The spatio-temporal distribution of snowmelt floods and disaster risk assessment in the Northwest China

Xi Zhang , Min Xu , Shichang Kang , Haidong Han , Hao Wu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100261

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100261 DOI: 10.1016/j.geosus.2024.100261
Research Article
review-article

The spatio-temporal distribution of snowmelt floods and disaster risk assessment in the Northwest China

Author information +
History +
PDF

Abstract

Snowmelt runoff is an important component of water resources in the Northwest China (NWC). With global climate warming and the increasing frequency of extreme events, snowmelt floods have caused significant damage. However, current studies lack comprehensive research and systematic risk assessments of snowmelt floods across the NWC. Based on the snowmelt runoff simulated by GLDAS-NOAH model (1948–2022), the multiple indicators of snowmelt floods were retrieved by Peaks Over Threshold (POT) model in the NWC, and comprehensive risk assessment was conducted by integrating socio-economic data. The results indicated that the snowmelt runoff in the NWC shows a significant increasing trend and exhibits a spatial pattern of being more abundant in the northwest and southwest edges while less in the central and eastern regions. In Northern Xinjiang, snowmelt floods occurred relatively infrequently but with large magnitudes, while around the Qilian Mountains, snowmelt floods were more frequent but of smaller magnitudes. The longest duration of snowmelt floods was observed in the Kashgar and Yarkant River. Basins near mountainous areas are prone to snowmelt floods, especially the Tongtian and Lancang River basins, as well as the Ebinur Lake, Ili River basin, and the rivers south of the Altai Mountains, which face the highest risk of snowmelt floods. Based on comprehensive assessment of hazard, exposure, vulnerability and adaptability, high and very high-risk areas account for 15.5 % of the NWC. It is urgent to enhance monitoring, early warning systems, and implement corresponding disaster prevention and mitigation measures in large mountainous basins.

Keywords

Snowmelt flood / Risk assessment models / Climate change / Hydrological simulations / Spatiotemporal distribution / Extreme events

Cite this article

Download citation ▾
Xi Zhang, Min Xu, Shichang Kang, Haidong Han, Hao Wu. The spatio-temporal distribution of snowmelt floods and disaster risk assessment in the Northwest China. Geography and Sustainability, 2025, 6(3): 100261 DOI:10.1016/j.geosus.2024.100261

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xi Zhang: Conceptualization, Methodology, Formal analysis, Investigation, Visualization, Writing – original draft. Min Xu: Conceptualization, Methodology, Resources, Formal analysis, Supervision, Writing – review & editing. Shichang Kang: Funding acquisition, Supervision, Writing – review & editing. Haidong Han: Funding acquisition, Writing – review & editing. Hao Wu: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by China-Pakistan joint program of the Chinese Academy of Sciences (Grant No. 046GJHZ2023069MI), National Natural Science Foundation of China (Grant No. 42371145), and the program of the Key Laboratory of Cryospheric Science and Frozen Soil Engineering, CAS (Grant No. CSFSE-ZZ-2402).

Data Availability

Data will be made available on request.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.100261.

References

[1]

Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B, Michel-Kerjan, E, Mysiak, J, Surminski, S, Kunreuther, H., 2018. Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Change, 8 (3) , pp. 193-199. doi: 10.1038/s41558-018-0085-1.

[2]

Chen, R, Shen, Y, Mao, W, Zhang, S, Lv, H, Liu, Y, Liu, Z, Fang, S, Zhang, W, Chen, C., 2021. Progress and issues on key technologies in forecasting of snowmelt flood disaster in arid areas, Northwest China. Adv. Earth Sci., 36 (3) , pp. 233-244. doi: 10.11867/j.issn.1001-8166.2021.025.

[3]

Council, U. S. W. R., 1981. Guidelines for determining flood flow frequency. Bulletin 17, 15-19.

