Enhancing agricultural sustainability: Optimizing crop planting structures and spatial layouts within the water-land-energy-economy-environment-food nexus

Haowei Wu , Zhihui Li , Xiangzheng Deng , Zhe Zhao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100258

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100258 DOI: 10.1016/j.geosus.2024.100258
Research Article
review-article

Enhancing agricultural sustainability: Optimizing crop planting structures and spatial layouts within the water-land-energy-economy-environment-food nexus

Author information +
History +
PDF

Abstract

In the new phase of sustainable development, agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus. At present, there are few studies on optimizing crop planting structure and analyzing its spatial layout with consideration of natural and socio-economic factors. Herein, we proposed a framework for addressing this issue. In this framework, the NSGA-II algorithm was used to construct the multi-objective optimization model of crop planting structures with consideration of water and energy consumption, greenhouse gas (GHG) emissions, economic benefits, as well as food, land, and water security constraints, while the model for planting spatial layout optimization was established with consideration of crop suitability using the MaxEnt model and the improved Hungarian algorithm. This framework was further applied in the Black Soil Region of Northeast China (BSRNC) for analyzing optimized crop planting structures and spatial layouts of three main crops (rice, maize, and soybean) under various scenarios. This study showed that the sown area of rice in the BSRNC decreased by up to 40.73 % and 35.30 % in the environmental priority scenario and economic-environmental balance scenario, respectively, whereas that of soybean increased by up to 112.44 % and 63.31 %, respectively. In the economic priority scenario, the sown area of rice increased by up to 93.98 %. Expanding the sown area of soybean was effective in reducing GHG emissions. On the contrary, rice production led to greater environmental costs though it provided higher economic returns. Among the three crops, maize exhibited an advantage in balancing environmental and economic benefits. Hegang-Jixi area in the northeast of the BSRNC was identified as the key area with the most intense crop planting transfer among different scenarios. Overall, this framework provides a new methodology for optimizing crop planting structures and spatial layouts with consideration of the nexus of various factors. Moreover, the case study demonstrates the applicability and expansion potential of the framework in the fields of sustainable agricultural development and food security assurance.

Keywords

Planting structure optimization / Crop spatial layout / Multi-objective genetic algorithm / Food security / Agricultural sustainability / Water-land-energy-economy-environment-food nexus

Cite this article

Download citation ▾
Haowei Wu, Zhihui Li, Xiangzheng Deng, Zhe Zhao. Enhancing agricultural sustainability: Optimizing crop planting structures and spatial layouts within the water-land-energy-economy-environment-food nexus. Geography and Sustainability, 2025, 6(3): 100258 DOI:10.1016/j.geosus.2024.100258

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Haowei Wu: Writing – original draft, Visualization, Validation, Software, Methodology. Zhihui Li: Writing – review & editing, Supervision, Methodology, Conceptualization. Xiangzheng Deng: Writing – review & editing, Investigation. Zhe Zhao: Writing – review & editing, Supervision.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 72221002), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA28060200) and National Natural Science Foundation of Youth Project (Grant No. 72303087).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.100258.

References

[1]

Allee, A, Lynd, L. R., Vaze, V., 2021. Cross-national analysis of food security drivers: comparing results based on the food insecurity experience scale and global food security index. Food Secur., 13 , pp. 1245-1261. doi: 10.1007/s12571-021-01156-w.

[2]

Alvarez, P. A., Ishizaka, A, Martínez, L., 2021. Multiple-criteria decision-making sorting methods: a survey. Expert Syst. Appl., 183 , Article 115368. doi: 10.1016/j.eswa.2021.115368.

[3]

Ben Hassen, T, El Bilali, H., 2022. Impacts of the Russia-Ukraine war on global food security: towards more sustainable and resilient food systems?. Foods, 11 , p. 2301. doi: 10.3390/foods11152301.

