Reflective thinking meets artificial intelligence: Synthesizing sustainability transition knowledge in left-behind mountain regions

Andrej Ficko , Simo Sarkki , Yasar Selman Gultekin , Antonia Egli , Juha Hiedanpää

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100257

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100257 DOI: 10.1016/j.geosus.2024.100257
Research Article
review-article

Reflective thinking meets artificial intelligence: Synthesizing sustainability transition knowledge in left-behind mountain regions

Author information +
History +
PDF

Abstract

We demonstrate a multi-method approach towards discovering and structuring sustainability transition knowledge in marginalized mountain regions. By employing reflective thinking, artificial intelligence (AI)-powered text summarization and text mining, we synthesize experts’ narratives on sustainable development challenges and solutions in Kardüz Upland, Türkiye. We then analyze their alignment with the UN Sustainable Development Goals (SDGs) using document embedding. Investment in infrastructure, education, and resilient socio-ecological systems emerged as priority sectors to combat poor infrastructure, geographic isolation, climate change, poverty, depopulation, unemployment, low education levels, and inadequate social services. The narratives were closest in substance to SDG 1, 3, and 11. Social dimensions of sustainability were more pronounced than environmental dimensions. The presented approach supports policymakers in organizing loosely structured sustainability transition knowledge and fragmented data corpora, while also advancing AI applications for designing and planning sustainable development policies at the regional level.

Keywords

Artificial intelligence / Innovation / Reflective thinking / Scientific imagination / Text mining / Text summarization

Cite this article

Download citation ▾
Andrej Ficko, Simo Sarkki, Yasar Selman Gultekin, Antonia Egli, Juha Hiedanpää. Reflective thinking meets artificial intelligence: Synthesizing sustainability transition knowledge in left-behind mountain regions. Geography and Sustainability, 2025, 6(1): 100257 DOI:10.1016/j.geosus.2024.100257

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Andrej Ficko: Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Simo Sarkki: Writing – review & editing, Writing – original draft, Methodology, Investigation, Conceptualization. Yasar Selman Gultekin: Writing – review & editing, Writing – original draft, Visualization, Project administration, Investigation, Formal analysis, Data curation. Antonia Egli: Writing – review & editing, Project administration, Data curation. Juha Hiedanpää: Funding acquisition, Project administration, Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This article is based upon work conducted under COST Action CA21125 - a European forum for revitalisation of marginalised mountain areas (MARGISTAR), supported by COST (European Cooperation in Science and Technology). The first author gratefully acknowledges the support received for the research from the University of Ljubljana’s research program Forest, forestry and renewable forest resources (P4-0059).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.100257.

References

[1]

Argyroudis, S. A., Mitoulis, S. A., Chatzi, E, Baker, J. W., Brilakis, I, Gkoumas, K, Vousdoukas, M, Hynes, W, Carluccio, S, Keou, O, Frangopol, D. M., Linkov, I., 2022. Digital technologies can enhance climate resilience of critical infrastructure. Clim. Risk Manag., 35 , p. 100387. doi: 10.1016/j.crm.2021.100387.

[2]

Barredo Arrieta, A, Díaz-Rodríguez, N, Del Ser, J, Bennetot, A, Tabik, S, Barbado, A, Garcia, S, Gil-Lopez, S, Molina, D, Benjamins, R, Chatila, R, Herrera, F., 2020. Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 58 , pp. 82-115. doi: 10.1016/j.inffus.2019.12.012.

[3]

Bender, E. M., Gebru, T, McMillan-Major, A, Shmitchell, S. 2021. On the dangers of stochastic parrots: can language models be too big?. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp.610-623.

[4]

Blei, D. M., Ng, A. Y., Jordan, M. I., 2003. Latent dirichlet allocation. J. Mach. Learn. Res., 3, 993-1022.

[5]

Bogers, M, Biermann, F, Kalfagianni, A, Kim, R. E., 2022. Sustainable Development Goals fail to advance policy integration: a large-n text analysis of 159 international organizations. Environ. Sci. Policy, 138 , pp. 134-145. doi: 10.1016/j.envsci.2022.10.002.

[6]

Boyd-Graber, J., Hu, Y., Mimno, D., 2017. Applications of topic models. Found. Trends Inf. Retr. 11 (2-3), 143–296. doi: 10.1561/1500000030.

