Opportunity for mitigating soil loss by water erosion in cropland through crop switching and improved management in China

Keke Li , Zhanhang Zhou , Zhen Wang , Yi Zeng , Klaus Hubacek , Pasquale Borrelli , Cai Li , Wenting Zhang , Zhongci Deng , Jingyu Wang , Zhihua Shi

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) : 100262

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (4) :100262 DOI: 10.1016/j.geosus.2025.100262
Research Article
review-article

Opportunity for mitigating soil loss by water erosion in cropland through crop switching and improved management in China

Author information +
History +
PDF

Abstract

Cropland is persistently affected by soil loss by water erosion in China, which causes economic loss and threatens soil health. Integrating crop switching and improved management provides a promising strategy for controlling soil loss by water erosion in cropland and promoting sustainable agriculture. However, optimizing crop composition with fewer inputs involves balancing agricultural resource use with environmental costs. Aiming to explore the potential of crop switching as a strategy for mitigating soil erosion in cropland, we develop a spatial optimization model that redistributes the sown areas of different crops in each prefecture-level city based on existing resource availability. Our findings gained from our simulations show that crop switching in China alone can reduce total soil erosion in cropland by an estimated 13 %. Furthermore, combining crop switching with improved agricultural management practices can further reduce soil erosion in cropland by an estimated 25 %. Cereals including maize, wheat, and rice demonstrate significant potential for reducing soil erosion in cropland. Shifting major maize-producing areas northward could result in a substantial decrease in soil erosion, ranging from 10 % to 19 % of historical soil erosion in cropland. These results offer implications for formulating regional strategy in mitigating soil erosion challenges in China while maximizing the benefits from existing agricultural resource.

Keywords

Soil erosion in cropland / Crop switching / Improved management / Spatial optimization model / RUSLE model

Cite this article

Download citation ▾
Keke Li, Zhanhang Zhou, Zhen Wang, Yi Zeng, Klaus Hubacek, Pasquale Borrelli, Cai Li, Wenting Zhang, Zhongci Deng, Jingyu Wang, Zhihua Shi. Opportunity for mitigating soil loss by water erosion in cropland through crop switching and improved management in China. Geography and Sustainability, 2025, 6(4): 100262 DOI:10.1016/j.geosus.2025.100262

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Keke Li: Writing – original draft, Formal analysis. Zhanhang Zhou: Visualization, Data curation. Zhen Wang: Writing – review & editing, Supervision, Funding acquisition, Conceptualization. Yi Zeng: Writing – review & editing. Klaus Hubacek: Writing – review & editing. Pasquale Borrelli: Writing – review & editing. Cai Li: Writing – review & editing. Wenting Zhang: Writing – review & editing. Zhongci Deng: Writing – review & editing. Jingyu Wang: Writing – review & editing. Zhihua Shi: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study is financially supported by the National Natural Science Foundation of China (Grant No. 42377321).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100262.

References

[1]

Armbrust, D. V., Bilbro, J. D., 1993. Predicting grain-sorghum canopy structure for soil-erosion modeling. Agron. J., 85(3), 664-668.

[2]

Arnhold, S, Lindner, S, Lee, B, Martin, E, Kettering, J, Nguyen, T. T., Koellner, T, Ok, Y. S., Huwe, B. 2014. Conventional and organic farming: soil erosion and conservation potential for row crop cultivation. Geoderma, 219–220, pp.89-105.

[3]