[4]

Bladimir, T, Domokos, E., 2023. A review of metaheuristic algorithms for solving TSP-based scheduling optimization problems. Appl. Soft Comput., 148 , Article 110908. doi: 10.1016/j.asoc.2023.110908.

[5]

Bleischwitz, R, Spataru, C, VanDeveer, S. D., Obersteiner, M, van der Voet, E, Johnson, C, Andrews-Speed, P, Boersma, T, Hoff, H, van Vuuren, D. P., 2018. Resource nexus perspectives towards the United Nations sustainable development goals. Nat. Sustain., 1 , pp. 737-743. doi: 10.1038/s41893-018-0173-2.

[6]

Chen, W, Wang, Q, Li, Q, Wang, Y, Zheng, W., 2023. Exploring the impact of rural labor transfer on the production and ecological sustainability of crop planting structure in China. Environ. Sci. Pollut. Res., 30 (9) , pp. 22668-22685. doi: 10.1007/s11356-022-23613-5.

[7]

Chen, X, Cui, Z, Fan, M, Vitousek, P, Zhao, M, Ma, W, Wang, Z, Zhang, W, Yan, X, Yang, J, Deng, X, Gao, Q, Zhang, Q, Guo, S, Ren, J, Li, S, Ye, Y, Wang, Z, Huang, J, Tang, Q, Sun, Y, Peng, X, Zhang, J, He, M, Zhu, Y, Xue, J, Wang, G, Wu, L, An, N, Wu, L, Ma, L, Zhang, W, Zhang, Fusuo., 2014. Producing more grain with lower environmental costs. Nature, 514 , pp. 486-489. doi: 10.1038/nature13609.

[8]

Cheng, K, Yan, M, Nayak, D, Pan, G, Smith, P, Zheng, J. F., Zheng, J. W., 2015. Carbon footprint of crop production in China: an analysis of National Statistics data. J. Agric. Sci., 153 (3) , pp. 422-431. doi: 10.1017/S0021859614000665.

[9]

Chinese, Academy ofciences, S.White Paper.White, Paper on black land in, Northeasthina 2021. Beijing, C, China. (in, Chinese)

[10]

Demski, C, Poortinga, W, Whitmarsh, L, Böhm, G, Fisher, S, Steg, L, Umit, R, Jokinen, P, Pohjolainen, P., 2018. National context is a key determinant of energy security concerns across Europe. Nat. Energy, 3 , pp. 882-888. doi: 10.1038/s41560-018-0235-8.

[11]

Deng, C, Li, R, Xie, B, Wan, Y, Li, Z, Liu, C., 2021. Impacts of the integrated pattern of water and land resources use on agricultural greenhouse gas emissions in China during 2006–2017: a water-land-energy-emissions nexus analysis. J. Clean. Prod., 308 , Article 127221. doi: 10.1016/j.jclepro.2021.127221.

[12]

Deng, N, Grassini, P, Yang, H, Huang, J, Cassman, K. G., Peng, S., 2019. Closing yield gaps for rice self-sufficiency in China. Nat. Commun., 10 (1) , p. 1725. doi: 10.1038/s41467-019-09447-9.

[13]

Dinar, A, Tieu, A, Huynh, H., 2019. 23 , pp. 212-226. doi: 10.1016/j.gfs.2019.07.007.

[14]

Ding, Y, Xu, R, Wang, R, Zhang, S, Ding, H, Liu, W., 2023. Can grain production be synergistic with socioeconomic development? — empirical evidence from the agro-pastoral ecotone in North China. Ecol. Indic., 156 , Article 111191. doi: 10.1016/j.ecolind.2023.111191.

[15]

Duan, J, Ren, C, Wang, S, Zhang, X, Reis, S, Xu, J, Gu, B., 2021. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food, 2 , pp. 1014-1022. doi: 10.1038/s43016-021-00415-5.