[7]

Bromme, R. 2000. Beyond one’s own perspective: the psychology of cognitive interdisciplinarity. P. Weingart, N. Stehr (Eds.), Practicing Interdisciplinarity, Toronto University Press, pp.115-133.

[8]

Buitelaar, P, Cimiano, P., 2008. Ontology learning and population: bridging the gap between text and knowledge. Series Information for Frontiers in Artificial Intelligence and Applications, IOS Press

[9]

Cairney, P., 2023. The politics of policy analysis: theoretical insights on real world problems. J. Eur. Public Policy, 30 (9) , pp. 1820-1838. doi: 10.1080/13501763.2023.2221282.

[10]

Carpenter, S. R., Brock, W. A., 2008. Adaptive capacity and traps. Ecol. Soc., 13(2), 40.

[11]

Chaffin, B. C., Gosnell, H, Cosens, B. A., 2014. A decade of adaptive governance: Synthesis and future directions. Ecol. Soc., 19(3), 56.

[12]

Chen, L., Zaharia, M., Zou, J., 2023. How is ChatGPT’s behavior changing over time? arXiv, 2307.09009. https://doi.org/10.48550/arXiv.2307.09009.

[13]

Cheng, S. H., Augustin, C, Bethel, A, Gill, D, Anzaroot, S, Brun, J, DeWilde, B, Minnich, R. C., Garside, R, Masuda, Y. J., Miller, D. C., Wilkie, D, Wongbusarakum, S, McKinnon, M. C., 2018. Using machine learning to advance synthesis and use of conservation and environmental evidence. Conserv. Biol., 32 (4) , pp. 762-764. doi: 10.1111/cobi.13117.

[14]

Dell'Ovo, M, Dezio, C, Mottadelli, M, Oppio, A., 2022. How to support cultural heritage-led development in Italian inner areas: a multi-methodological evaluation approach. Eur. Plan. Stud., 31 (9) , pp. 1799-1822. doi: 10.1080/09654313.2022.2135367.

[15]

Demsar, J, Curk, T, Erjavec, A, Gorup, C, Hocevar, T, Milutinovic, M, Mozina, M, Polajnar, M, Toplak, M, Staric, A, Stajdohar, M, Umek, L, Zagar, L, Zbontar, J, Zitnik, M, Zupan, B., 2013. Orange: data mining toolbox in Python. J. Mach. Learn. Res., 14, 2349-2353.

[16]

Deng, X, Wang, Y, Song, M., 2023. 4 (1) , pp. 49-57. doi: 10.1016/j.geosus.2022.12.003.

[17]

Dewey, J., 1933. How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process. D.C. Heath & Co Publishers, Boston, MA

[18]

Dewey, J., 1954. The Public and Its Problems. (Original 1927.). Swallow Press, Ohio University Press, Athens

[19]

Diemer, A, Iammarino, S, Rodríguez-Pose, A, Storper, M., 2022. The regional development trap in Europe. Econ. Geogr., 98 (5) , pp. 487-509. doi: 10.1080/00130095.2022.2080655.

[20]

El-Kassas, W. S., Salama, C. R., Rafea, A. A., Mohamed, H. K., 2021. Automatic text summarization: a comprehensive survey. Expert Syst. Appl., 165 , Article 113679. doi: 10.1016/j.eswa.2020.113679.

[21]

European Commission, 2020. Communication from the Commission to the European parliament and the Council. 2020 Strategic Foresight Report. Strategic foresight – charting the course towards a more resilient Europe. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri = CELEX:52020DC0493.

[22]

European Environment Agency, 2010. Europe’s ecological backbone: recognising the true value of our mountains. Office for Official Publications of the European Communities doi: 10.2800/43450.

[23]

Fagerholm, N, Raymond, C. M., Olafsson, A. S., Brown, G, Rinne, T, Hasanzadeh, K, Broberg, A, Kyttä, M., 2021. A methodological framework for analysis of participatory mapping data in research, planning, and management. Int. J. Geogr. Inf. Sci., 35 (9) , pp. 1848-1875. doi: 10.1080/13658816.2020.1869747.

[24]

Firebanks-Quevedo, D, Planas, J, Buckingham, K, Taylor, C, Silva, D, Naydenova, G, Zamora-Cristales, R., 2022. Using machine learning to identify incentives in forestry policy: towards a new paradigm in policy analysis. For. Policy Econ., 134 , Article 102624. doi: 10.1016/j.forpol.2021.102624.