Borrelli, P, Alewell, C, Alvarez, P, Anache, J. A. A., Baartman, J, Ballabio, C, Bezak, N, Biddoccu, M, Cerdà, A, Chalise, D, Chen, S. C., Chen, W, De Girolamo, A. M., Gessesse, G. D., Deumlich, D, Diodato, N, Efthimiou, N, Erpul, G, Fiener, P, Freppaz, M, Gentile, F, Gericke, A, Haregeweyn, N, Hu, B. F., Jeanneau, A, Kaffas, K, Kiani-Harchegani, M, Villuendas, I. L., Li, C. J., Lombardo, L, López-Vicente, M, Lucas-Borja, M. E., Märker, M, Matthews, F, Miao, C. Y., Mikos, M, Modugno, S, Möller, M, Naipal, V, Nearing, M, Owusu, S, Panday, D, Patault, E, Patriche, C. V., Poggio, L, Portes, R, Quijano, L, Rahdari, M. R., Renima, M, Ricci, G. F., Rodrigo-Comino, J, Saia, S, Samani, A. N., Schillaci, C, Syrris, V, Kim, H. S., Spinola, D. N., Oliveira, P. T., Teng, H. F., Thapa, R, Vantas, K, Vieira, D, Yang, J. E., Yin, S. Q., Zema, D. A., Zhao, G. J., Panagos, P., 2021. Soil erosion modelling: a global review and statistical analysis. Sci. Total Environ., 780, 146494.

[4]

Borrelli, P, Robinson, D. A., Fleischer, L. R., Lugato, E, Ballabio, C, Alewell, C, Meusburger, K, Modugno, S, Schutt, B, Ferro, V, Bagarello, V, Van Oost, K, Montanarella, L, Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun., 8,

[5]

Bradford, J. M., Huang, C. H., 1994. Interrill soil erosion as affected by tillage and residue cover. Soil. Tillage Res., 31(4), 353-361.

[6]

Brown, L. R., 1981. World-population growth, soil-erosion, and food security. Science 214(4524), 995-1002.

[7]

Bryan, B. A., Gao, L, Ye, Y, Sun, X, Hou, X., 2018. China's response to a national land-system sustainability emergency. Nature 559, 193-204.

[8]

Cai, L. Q., Qi, P, Zhang, R. Z., 2008. Effects of conservation tillage on soil aggregate stability and soil organic carbon in two sequence rotation system with spring wheat and field pea. J. Soil Water Conserv., 22(2), 141-145.

[9]

Cecchin, A, Pourhashem, G, Gesch, R. W., Lenssen, A. W., Mohammed, Y. A., Patel, S, Berti, M. T., 2021. Environmental trade-offs of relay-cropping winter cover crops with soybean in a maize-soybean cropping system. Agric. Syst., 189, 103062.

[10]

Chakraborti, R, Davis, K. F., DeFries, R, Rao, N. D., Joseph, J, Ghosh, S., 2023. Crop switching for water sustainability in India's food bowl yields co-benefits for food security and farmers’ profits. Nat. Water 1, 864-878.

[11]

Cui, K, Shoemaker, S. P., 2018. A look at food security in China. npj Sci. Food 2(1), 4.

[12]

Cui, Z. L., Zhang, H. Y., Chen, X. P., Zhang, C. C., Ma, W. Q., Huang, C. D., Zhang, W. F., Mi, G. H., Miao, Y. X., Li, X. L., Gao, Q, Yang, J. C., Wang, Z. H., Ye, Y. L., Guo, S. W., Lu, J. W., Huang, J. L., Lv, S. H., Sun, Y. X., Liu, Y. Y., Peng, X. L., Ren, J, Li, S. Q., Deng, X. P., Shi, X. J., Zhang, Q, Yang, Z. P., Tang, L, Wei, C. Z., Jia, L. L., Zhang, J. W., He, M. R., Tong, Y. A., Tang, Q. Y., Zhong, X. H., Liu, Z. H., Cao, N, Kou, C. L., Ying, H, Yin, Y. L., Jiao, X. Q., Zhang, Q. S., Fan, M. S., Jiang, R. F., Zhang, F. S., Dou, Z. X., 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363-366.

[13]

Derpsch, R, Friedrich, T, Kassam, A, Hongwen, L., 2014. Why do we need to standardize no-tillage research?. Soil. Tillage Res., 137, 16-22.

[14]

Fan, P. F., Mishra, A. K., Feng, S. Y., Su, M, Hirsch, S., 2023. The impact of China’s new agricultural subsidy policy on grain crop acreage. Food Policy 118, 102472.

[15]

FA, O.Conservation Agriculture.Food and, Agriculture, Organization of the, Unitedations, N, Rome. https://www.fao.org/conservation-agriculture/case-studies/china/en/.