[16]

Fan, X, Zhang, W, Chen, W, Chen, B., 2020. Land–water–energy nexus in agricultural management for greenhouse gas mitigation. Appl. Energy, 265 , Article 114796. doi: 10.1016/j.apenergy.2020.114796.

[17]

Feng, B, Zhuo, L, Mekonnen, M. M., Marston, L. T., Yang, X, Xu, Z, Liu, Y, Wang, W, Li, Z, Li, M, Ji, X, Wu, P., 2022. Inputs for staple crop production in China drive burden shifting of water and carbon footprints transgressing part of provincial planetary boundaries. Water Res., 221 , Article 118803. doi: 10.1016/j.watres.2022.118803.

[18]

Feng, M, Chen, Y, Li, Z, Duan, W, Zhu, Z, Liu, Y, Zhou, Y., 2024. Optimisation model for sustainable agricultural development based on water-energy-food nexus and CO2 emissions: a case study in Tarim River basin. Energy Convers. Manag., 303 , Article 118174. doi: 10.1016/j.enconman.2024.118174.

[19]

Flies, E. J., Brook, B. W., Blomqvist, L, Buettel, J. C., 2018. Forecasting future global food demand: a systematic review and meta-analysis of model complexity. Environ. Int., 120 , pp. 93-103. doi: 10.1016/j.envint.2018.07.019.

[20]

Food and Agriculture Organization of the United Nations (FAO), 2012. Food Balance Sheet. The United Nations.

[21]

Galli, F, Prosperi, P, Favilli, E, D'Amico, S, Bartolini, F, Brunori, G., 2020. How can policy processes remove barriers to sustainable food systems in Europe? Contributing to a policy framework for agri-food transitions. Food Policy, 96 , Article 101871. doi: 10.1016/j.foodpol.2020.101871.

[22]

Halpern, B. S., Frazier, M, Verstaen, J, Rayner, P. E., Clawson, G, Blanchard, J. L., Cottrell, R. S., Froehlich, H. E., Gephart, J. A., Jacobsen, N. S., Kuempel, C. D., McIntyre, P. B., Metian, M, Moran, D, Nash, K. L., Többen, J, Williams, D. R., 2022. The environmental footprint of global food production. Nat. Sustain., 5 , pp. 1027-1039. doi: 10.1038/s41893-022-00965-x.

[23]

He, X, Weisser, W, Zou, Y, Fan, S, Crowther, T. W., Wanger, T. C., 2022. Integrating agricultural diversification in China's major policies. Trends Ecol. Evol., 37 , pp. 819-822. doi: 10.1016/j.tree.2022.07.002.

[24]

Hirvonen, K, De Brauw, A, Abate, G. T., 2021. Food consumption and food security during the COVID-19 pandemic in Addis Ababa. J. Agric. Econ., 103 , pp. 772-789. doi: 10.1111/ajae.12206.

[25]

Huang, X, Fang, H, Wu, M, Cao, X., 2022. Assessment of the regional agricultural water-land Nexus in China: a green-blue water perspective. Sci. Total Environ., 804 , Article 150192. doi: 10.1016/j.scitotenv.2021.150192.

[26]

Huntington, H. P., Schmidt, J. I., Loring, P. A., Whitney, E, Aggarwal, S, Byrd, A. G., Dev, S, Dotson, A. D., Huang, D, Johnson, B, Karenzi, J, Penn, H. J. F., Salmon, A, Sambor, D. J., Schnabel, W. E., Wies, R. W., Wilber, M., 2021. Applying the food–energy–water nexus concept at the local scale. Nat. Sustain., 4 , pp. 672-679. doi: 10.1038/s41893-021-00719-1.

[27]

Ibrahim, M. D., Ferreira, D. C., Daneshvar, S, Marques, R. C., 2019. Transnational resource generativity: efficiency analysis and target setting of water, energy, land, and food nexus for OECD countries. Sci. Total Environ., 697 , Article 134017. doi: 10.1016/j.scitotenv.2019.134017.