[25]

Foroudi, P, Marvi, R, Cuomo, M. T., D'Amato, A., 2024. Sustainable Development Goals in a regional context: conceptualising, measuring and managing residents’ perceptions. Reg. Stud. , pp. 1-16. doi: 10.1080/00343404.2024.2373871.

[26]

Gellrich, M, Baur, P, Koch, B, Zimmermann, N. E., 2007. Agricultural land abandonment and natural forest re-growth in the Swiss mountains: a spatially explicit economic analysis. Agric. Ecosyst. Environ., 118 (1–4) , pp. 93-108. doi: 10.1016/j.agee.2006.05.001.

[27]

Glickman, M., Zhang, Y., 2024. AI and generative AI for research discovery and summarization. arXiv preprint, arXiv:2401.06795.

[28]

Gomez, A., 2014. New developments in mixed methods with vulnerable groups. J. Mix. Method. Res., 8 (3) , pp. 317-320. doi: 10.1177/1558689814527879.

[29]

Goyal, T., Li, J.J., Durrett, G., 2022. News summarization and evaluation in the era of GPT-3. arXiv, 2209.12356. https://doi.org/10.48550/arXiv.2209.12356.

[30]

Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T., 2018. Learning word vectors for 157 languages. arXiv, 1802.06893v2. https://doi.org/10.48550/arXiv.1802.06893.

[31]

Haider, J. L., Boonstra, W. J., Peterson, G. D., Schlüter, M., 2018. Traps and sustainable development in rural areas: a review. World Dev., 101 , pp. 311-321. doi: 10.1016/j.worlddev.2017.05.038.

[32]

Hammersley, M., 2013. The Myth of Research-Based Policy and Practice. SAGE Publications Ltd, London

[33]

Hereu-Morales, J., Segarra, A., Valderrama, C., 2024. The European (Green?) Deal: a systematic analysis of environmental sustainability. Sustain. Dev. 32 (1), 647–661. doi: 10.1002/sd.2671.

[34]

Huang, G, Shen, X, Zhang, X, Gu, W., 2023. Quantitative evaluation of China's central-level land consolidation policies in the past forty years based on the text analysis and PMC-index model. Land, 12 (9) , p. 1814. doi: 10.3390/land12091814.

[35]

Jamieson, M. K., Govaart, G. H., Pownall, M., 2023. Reflexivity in quantitative research: a rationale and beginner's guide. Soc. Personal. Psychol. Compass., 17 (4) , p. e12735. doi: 10.1111/spc3.12735.

[36]

Kastrinos, N, Weber, K. M., 2020. Sustainable development goals in the research and innovation policy of the European Union. Technol. Forecast. Soc. Change, 157 , Article 120056. doi: 10.1016/j.techfore.2020.120056.

[37]

Klein, J. A., Tucker, C. M., Nolin, A. W., Hopping, K. A., Reid, R. S., Steger, C, Grêt-Regamey, A, Lavorel, S, Müller, B, Yeh, E. T., Boone, R. B., Bourgeron, P, Butsic, V, Castellanos, E, Chen, X, Dong, S. K., Greenwood, G, Keiler, M, Marchant, R, Seidl, R, Spies, T, Thorn, J, Yager, K., 2019. Catalyzing transformations to sustainability in the world’s mountains. Earths Future, 7 , pp. 547-557. doi: 10.1029/2018EF001024.

[38]

Koopman, C., 2009. Pragmatism As transition: Historicity and Hope in James, Dewey, and Rorty. Columbia University Press, New York

[39]

Krsnik, G, Reynolds, K. M., Murphy, P, Paplanus, S, Garcia-Gonzalo, J, González Olabarria, J. R., 2023. Forest use suitability: towards decision-making-oriented sustainable management of forest ecosystem services. Geogr. Sustain., 4 , pp. 414-427. doi: 10.1016/j.geosus.2023.09.002.

[40]

Kulkov, I, Kulkova, J, Rohrbeck, R, Menvielle, L, Kaartemo, V, Makkonen, H., 2023. Artificial intelligence - driven sustainable development: examining organizational, technical, and processing approaches to achieving global goals. Sustain. Dev., 32 , pp. 2253-2267. doi: 10.1002/sd.2773.

