D. G., Cavanagh, R. D., Cosandey-Godin, A, Crespo, G. O., Dunn, D. C., Ghiffary, W, Grant, S. M., Hannah, L, Halpin, P. N., Harfoot, M, Heaslip, S. G., Jeffery, N. W., Kingston, N, Lotze, H. K., McGowan, J, McLeod, E, McOwen, C. J., O'Leary, B. C., Schiller, L, Stanley, R. R. E., Westhead, M, Wilson, K. L., Worm, B., 2019. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv., 5 (11) , p. eaay9969. doi: 10.1126/sciadv.aay9969.

[77]

van Vuuren, D. P., Stehfest, E, den Elzen, M. G. J., Kram, T, van Vliet, J, Deetman, S, Isaac, M, Goldewijk, K. K., Hof, A, Beltran, A. M., Oostenrijk, R, van Ruijven, B., 2011. RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim. Change, 109 (1–2) , pp. 95-116. doi: 10.1007/s10584-011-0152-3.

[78]

Vetrovsky, T, Kohout, P, Kopecky, M, Machac, A, Man, M, Bahnmann, B. D., Brabcová, V, Choi, J, Meszárosová, L, Human, Z. R., Lepinay, C, Lladó, S, López-Mondéjar, R, Martinovic, T, Masínová, T, Morais, D, Navrátilová, D, Odriozola, I, Stursová, M, Svec, K, Tláskal, V, Urbanová, M, Wan, J, Zifcáková, L, Howe, A, Ladau, J, Peay, K. G., Storch, D, Wild, J, Baldrian, P., 2019. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun., 10 , p. 5142. doi: 10.1038/s41467-019-13164-8.

[79]

Wang, Y., Mi, C., Guo, Y., 2020. Satellite tracking reveals a new migration route of black-necked cranes ( Grus nigricollis ) in Qinghai-Tibet Plateau. PeerJ 8 (1), e9715. doi: 10.7717/peerj.9715.

[80]

Ward, M, Tulloch, A. I. T., Radford, J. Q., Williams, B. A., Reside, A. E., Macdonald, S. L., Mayfield, H. J., Maron, M, Possingham, H. P., Vine, S. J., O'Connor, J. L., Massingham, E. J., Greenville, A. C., Woinarski, J. C. Z., Garnett, S. T., Lintermans, M, Scheele, B, Carwardine, J, Nimmo, D. G., Lindenmayer, D. B., Kooyman, R. M., Simmonds, J. S., Sonter, L. J., Watson, J. E. M., 2020. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol., 4 (10) , pp. 1321-1326. doi: 10.1038/s41559-020-1251-1.

[81]

Warren, D. L., Glor, R. E., Turelli, M., 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33 (3) , pp. 607-611. doi: 10.1111/j.1600-0587.2009.06142.x.

[82]

Warren, D. L., Matzke, N. J., Cardillo, M, Baumgartner, J. B., Beaumont, L. J., Turelli, M, Glor, R. E., Huron, N. A., Simoes, M, Iglesias, T. L., Piquet, J. C., Dinnage, R., 2021. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography, 44 (4) , pp. 504-511. doi: 10.1111/ECOG.05485.

[83]

Wilson, K. L., Tittensor, D. P., Worm, B, Lotze, H. K., 2020. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol., 26 (6) , pp. 3251-3267. doi: 10.1111/gcb.15094.

[84]

Wisz, M. S., Hijmans, R. J., Li, J, Peterson, A. T., Graham, C. H., Guisan, A, Group, NPSDW., 2010. Effects of sample size on the performance of species distribution models. Divers. Distrib., 14 (5) , pp. 763-773. doi: 10.1111/j.1472-4642.2008.00482.x.

[85]

Wu, J., 2015. Detecting and attributing the effect of climate change on the changes in the distribution of Qinghai-Tibet Plateau large mammal species over the past 50 years. Mammal Res., 60 (4) , pp. 353-364. doi: 10.1007/s13364-015-0235-z.

[86]

Xu, W. H., Xiao, Y, Zhang, J. J., Yang, W, Zhang, L, Hull, V, Wang, Z, Zheng, H, Liu, J. G., Polasky, S, Jiang, L, Xiao, Y, Shi, X. W., Rao, E. M., Lu, F, Wang, X. K., Daily, G. C., Ouyang, Z. Y., 2017. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U.S.A., 114 (7) , pp. 1601-1606. doi: 10.1073/pnas.1620503114.

[87]

Zhang, T, Cheng, C, Wu, X., 2023. 10 (1) , p. 748. doi: 10.1038/S41597-023-02637-7.

[88]

Zhu, G, Pape, M, Giam, X, Cho, S. H., Armsworth, P. R., 2021. Are protected areas well-sited to support species in the future in a major climate refuge and corridor in the United States?. Biol. Conserv., 255 , Article 108982. doi: 10.1016/j.biocon.2021.108982.

[89]

Zhu, Y-Y, Yang, S., 2020. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Change Res., 11 (3) , pp. 239-251. doi: 10.1016/j.accre.2020.08.001.

[90]

Zurell, D, Franklin, J, Koenig, C, Bouchet, P. J., Dormann, C. F., Elith, J, Fandos, G, Feng, X, Guillera-Arroita, G, Guisan, A, Lahoz-Monfort, J. J., Leitao, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G, Schmatz, D. R., Schroeder, B, Serra-Diaz, J. M., Thuiller, W, Yates, K. L., Zimmermann, N. E., Merow, C., 2020. A standard protocol for reporting species distribution models. Ecography, 43 (9) , pp. 1261-1277. doi: 10.1111/ecog.04960.

PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

/