[16]

Foley, J. A., Ramankutty, N, Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M, Mueller, N. D., O'Connell, C, Ray, D. K., West, P. C., Balzer, C, Bennett, E. M., Carpenter, S. R., Hill, J, Monfreda, C, Polasky, S, Rockstrom, J, Sheehan, J, Siebert, S, Tilman, D, Zaks, D. P. M., 2011. Solutions for a cultivated planet. Nature 478, 337-342.

[17]

Gong, P, Wang, J, Yu, L, Zhao, Y. C., Zhao, Y. Y., Liang, L, Niu, Z. G., Huang, X. M., Fu, H. H., Liu, S, Li, C. C., Li, X. Y., Liu, C. X., Xu, Y, Wang, X. Y., Cheng, Q, Hu, L. Y., Yao, W. B., Zhang, H, Zhu, P, Zhao, Z. Y., Zhang, H. Y., Zheng, Y. M., Ji, L. Y., Zhang, Y. W., Chen, H, Yan, A, Guo, J. H., Yu, L, Wang, L, Liu, X. J., Shi, T. T., Zhu, M. H., Chen, Y. L., Yang, G. W., Tang, P, Xu, B, Giri, C, Clinton, N, Zhu, Z. L., Chen, J, Chen, J., 2013. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens., 34(7), 2607-2654.

[18]

Govaerts, B, Fuentes, M, Mezzalama, M, Nicol, J. M., Deckers, J, Etchevers, J. D., Figueroa-Sandoval, B, Sayre, K. D., 2007. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil. Tillage Res., 94(1), 209-219.

[19]

Guo, Q. K., Liu, B. Y., Xie, Y, Liu, Y. N., Yin, S. Q., 2015. Estimation of USLE crop and management factor values for crop rotation systems in China. J. Integr. Agric., 14(9), 1877-1888.

[20]

Han, T. T., Lu, H. F., Lu, Y. H., Zhu, Y. P., Fu, B. J., 2023. Crop switching could be a win-win solution for improving both the productivity and sustainability in a typical dryland farming region-Loess Plateau, China. J. Clean. Prod., 384, 135456.

[21]

Jacobs, A. A., Evans, R. S., Allison, J. K., Garner, E. R., Kingery, W. L., Mcculley, R. L., 2022. Cover crops and no-tillage reduce crop production costs and soil loss, compensating for lack of short-term soil quality improvement in a maize and soybean production system. Soil. Tillage Res., 218, 105310.

[22]

Kessavalou, A, Walters, D. T., 1997. Winter rye as a cover crop following soybean under conservation tillage. Agron. J., 89(1), 68-74.

[23]

Kuhwald, M, Busche, F, Saggau, P, Duttmann, R., 2022. Is soil loss due to crop harvesting the most disregarded soil erosion process? A review of harvest erosion. Soil. Tillage Res., 215, 105213.

[24]

Lal, R, Griffin, M, Apt, J, Lave, L, Morgan, M. G., 2015. Managing soil carbon. Science 304(5669), 393-394.

[25]

Li, K. K., Yang, J. Y., Wang, J. Y., Wang, Z, Zeng, Y, Borrelli, P, Hubacek, K, Hu, Y. C., Xu, B. D., Fang, N. F., Zeng, C, Zhou, Z. H., Shi, Z. H. 2024a. Human-altered soil loss dominates nearly half of water erosion in China but surges in agriculture-intensive areas. One Earth, 7 (11) (2024), pp. 2008-2018. doi: 10.1016/j.oneear.2024.09.001.

[26]

Li, K. K., Zhou, Z. H., Wang, Z., 2024. Analyzing the socio-economic spatial factors driving soil erosion in China based on multi-scale geographically weighted regression model. J. Huazhong Agric. Univ., 43(6), 29-38.

[27]

Liang, Z. R., Sun, L. X., Tian, Z, Fischer, G, Yan, H. M., 2023. Increase in grain production potential of China under climate change. PNAS Nexus 2(3), pgad057.