[41]

Liu, H, Wang, X, Wang, Z, Cheng, Y., 2024. Does digitalization mitigate regional inequalities? Evidence from China. Geogr. Sustain., 5 (1) , pp. 52-63. doi: 10.1016/j.geosus.2023.09.007.

[42]

Lock, I., Wonneberger, A., Steenbeek, P., 2024. Divergent views and common values: comparing sustainability understandings across news media, businesses, and consumers. Environ. Commun. 18 (7), 891–911. doi: 10.1080/17524032.2024.2327063.

[43]

MacKinnon, D., Béal, V., Leibert, T., 2024. Rethinking ‘left-behind’ places in a context of rising spatial inequalities and political discontent. Reg. Stud. 58 (6), 1161–1166. doi: 10.1080/00343404.2023.2291581.

[44]

MARGISTA, R., 2022. A European forum for revitalisation of marginalised mountain areas. https://margistar.eu/ (accessed 1 May 2024).

[45]

Maynez, J., Narayan, S., Bohnet, B., McDonald, R., 2020. On faithfulness and factuality in abstractive summarization. arXiv, 2005.00661. https://doi.org/10.48550/arXiv.2005.00661.

[46]

Mehrabi, N, Morstatter, F, Saxena, N, Lerman, K, Galstyan, A., 2021. A survey on bias and fairness in machine learning. ACM Comput. Surv., 54 (6) , p. 115. doi: 10.1145/3457607.

[47]

Melnykovych, M, Nijnik, M, Soloviy, I, Nijnik, A, Sarkki, S, Bihun, Y., 2018. Social-ecological innovation in remote mountain areas: adaptive responses of forest-dependent communities to the challenges of a changing world. Sci. Total Environ., 613-614 , pp. 894-906. doi: 10.1016/j.scitotenv.2017.07.065.

[48]

Minaee, S, Kalchbrenner, N, Cambria, E, Nikzad, N, Chenaghlu, M, Gao, J., 2021. Deep learning–based text classification: a comprehensive review. ACM Comput. Surv., 54 (3) , pp. 1-40. doi: 10.1145/3439726.

[49]

Moilanen, M, Stein, Ø, Simonen, J., 2021. Machine learning and the identification of smart specialisation thematic networks in Arctic Scandinavia. Reg. Stud., 56 (9) , pp. 1429-1441. doi: 10.1080/00343404.2021.1925237.

[50]

Mridha, M. F., Lima, A. A., Nur, K, Das, S. C., Hasan, M, Kabir, M. M., 2021. A survey of automatic text summarization: progress, process and challenges. IEEE Access, 9 , pp. 156043-156070. doi: 10.1109/ACCESS.2021.3129786.

[51]

Nelson, K. S., Nguyen, T. D., Francois, J. R., Ojha, S., 2023. Rural sustainability methods, drivers, and outcomes: a systematic review. Sustain. Dev., 31 (3) , pp. 1226-1249. doi: 10.1002/sd.2471.

[52]

Nogués-Bravo, D, Araújo, M. B., Errea, M. P., Martínez-Rica, J. P., 2007. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change, 17 (3-4) , pp. 420-428. doi: 10.1016/j.gloenvcha.2006.11.007.

[53]

OpenAI, 2023. GPT-3 [or ChatGPT]. https://openai.com/.

[54]

Peters, B.G., 2018. Chapter 2: the problem of policy problems. In: Policy Problems and Policy Design. Edward Elgar Publishing, Cheltenham, UK. doi:10.4337/9781786431356.00007 . (accessed 6 March 2024).

[55]

Pike, A, Béal, V, Cauchi-Duval, N, Franklin, R, Kinossian, N, Lang, T, Leibert, T, MacKinnon, D, Rousseau, M, Royer, J, Servillo, L, Tomaney, J, Velthuis, S., 2023. ‘Left behind places’: a geographical etymology. Reg. Stud., 58 (6) , pp. 1167-1179. doi: 10.1080/00343404.2023.2167972.

[56]

Pu, X., Gao, M., Wan, X., 2023. Summarization is (Almost) Dead. arXiv, 2309.09558v1. https://doi.org/10.48550/arXiv.2309.09558.