[28]

Intergovernmental Panel on Climate Change (IPCC), 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Kyoto, Japan.

[29]

Jónsdóttir, S, Gísladóttir, G., 2023. Land use planning, sustainable food production and rural development: a literature analysis. Geogr. Sustain., 4 (4) , pp. 391-403. doi: 10.1016/j.geosus.2023.09.004.

[30]

Karabulut, A. A., Crenna, E, Sala, S, Udias, A., 2018. A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: a synthesis matrix system for food security. J. Clean. Prod., 172 , pp. 3874-3889. doi: 10.1016/j.jclepro.2017.05.092.

[31]

Krishnamurthy, R, Fisher, P. K., Choularton, J. B., Kareiva, R. J., 2022. Anticipating drought-related food security changes. Nat. Sustain., 5 , pp. 956-964. doi: 10.1038/s41893-022-00962-0.

[32]

Kuhn, H. W., 1955. The Hungarian method for the assignment problem. Nav. Res. Logist., 2 (1-2) , pp. 83-97. doi: 10.1002/nav.3800020109.

[33]

Kyalo Willy, D, Muyanga, M, Jayne, T., 2019. 81 , pp. 100-110. doi: 10.1016/j.landusepol.2018.10.046.

[34]

Laborde, D, Mamun, A, Martin, W, Piñeiro, V, Vos, R., 2021. Agricultural subsidies and global greenhouse gas emissions. Nat. Commun., 12 (1) , p. 2601. doi: 10.1038/s41467-021-22703-1.

[35]

Li, M, Fu, Q, Singh, V. P., Ji, Y, Liu, D, Zhang, C, Li, T., 2019. An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty. Sci. Total Environ., 651 , pp. 1416-1434. doi: 10.1016/j.scitotenv.2018.09.291.

[36]

Li, M, Yan, X, Guo, Y, Ji, H., 2021. Impact of risk awareness and agriculture cooperatives’ service on farmers’ safe production behaviour: evidences from Shaanxi Province. J. Clean. Prod., 312 , Article 127724. doi: 10.1016/j.jclepro.2021.127724.

[37]

Li, M, Zhao, L, Zhang, C, Liu, Y, Fu, Q., 2022. Optimization of agricultural resources in water-energy-food nexus in complex environment: a perspective on multienergy coordination. Energy Convers. Manag., 258 , Article 115537. doi: 10.1016/j.enconman.2022.115537.

[38]

Li, Q, Chen, W, Shi, H, Zhang, S., 2024. Assessing the environmental impact of agricultural production structure transformation — evidence from the non-grain production of cropland in China. Environ. Impact Assess. Rev., 106 , Article 107489. doi: 10.1016/j.eiar.2024.107489.

[39]

Liang, D, Lu, X, Zhuang, M, Shi, G, Hu, C, Wang, S, Hao, J., 2021. China's greenhouse gas emissions for cropping systems from 1978–2016. Sci. Data, 8 (1) , p. 171. doi: 10.1038/s41597-021-00960-5.

[40]

Liu, J, Hull, V, Godfray, H. C. J., Tilman, D, Gleick, P, Hoff, H, Pahl-Wostl, C, Xu, Z, Chung, M. G., Sun, J, Li, S., 2018. Nexus approaches to global sustainable development. Nat. Sustain., 1 (9) , pp. 466-476. doi: 10.1038/s41893-018-0135-8.

[41]

Liu, Y, Du, M, Cui, Q, Lin, J, Liu, Y, Liu, Q, Tong, D, Feng, K, Hubacek, K., 2022. Contrasting suitability and ambition in regional carbon mitigation. Nat. Commun., 13 , p. 4077. doi: 10.1038/s41467-022-31729-y.

[42]

Liu, Y, Song, W., 2020. Modelling crop yield, water consumption, and water use efficiency for sustainable agroecosystem management. J. Clean. Prod., 253 , Article 119940. doi: 10.1016/j.jclepro.2019.119940.