[28]

Liu, B. Y., Xie, Y, Li, Z. G., Liang, Y, Zhang, W. B., Fu, S. H., Yin, S. Q., Wei, X, Zhang, K. L., Wang, Z. Q., Liu, Y. N., Zhao, Y, Guo, Q. K., 2020. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res., 8(4), 430-439.

[29]

Liu, X. Y., Xin, L. J., Lu, Y. H., 2021. National scale assessment of the soil erosion and conservation function of terraces in China. Ecol. Indic., 129, 107940.

[30]

Liu, Z. T., Ying, H, Chen, M. Y., Bai, J, Xue, Y. F., Yin, Y. L., Batchelor, W. D., Yang, Y, Bai, Z. H., Du, M. X., Guo, Y. X., Zhang, Q. S., Cui, Z. L., Zhang, F. S., Dou, Z. X., 2021. Optimization of China's maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food 2, 426-433.

[31]

Loades, K. W., Bengough, A. G., Bransby, M. F., Hallett, P. D., 2010. Planting density influence on fibrous root reinforcement of soils. Ecol. Eng., 36(3), 276-284.

[32]

Long, T. W., Leipe, C, Jin, G. Y., Wagner, M, Guo, R. Z., Schröder, O, Tarasov, P. E., 2018. The early history of wheat in China from 14C dating and Bayesian chronological modelling. Nat. Plants 4, 272-279.

[33]

Maclean, J. L., Dawe, D. C., Hardy, B, Hettel, G. P., 2002. Rice Almanac: Source Book for the Most Important Economic Activity on Earth. CABI Publishing, Oxfordshire, UK

[34]

Marco, L, Fürst, C, Thiel, E., 2013. A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example. J. Environ. Manage., 127, S37-S47.

[35]

Mialyk, O, Schyns, J. F., Booij, M. J., Su, H, Hogeboom, R. J., Berger, M., 2024. Water footprints and crop water use of 175 individual crops for 1990–2019 simulated with a global crop model. Sci. Data 11, 206.

[36]

Montgomery, D. R., 2007. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. U.S.A., 104, 13268-13272.

[37]

Morgan, R. P. C., 2005. Soil Erosion and Conservation. (3rd ed.), Blackwell Publishing, Oxford, UK

[38]

Olsson, L, Cotrufo, F, Crews, T, Franklin, J, King, A, Mirzabaev, A, Scown, M, Tengberg, A, Villarino, S, Wang, Y. F., 2023. The state of the world's arable land. Annu. Rev. Environ. Resour., 48, 451-475.

[39]

Panagos, P, Borrelli, P, Meusburger, K, Alewell, C, Lugato, E, Montanarella, L., 2015. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48, 38-50.

[40]

Phinzi, K, Ngetar, N. S., 2019. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: a review. Int. Soil Water Conserv. Res., 7(1), 27-46.

[41]

Renard, K. G., Foster, G. R., Weesies, G. A., Porter, J. P., 1991. RUSLE: revised universal soil loss equation. J. Soil Water Conserv., 46(1), 30-33.

[42]

Rising, J, Devineni, N., 2020. Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nat. Commun., 11, 4991.

[43]

Hu, R. F., Meng, E. C. H., Zhang, S. H., Shi, X. H., 2003. Prioritization for maize research and development in China. Sci. Agric. Sin., 37(6), 781-787.

[44]

Siddoway, F. H., Barnett, A. P., 1976. Water and wind erosion control aspects of multiple cropping. Mult. Cropp., 27, 317-335.

[45]

Song, X. Z., Peng, C. H., Zhou, G. M., Hong, J, Wang, W. F., 2014. Chinese Grain for Green Program led to highly increased soil organic carbon levels: a meta-analysis. Sci. Rep., 4, 4460.

[46]

Thierfelder, C, Cheesman, S, Rusinamhodzi, L., 2013. Benefits and challenges of crop rotations in maize-based conservation agriculture (CA) cropping systems of southern Africa. Int. J. Agric. Sustain., 11(2), 108-124.

[47]

Vallebona, C, Mantino, A, Bonari, E., 2016. Exploring the potential of perennial crops in reducing soil erosion: a GIS-based scenario analysis in southern Tuscany, Italy. Appl. Geogr., 66, 119-131.