[4]

Cui, M, Zhou, G, Zhang, D, Zhang, S., 2022. Global snowmelt flood disasters and their impact from 1900 to 2020. J. Glaciol. Geocryol., 44(6), 1898-1911.

[5]

Fang, G, Li, Z, Yang, J, Chen, Y, Duan, W, Amory, C, Wang, Y., 2022. Changes in flooding in the alpine catchments of the Tarim River Basin, Central Asia. J. Flood Risk Manage., 16 (1) , p. e12869. doi: 10.1111/jfr3.12869.

[6]

Feng, Q, Bai, G, Li, Z, Wang, B, Chen, L, Wang, P, Yu, T, Meng, H, Liu, W, Lu, Z, Ning, T, Zhang, C, Zhu, M., 2022. Accelerate construction of new pattern of ecological protection in northwest China. Bull. Chin. Acad. Sci. (Chin. Ver.), 37 (10) , pp. 1457-1470. doi: 10.16418/j.issn.1000-3045.20220616002.

[7]

Feyen, L, Dankers, R., 2009. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos., 114 (D17) , p. D17116. doi: 10.1029/2008JD011438.

[8]

Hagos, Y. G., Andualem, T. G., Yibeltal, M, Mengie, M. A., 2022. Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Appl. Water Sci., 12 (7) , p. 148. doi: 10.1007/s13201-022-01674-8.

[9]

He, C, Wang, X, Chen, F, Tang, H, Long, A., 2023. Risk analysis of snowmelt flood under different combination of flood peaks and flood volumes in Manas River. Adv. Sci. Technol. Water Resour., 43 (1) , pp. 15-21. doi: 10.3880/j.issn.10067647.2023.01.003.

[10]

Hou, L, Pu, X, Li, Z, Zhang, X, Zhang, S., 2022. Spatial and temporal characteristics of snowfall and snowmelt in Northwest China from 1980 to 2019. Geogr. Res., 41 (3) , pp. 880-902. doi: 10.11821/dlyj020201224.

[11]

Hou, Z, Xu, M, Kang, S, Han, H, Wang, P, Li, Z, Zhang, X., 2023. Separation and variation of precipitation forms in Northwest China. Trans. Chin. Soc. Agric. Eng., 39 (8) , pp. 120-132. doi: 10.11975/j.issn.1002-6819.202302008.

[12]

Hu, L, Zhang, Q, Wang, G, Singh, V. P., Wu, W, Fan, K, Shen, Z., 2022. Flood disaster risk and socioeconomy in the Yellow River Basin, China. J. Hydrol. Reg. Stud., 44 , Article 101272. doi: 10.1016/j.ejrh.2022.101272.

[13]

Huang, S., 1999. Study on Theory and Method of Flood Disaster Risk Analysis. Ph.D. thesis, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing

[14]

International Federation of Red Cross and Red Crescent Societies (IFRC) 2021, National Disaster Reduction Centre of China, Academy of Disaster Reduction and Emergency Management. 2020 Global Natural Disaster Assessment Report-EN.

[15]

Insang, Y., 2022. Development and application of a model for assessing climate-related disaster risk. Int. J. Disaster Risk Reduct., 81 , Article 103218. doi: 10.1016/j.ijdrr.2022.103218.

[16]

Ji, W, Wang, Y, Yang, B, Zhang, J, Gu, P, Gao, X., 2022. Overview of geology, resources, environment and social economy in Northwest China. Northwest Geol., 55(3), 15-27.

[17]

Jiang, J, Cai, M, Xu, Y, Fang, G, Li, Z., 2021. Evolution trend of flood in the Aksu River basin, Xinjiang. J. Glaciol. Geocryol., 43 (4) , pp. 1200-1209. doi: 10.7522/j.issn.1000-0240.2021.0096.

[18]

Kazakis, N., Kougias, I., Patsialis, T., 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in Rhodope–Evros region, Greece. Sci. Total Environ. 538, 555–563. doi: 10.1016/j.scitotenv.2015.08.055.