[43]

Liu, Y, Zhou, Y., 2021. Reflections on China's food security and land use policy under rapid urbanization. Land Use Policy, 109 , Article 105699. doi: 10.1016/j.landusepol.2021.105699.

[44]

Lissovsky, A. A., Dudov, S. V., 2021. Lissovsky, S.V. Dudov. Species-distribution modeling: advantages and limitations of its application. 2. MaxEnt. Biol. Bull. Rev., 11 (3) , pp. 265-275. doi: 10.1134/S2079086421030087.

[45]

Lou, S., 2024. What determines the investment intention of Chinese farmers in green grain production?. Environ. Dev. Sustain., 26 (5) , pp. 11217-11242. doi: 10.1007/s10668-023-03244-7.

[46]

Lu, S, Liu, Y, Long, H, Guan, X., 2013. Agricultural production structure optimization: a case study of major grain producing areas, China. J. Integr. Agric., 12 (1) , pp. 184-197. doi: 10.1016/S2095-3119(13)60218-X.

[47]

Lubis, R. F., Delinom, R, Martosuparno, S, Bakti, H., 2018. Water-food nexus in Citarum Watershed, Indonesia. IOP Conf. Ser. Earth Environ. Sci., 118 , Article 012023. doi: 10.1088/1755-1315/118/1/012023.

[48]

Ma, L, Long, H, Tang, L, Tu, S, Zhang, Y, Qu, Y, Agriculture, E. I., 2021. Analysis of the spatial variations of determinants of agricultural production efficiency in China. Comput. Electron. Agric., 180 , Article 105890. doi: 10.1016/j.compag.2020.105890.

[49]

Mahlknecht, J, González-Bravo, R, Loge, F. J., 2020. Water-energy-food security: a nexus perspective of the current situation in Latin America and the Caribbean. Energy, 194 , Article 116824. doi: 10.1016/j.energy.2019.116824.

[50]

Mekonnen, M. M., Gerbens-Leenes, W., 2020. The water footprint of global food production. Water, 12 , p. 2696.. doi: 10.3390/w12102696.

[51]

Mialyk, O, Schyns, J. F., Booij, M. J., Booij, M. J., Su, H, Hogeboom, R. J., Berger, M., 2024. Water footprints and crop water use of 175 individual crops for 1990–2019 simulated with a global crop model. Sci. Data, 11 , p. 206. doi: 10.1038/s41597-024-03051-3.

[52]

Molotoks, A, Smith, P, Dawson, T. P., 2021. Impacts of land use, population, and climate change on global food security. Food Energy Secur., 10 , p. e261. doi: 10.1002/fes3.261.

[53]

Moraes-Santos, E. C., Dias, R. A., Balestieri, J. A. P., 2021. Moraes-Santos, R.A. Dias, J.A.P. Balestieri. Groundwater and the water-food-energy nexus: the grants for water resources use and its importance and necessity of integrated management. Land Use Policy, 109 , Article 105585. doi: 10.1016/j.landusepol.2021.105585.

[54]

Morgan, S., Pfaff, A., Wolfersberger, J., 2022. Environmental policies benefit economic development: implications of economic geography. Annu. Rev. Resour. Econ. 14, 427– 446. doi: 10.1146/annurev-resource-111920-022804.

[55]

Mukhopadhyay, R, Sarkar, B, Jat, H. S., Sharma, P. C., Bolan, N. S., 2021. Soil salinity under climate change: challenges for sustainable agriculture and food security. J. Environ. Manage., 280 , Article 111736. doi: 10.1016/j.jenvman.2020.111736.

[56]

Mukuve, F. M., Fenner, R. A., 2015. The influence of water, land, energy and soil-nutrient resource interactions on the food system in Uganda. Food Policy, 51 , pp. 24-37. doi: 10.1016/j.foodpol.2014.12.001.