[48]

Vogel, E, Deumlich, D, Kaupenjohann, M., 2016. Bioenergy maize and soil erosion — risk assessment and erosion control concepts. Geoderma 261, 80-92.

[49]

Wang, S. S., Sun, B. Y., Liu, C. D., Li, Z. B., Ma, B., 2018. Runoff and soil erosion on slope cropland: a review. J. Resour. Ecol., 9(5), 461-470.

[50]

Wang, W, Zhuo, L, Ji, X. X., Yue, Z. W., Li, Z. B., Li, M, Zhang, H. M., Gao, R, Yan, C. J., Zhang, P, Wu, P. T., 2023. A gridded dataset of consumptive water footprints, evaporation, transpiration, and associated benchmarks related to crop production in China during 2000–2018. Earth Syst. Sci. Data 15(11), 4803-4827.

[51]

Wang, Z. H., Yin, Y. L., Wang, Y. C., Tian, X. S., Ying, H, Zhang, Q. S., Xue, Y. F., Oenema, O, Li, S. L., Zhou, F, Du, M. X., Ma, L, Batchelor, W. D., Zhang, F. S., Cui, Z. L., 2022. Integrating crop redistribution and improved management towards meeting China's food demand with lower environmental costs. Nat. Food 3, 1031-1039.

[52]

Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. agricultural handbook. No.537. The United States Department of Agriculture (USDA), Washington, D.C.

[53]

Xiao, L. J., Wang, G. C., Wang, E. L., Liu, S. L., Chang, J. F., Zhang, P, Zhou, H. X., Wei, Y. C., Zhang, H. Y., Zhu, Y, Shi, Z, Luo, Z. K., 2024. Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production. Nat. Food 5, 59-71.

[54]

Xie, W, Zhu, A. F., Ali, T, Zhang, Z. T., Chen, X. G., Wu, F, Huang, J. K., Davis, K. F., 2023. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature 616, 300-305.

[55]

Xiong, M. Q., Sun, R. H., Chen, L. D., 2018. Effects of soil conservation techniques on water erosion control: a global analysis. Sci. Total Environ., 645, 753-760.

[56]

Xiong, M. Q., Sun, R. H., Chen, L. D., 2019. Global analysis of support practices in USLE-based soil erosion modeling. Prog. Phys. Geogr., 43(3), 391-409.

[57]

Yan, H, Wang, L, Wang, T. W., Wang, Z, Shi, Z. H., 2020. A synthesized approach for estimating the C-factor of RUSLE for a mixed-landscape watershed: a case study in the Gongshui watershed, southern China. Agric. Ecosyst. Environ., 301, 107009.

[58]

Yang, X. L., Xiong, J. R., Du, T. S., Ju, X. T., Gan, Y. T., Li, S, Xia, L. L., Shen, Y. J., Pacenka, S, Steenhuis, T. S., Siddique, K. H. M., Kang, S. Z., Butterbach-Bahl, K., 2024. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun., 15, 198.

[59]

Yin, X, Song, Z, Shi, S, Bai, Z, Jiang, Y, Zheng, A, Huang, W, Chen, N, Chen, F., 2024. Developments and prospects of multiple cropping in China. Farming Syst., 2(2), 100083.

[60]

Yue, T. Y., Yin, S. Q., Xie, Y, Yu, B. F., Liu, B. Y., 2022. Rainfall erosivity mapping over mainland China based on high-density hourly rainfall records. Earth Syst. Sci. Data 14(2), 665-682.

[61]

Zhang, C. Z., Gu, B. J., Liang, X, Lam, S. K., Zhou, Y, Chen, D. L., 2024. The role of nitrogen management in achieving global sustainable development goals. Resour. Conserv. Recycl., 201, 107304.

[62]

Zhou, X, Liao, Y. L., Lu, Y. H., Rees, R. M., Cao, W. D., Nie, J, Li, M., 2020. Management of rice straw with relay cropping of Chinese milk vetch improved double-rice cropping system production in southern China. J. Integr. Agric., 19(8), 2103-2115.

PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

/