[19]

Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T, Immerzeel, W. W., 2021. Climate change decisive for Asia's snow meltwater supply. Nat. Clim. Change, 11 (7) , pp. 591-597. doi: 10.1038/s41558-021-01074-x.

[20]

Kundzewicz, Z. W., Su, B, Wang, Y, Xia, J, Huang, J, Jiang, T., 2019. Flood risk and its reduction in China. Adv. Water Resour., 130 , pp. 37-45. doi: 10.1016/j.advwatres.2019.05.020.

[21]

Li, B, Chen, Y, Chen, Z, Li, W, Zhang, B., 2013. Variations of temperature and precipitation of snowmelt period and its effect on runoff in the mountainous areas of Northwest China. J. Geogr. Sci., 23 (1) , pp. 17-30. doi: 10.1007/s11442-013-0990-1.

[22]

Li, J, Liu, S, Zhang, S, Chen, R, Zhao, Q, Guo, W, Shangguan, D, Wang, R, Zhong, X, Yin, Z, Li, H., 2022. Review on snowmelt runoff simulation in mountain regions, Northwest China. J. Glaciol. Geocryol., 44 (3) , pp. 1029-1040. doi: 10.7522/j.issn.1000-0240.2022.0096.

[23]

Li, Z, Li, Z, Feng, Q, Wang, X, Mu, Y, Xin, H, Song, L, Gui, J, Zhang, B, Gao, W., 2021. Hydrological effects of multiphase water transformation in Three-River Headwaters Region, China. J. Hydrol., 601 , Article 126662. doi: 10.1016/j.jhydrol.2021.126662.

[24]

Loukas, A., Vasiliades, L., Dalezios, N., 2000. Flood producing mechanisms identification in southern British Columbia, Canada. J. Hydrol. 227 (1–4), 218–235. doi: 10.1016/S0022-1694(99)00182-1.

[25]

Lv, A, Jia, S, Yan, H, Yang, G., 2009. Temporal variations and trend analysis of the snowmelt runoff timing across the source regions of the Yangtze River, Yellow River and Lancang River. Resour. Sci., 31(10), 1704-1709.

[26]

Musselman, K. N., Lehner, F, Ikeda, K, Clark, M. P., Prein, A. F., Liu, C, Barlage, M, Rasmussen, R., 2018. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change, 8 (9) , pp. 808-812. doi: 10.1038/s41558-018-0236-4.

[27]

Department of Rural Socio-Economic Surveys National Bureau of Statistics of China 2022. China County Statistical Yearbook (County and City Volume, Township Volume) - 2021. China Statistics Press, Beijing

[28]

Niyazihainimu, X, Ma, Q, Bao, A, Saimire, W, Jiang, Z., 2024. Ecological vulnerability evaluation and driving force analysis of Ebinur Lake based on Geodetector. J. Hydroecol., 45 (6) , pp. 18-27. doi: 10.15928/j.1674-3075.202207290292.

[29]

Qin, D., 2021. Overview of Climate Change Sciences. Science Press, Beijing

[30]

Qin, Y, Abatzoglou, J. T., Siebert, S, Huning, L. S., AghaKouchak, A, Mankin, J. S., Hong, C, Tong, D, Davis, S. J., Mueller, N. D., 2020. Agricultural risks from changing snowmelt. Nat. Clim. Change, 10 (5) , pp. 459-465. doi: 10.1038/s41558-020-0746-8.

[31]

United Nations Office for Disaster Risk Reduction 2022. Global Assessment Report on Disaster Risk Reduction 2022: Our World at Risk: Transforming Governance for a Resilient Future. United Nations Office for Disaster Risk Reduction, Geneva

[32]

Rentschler, J, Salhab, M, Jafino, B. A., 2022. Flood exposure and poverty in 188 countries. Nat. Commun., 13 (1) , p. 3527. doi: 10.1038/s41467-022-30727-4.