[57]

Myhre, G, Shindell, D, Bréon, F. M., Collins, W, Fuglestvedt, J, Huang, J, Koch, D, Lamarque, J. F., Lee, D, Mendoza, B, Nakajima, T, Robock, A, Stephens, G, Takemura, T, Zhang, H. 2013. Anthropogenic and natural radiative forcing. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Climate Change 2013 – The Physical Science Basis. Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, pp.659-740.

[58]

Namany, S., Al-Ansari, T., Govindan, R., 2019. Optimisation of the energy, water, and food nexus for food security scenarios. Comput. Chem. Eng. 129, 106513. doi: 10.1016/j.compchemeng.2019.106513.

[59]

Niu, Y, Xie, G, Xiao, Y, Liu, J, Zou, H, Qin, K, Wang, Y, Huang, M., 2022. The story of grain self-sufficiency: China's food security and food for thought. Food Energy Secur., 11 (1) , p. e344. doi: 10.1002/fes3.344.

[60]

Pastor, A, Palazzo, A, Havlik, P, Biemans, H, Wada, Y, Obersteiner, M, Kabat, P, Ludwig, F., 2019. The global nexus of food–trade–water sustaining environmental flows by 2050. Nat. Sustain., 2 , pp. 499-507. doi: 10.1038/s41893-019-0287-1.

[61]

Pawlak, K, Kołodziejczak, M., 2020. The role of agriculture in ensuring food security in developing countries: considerations in the context of the problem of sustainable food production. Sustainability, 12 , p. 5488. doi: 10.3390/su12135488.

[62]

Piñeiro, V, Arias, J, Dürr, J, Elverdin, P, Ibáñez, A. M., Kinengyere, A, Opazo, C. M., Owoo, N, Page, J. R., Prager, S. D., Torero, M., 2020. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain., 3 (10) , pp. 809-820. doi: 10.1038/s41893-020-00617-y.

[63]

Qian, H, Zhu, X, Huang, S, Linquist, B, Kuzyakov, Y, Wassmann, R, Minamikawa, K, Martinez-Eixarch, M, Yan, X, Zhou, F, Sander, B. O., Zhang, W, Shang, Z, Zou, J, Zheng, X, Li, G, Liu, Z, Wang, S, Ding, Y, van Groenigen, K. J., Jiang, Y., 2023. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ., 4 (10) , pp. 716-732. doi: 10.1038/s43017-023-00482-1.

[64]

Qian, J, Ito, S, Zhao, Z., 2020. 64 (4) , pp. 1328-1349. doi: 10.1111/1467-8489.12398.

[65]

Ray, D. K., Sloat, L. L., Garcia, A. S., Davis, K. F., Ali, T, Xie, W., 2022. Crop harvests for direct food use insufficient to meet the UN's food security goal. Nat. Food, 3 , pp. 367-374. doi: 10.1038/s43016-022-00504-z.

[66]

Rosegrant, M. W., Cline, S. A., 2003. Global food security: challenges and policies. Science, 302 , pp. 1917-1919.. doi: 10.1126/science.1092958.

[67]

Siciliano, G, Rulli, M. C., D'Odorico, P., 2017. European large-scale farmland investments and the land-water-energy-food nexus. Adv. Water Resour., 110 , pp. 579-590. doi: 10.1016/j.advwatres.2017.08.012.

[68]

Smith, M., 1992. CROPWAT: A Computer Program for Irrigation Planning and Management. Rome, Italy.

[69]

Srinivas, N., Deb, K., 1994. Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2 (3), 221–248. doi: 10.1162/evco.1994.2.3.221.

[70]

Sun, C., Yan, X., Zhao, L., 2021. Coupling efficiency measurement and spatial correlation characteristic of water–energy–food nexus in China. Resour. Conserv. Recycl. 164, 105151. doi: 10.1016/j.resconrec.2020.105151.

[71]

Tang, X, Huang, Y, Pan, X, Liu, T, Ling, Y, Peng, J., 2024. Managing the water-agriculture-environment-energy nexus: trade-offs and synergies in an arid area of Northwest China. Agric. Water Manage., 295 , Article 108776. doi: 10.1016/j.agwat.2024.108776.

[72]

Thomson, A. M., Ellis, E. C., Grau, H. R., Kuemmerle, T, Meyfroidt, P, Ramankutty, N, Zeleke, G., 2019. Sustainable intensification in land systems: trade-offs, scales, and contexts. Curr. Opin. Environ. Sustain., 38 , pp. 37-43. doi: 10.1016/j.cosust.2019.04.011.

[73]

Tian, H, Lu, C, Pan, S, Yang, J, Miao, R, Ren, W, Yu, Q, Fu, B, Jin, F, Lu, Y, Melillo, J, Ouyang, Z, Palm, C, Reilly, J., 2018. Optimizing resource use efficiencies in the food–energy–water nexus for sustainable agriculture: from conceptual model to decision support system. Curr. Opin. Environ. Sustain., 33 , pp. 104-113. doi: 10.1016/j.cosust.2018.04.003.

[74]

Vågsholm, I, Arzoomand, N. S., Boqvist, S., 2020. Food security, safety, and sustainability—getting the trade-offs right. Front. Sustain. Food Syst., 4 , p. 16. doi: 10.3389/fsufs.2020.00016.

[75]

Van Vuuren, D. P., Bijl, D. L., Bogaart, P, Stehfest, E, Biemans, H, Dekker, S. C., Doelman, J. C., Gernaat, D. E. H. J., Harmsen, M., 2019. Integrated scenarios to support analysis of the food–energy–water nexus. Nat. Sustain., 2 , pp. 1132-1141. doi: 10.1038/s41893-019-0418-8.

[76]

Velasco-Muñoz, J. F., Mendoza, J. M. F., Aznar-Sánchez, J. A., Gallego-Schmid, A., 2021. Circular economy implementation in the agricultural sector: definition, strategies and indicators. Resour. Conserv. Recycl., 170 , Article 105618. doi: 10.1016/j.resconrec.2021.105618.

[77]

Walls, H. L., Johnston, D, Tak, M, Dixon, J, Hanefeld, J, Hull, E, Smith, R. D., 2018. The impact of agricultural input subsidies on food and nutrition security: a systematic review. Food Secur., 10 (6) , pp. 1425-1436. doi: 10.1016/10.1007/s12571-018-0857-5.

[78]

Walters, J. P., Archer, D. W., Sassenrath, G. F., Hendrickson, J. R., Hanson, J. D., Halloran, J. M., Vadas, P, Alarcon, V. J., 2016. Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecol. Model., 333 , pp. 51-65. doi: 10.1016/j.ecolmodel.2016.04.015.

[79]

Wang, Y., 2019. The challenges and strategies of food security under rapid urbanization in China. Sustainability, 11 , p. 542. doi: 10.3390/su11020542.

[80]

Wang, Y, Ling, X, Ma, C, Liu, C, Zhang, W, Huang, J, Peng, S, Deng, N., 2023. Can China get out of soy dilemma? A yield gap analysis of soybean in China. Agron. Sustain. Dev., 43 (4) , p. 47. doi: 10.1007/s13593-023-00897-6.

[81]

Wheeler, T, Von Braun, J., 2013. Climate change impacts on global food security. Science, 341 , pp. 508-513. doi: 10.1126/science.1239402.

[82]

Wu, H, Li, X, Lu, H, Tong, L, Kang, S., 2023. Crop acreage planning for economy- resource- efficiency coordination: grey information entropy based uncertain model. Agric. Water Manage., 289 , Article 108557. doi: 10.1016/j.agwat.2023.108557.

[83]

Xia, L, Ti, C, Li, B, Xia, Y, Yan, X., 2016. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ., 556 , pp. 116-125. doi: 10.1016/j.scitotenv.2016.02.204.