[33]

Rodell, M, Houser, P. R., Jambor, U, Gottschalck, J, Mitchell, K, Meng, C. J., Arsenault, K, Cosgrove, B, Radakovich, J, Bosilovich, M, Entin, J. K., Walker, J. P., Lohmann, D, Toll, D., 2004. The global land data assimilation system. Bull. Am. Meteorol. Soc., 85 (3) , pp. 381-394. doi: 10.1175/bams-85-3-381.

[34]

Saaty, T. L. 1990a. An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process”. Manag. Sci., 36 (3) (1990), pp. 259-268. doi: 10.1287/mnsc.36.3.259.

[35]

Saaty, T. L. 1990b. How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res., 48 (1) (1990), pp. 9-26. doi: 10.1016/0377-2217(90)90057-I.

[36]

Shao, B, Chen, X., 2005. Research on the actuality of the coordinated development of economy and ecological environment in northwest China. Arid Land Geogr., 28 (1) , pp. 136-141. doi: 10.13826/j.cnki.cn65-1103/x.2005.01.025.

[37]

Shariati, M, Kazemi, M, Naderi Samani, R, Kaviani Rad, A, Kazemi Garajeh, M, Kariminejad, N., 2023. An integrated geospatial and statistical approach for flood hazard assessment. Environ. Earth Sci., 82 (16) , p. 384. doi: 10.1007/s12665-023-11077-w.

[38]

Shen, Y, Fink, M, Kralisch, S, Chen, Y, Brenning, A., 2018. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains. J. Hydrol., 557 , pp. 173-181. doi: 10.1016/j.jhydrol.2017.12.035.

[39]

Shen, Y, Su, H, Wang, G, Mao, W, Wang, S, Han, P, Wang, N, Li, Z., 2013. The responses of glaciers and snow cover to climate change in Xinjiang (Ⅱ): hazards effects. J. Glaciol. Geocryol., 35 (6) , pp. 1355-1370. doi: 10.7522/j.issn.10000240.2013.015.

[40]

Sun, C., Wei, Y., Zhao, L., 2022. Co-evolution of water-energy-food nexus in arid areas: take Northwest China as an example. J. Nat. Resour. 37 (2), 320–333. doi: 10.31497/zrzyxb.20220204 , (in Chinese).

[41]

Sun, F, Chen, Y, Li, Y, Duan, W, Li, B, Fang, G, Li, Z. 2023a. Evaluation of multiple gridded snowfall datasets using gauge observations over high mountain Asia. J. Hydrol., 626, 130346. doi: 10.1016/j.jhydrol.2023.130346.

[42]

Sun, S, Shi, C, Liang, X, Zhang, S, Gu, J, Han, S, Jiang, H, Xu, B, Yu, Q, Liang, Y. 2023b. The evaluation of snow depth simulated by different land surface models in China based on station observations. Sustainability, 15 (14), p. 11284. doi: 10.3390/su151411284.

[43]

Sun, Z, Zhu, X, Pan, Y, Liu, X., 2017. Flood risk analysis: progress, challenges and prospect. J. Catastrophol., 32 (3) , pp. 125-130. doi: 10.3969/j.issn.1000-811X.2017.03.022.

[44]

Tang, Y., 2008. Experimenting and Modelling on the Snowmelt Hydrological Process in Gurbantonggute desert of Xinjiang. Shihezi University, Shihezi, China

[45]

Vormoor, K, Lawrence, D, Schlichting, L, Wilson, D, Wong, W. K., 2016. Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. J. Hydrol., 538 , pp. 33-48. doi: 10.1016/j.jhydrol.2016.03.066.

[46]

Wang, J, Li, S., 2006. Effect of climatic change on snowmelt runoffs in mountainous regions of inland rivers in Northwestern China. Sci. China D Earth Sci., 49 (8) , pp. 881-888. doi: 10.1007/s11430-006-0881-8.