[84]

Xie, W, Zhu, A, Ali, T, Zhang, Z, Chen, X, Wu, F, Huang, J, Davis, K. F., 2023. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature, 616 (2023), pp. 300-305. doi: 10.1038/s41586-023-05799-x.

[85]

Xu, Z, Chen, X, Liu, J, Zhang, Y, Chau, S, Bhattarai, N, Wang, Y, Li, Y, Connor, T, Li, Y., 2020. Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nat. Commun., 11 , p. 5837. doi: 10.1038/s41467-020-19520-3.

[86]

Yang, M, Zhu, Y, Zhao, Y, Li, C, Zhang, Y, Fan, Y, Yang, W, Kang, M., 2024. Life cycle water and energy consumption and efficiency analysis of major crops in China. J. Clean. Prod., 467 , Article 142899. doi: 10.1016/j.jclepro.2024.142899.

[87]

Yao, X, Chen, W, Song, C, Gao, S., 2022. Sustainability and efficiency of water-land-energy-food nexus based on emergy-ecological footprint and data envelopment analysis: case of an important agriculture and ecological region in Northeast China. J. Clean. Prod., 379 , Article 134854. doi: 10.1016/j.jclepro.2022.134854.

[88]

You, N, Dong, J, Huang, J, Du, G, Zhang, G, He, Y, Yang, T, Di, Y, Xiao, X., 2021. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data, 8 , p. 41. doi: 10.1038/s41597-021-00827-9.

[89]

Yu, H, Liu, K, Bai, Y, Luo, Y, Wang, T, Zhong, J, Liu, S, Bai, Z., 2021. The agricultural planting structure adjustment based on water footprint and multi-objective optimisation models in China. J. Clean. Prod., 297 , Article 126646. doi: 10.1016/j.jclepro.2021.126646.

[90]

Yue, Q, Wu, H, Wang, Y, Guo, P., 2021. Achieving Sustainable Development Goals in agricultural energy-water-food nexus system: an integrated inexact multi-objective optimization approach. Resour. Conserv. Recycl., 174 , Article 105833. doi: 10.1016/j.resconrec.2021.105833.

[91]

Zhang, J, Wang, S, Pradhan, P, Zhao, W, Fu, B., 2022. Mapping the complexity of the food-energy-water nexus from the lens of Sustainable Development Goals in China. Resour. Conserv. Recycl., 183 , Article 106357. doi: 10.1016/j.resconrec.2022.106357.

[92]

Zhao, J, Wang, Y, Zhao, M, Wang, K, Li, S, Gao, Z, Shi, X, Chu, Q., 2023. Prospects for soybean production increase by closing yield gaps in the Northeast Farming Region, China. Field Crops Res., 293 , Article 108843. doi: 10.1016/j.fcr.2023.108843.

[93]

Zhao, R, Liu, Y, Tian, M, Ding, M, Cao, L, Zhang, Z, Chuai, X, Xiao, L, Yao, L., 2018. Impacts of water and land resources exploitation on agricultural carbon emissions: the water-land-energy-carbon nexus. Land Use Policy, 72 , pp. 480-492. doi: 10.1016/j.landusepol.2017.12.029.

[94]

Zhou, Y., Li, X., Liu, Y., 2020. Land use change and driving factors in rural China during the period 1995–2015. Land Use Policy 99, 105048. doi: 10.1016/j.landusepol.2020.105048.

[95]

Zhu, Y., Tian, D., Yan, F., 2020. Effectiveness of entropy weight method in decisionmaking. Math. Probl. Eng. 2020, 3564835. doi: 10.1155/2020/3564835.

[96]

Zurayk, R., 2020. Pandemic and food security: a view from the Global South. J. Agric. Food Syst. Community Dev., 9 , pp. 17-21. doi: 10.5304/jafscd.2020.093.014.

PDF

300

Accesses

0

Citation

Detail

Sections
Recommended

/