[47]

Wang, P, Xu, M, Han, H, Li, Z, Song, X, Zhou, W., 2024. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan. Earth Sci. Front., 31 (2) , pp. 435-446. doi: 10.13745/j.esf.sf.2023.2.50.

[48]

Wang, S, Zhou, L, Wei, Y., 2019. 10 (1) , pp. 740-757. doi: 10.1080/19475705.2018.1543211.

[49]

Welty, J, Zeng, X., 2021. Characteristics and causes of extreme snowmelt over the conterminous United States. Bull. Am. Meteorol. Soc., 102 (8) , pp. E1526-E1542. doi: 10.1175/BAMS-D-20-0182.1.

[50]

Xu, X., 2017a. Kilometer grid dataset of China’s GDP spatial distribution, Resource and Environment Science Data Center Data Registration and Publishing System. Chinese Academy of Sciences. doi: 10.12078/2017121102 . http://www.resdc.cn/DOI/10.12078/2017121102 . 2017 [Dataset].

[51]

Xu, X., 2017b. Kilometer grid dataset of China’s population spatial distribution, Resource and Environment Science Data Center Data Registration and Publishing System. Chinese Academy of Sciences. doi: 10.12078/2017121101 . http://www.resdc.cn/DOI/10.12078/2017121102 . 2017 [Dataset].

[52]

Xu, X, Liu, J, Zhang, S, Li, R, Yan, C, Wu, S., 2018. China’s National Land Use and Cover Change (CNLUCC), resource and environment science data center data registration and publishing system. Chinese Academy of Sciences. . doi: 10.12078/2018070201.

[53]

Xu, X, Liu, L., 2017. China farmland production potential dataset, resource and environment science data center data registration and publishing system. Chinese Academy of Sciences. . doi: 10.12078/2017122301.

[54]

Yang, Y, Chen, R, Liu, G, Liu, Z, Wang, X., 2022. Trends and variability in snowmelt in China under climate change. Hydrol. Earth Syst. Sci., 26(2), 305-329.

[55]

Yu, J, Zou, L, Xia, J, Zhang, Y, Zuo, L, Li, X., 2023. Investigating the spatial–temporal changes of flood events across the Yangtze River Basin, China: identification, spatial heterogeneity, and dominant impact factors. J. Hydrol., 621 , Article 129503. doi: 10.1016/j.jhydrol.2023.129503.

[56]

Zhang, J, Luo, J, Wang, R., 2021. 38 (2) , pp. 339-350. doi: 10.13866/j.azr.2021.02.05.

[57]

Zhang, J, Xu, W, Wang, L, Zhou, H., 2018. Dynamic snow melting process and its relationship with air temperature in the hinterland of Sanjiangyuan Region in Qinghai-Tibetan Plateau. Plateau Meteorol., 37 (4) , pp. 936-945. doi: 10.7522/j.issn.1000-0534.2018.00001.

[58]

Zhang, X, Xu, M, Kang, S, Wu, H, Han, H., 2023. The spatiotemporal variability in precipitation gradients based on meteorological station observations in mountainous areas of Northwest China. Theor. Appl. Climatol., 155 (1) , pp. 163-186. doi: 10.1007/s00704-023-04618-7.

[59]

Zhou, G, Cui, M, Li, Z, Zhang, S., 2021. Dynamic evaluation of the risk of the spring snowmelt flood in Xinjiang. Arid Zone Res., 38 (4) , p. 950. doi: 10.13866/j.azr.2021.04.06.

[60]

Zhu, G, Xiao, C, Chen, B, Zhao, Y., 2020. Spring snowmelt flood estimate in the upper Heihe River under climate change. Clim. Change Res., 16 (6) , pp. 667-678. doi: 10.12006/j.issn.1673-1719.2020.006.

PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

/