[57]

Ray, P. P., 2023. ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Thing. Cyber-Phys. Syst., 3 , pp. 121-154. doi: 10.1016/j.iotcps.2023.04.003.

[58]

Rittel, H. W. J., Webber, M. M., 1973. Dilemmas in a general theory of planning. Policy Sci., 4 , pp. 155-169. doi: 10.1007/BF01405730.

[59]

Savin, I, Drews, S, Maestre-Andrés, S, van der Bergh, J., 2020. Public views on carbon taxation and its fairness: a computational-linguistics analysis. Clim. Change, 162 , pp. 2107-2138. doi: 10.1007/s10584-020-02842-y.

[60]

Song, J, C-Jang, H., 2023. Unpacking the sustainable development goals (SDGs) interlinkages: a semantic network analysis of the SDGs targets. Sustain. Dev., 31(4), 2784-2796.

[61]

Sotarauta, M., Kurikka, H., Kolehmainen, J., 2022. Change agency and path development in peripheral regions: from pulp production towards eco-industry in Lapland. Eur. Plan. Stud. 31 (2), 348–371. doi: 10.1080/09654313.2022.2054659.

[62]

Spaa, A, Spencer, N, Durrant, A, Vines, J., 2022. Creative and collaborative reflective thinking to support policy deliberation and decision making. Evid. Policy, 18 (2) , pp. 376-390. doi: 10.1332/174426421X16474564583952.

[63]

Strazzullo, S., Moro, S., Cricelli, L., 2023. Unveiling the relationship between sustainable development and Industry 4.0: a text mining literature analysis. Sustain. Dev. 31 (4), 2851–2862. doi: 10.1002/sd.2552.

[64]

Tian, N, Lan, H., 2023. The indispensable role of resilience in rational landslide risk management for social sustainability. Geogr. Sustain., 4 (1) , pp. 70-83. doi: 10.1016/j.geosus.2022.11.007.

[65]

Tidball, K., Frantzeskaki, N., Elmqvist, T., 2016. Traps! An introduction to expanding thinking on persistent maladaptive states in pursuit of resilience. Sustain. Sci. 11, 861–866. doi: 10.1007/s11625-016-0398-9.

[66]

Tremblay, D, Gowsy, S, Riffon, O, J-Boucher, F, Dub´e, S, Villeneuve, C., 2021. A systemic approach for sustainability implementation planning at the local level by SDG target prioritization: the case of Quebec City. Sustainability, 13 (5) , p. 2520. doi: 10.3390/su13052520.

[67]

Tucker, C. M., Alcántara-Ayala, I, Gunya, A, Jimenez, E, Klein, J. A., Xu, J, Bigler, S. L., 2021. Challenges for governing mountains sustainably: insights from a global survey. Mt. Res. Dev., 41(2), R10-R20.

[68]

UNESC, O.UNESCO Untangible Heritage List.Bulgarian, Chitalishte. https://ich.unesco.org/en/BS, P/bulgarian-chitalishte-community-cultural-centre-practical-experience-in-safeguarding-the-vitality-of-the-intangible-cultural-heritage-00969. (accessed 3 November 2023).

[69]

Unitedations, N., 2015. Transforming our world: the 2030 Agenda for Sustainable Development, A/RES/70/1, 21 October 2015, https://sdgs.un.org/2030agenda (accessed 1 December 2023).

[70]

van den Bergh, J. C. J. M., 2021. van den Bergh. Reflections on editing EIST for ten years. Environ. Innov. Soc. Tr., 41 , pp. 2-9. doi: 10.1016/j.eist.2021.06.009.

[71]

van Rijsbergen, C. J., Robertson, S. E., Porter, M. F., 1980. New Models in Probabilistic Information Retrieval. British Library, London

[72]

Westergaard, D, H-Stærfeldt, H, Tønsberg, C, Jensen, L. J., Brunak, S., 2018. A comprehensive and quantitative comparison of text-mining in 15 million full-text articles versus their corresponding abstracts. PLoS Comput. Biol., 14 (2) , Article e1005962. doi: 10.1371/journal.pcbi.1005962.

[73]

Whyte, P, Lamberton, G., 2020. Conceptualising sustainability using a cognitive mapping method. Sustainability, 12 (5) , pp. 1-20. doi: 10.3390/su12051977.

[74]

Wyss, R, Luthe, T, Pedoth, L, Schneiderbauer, S, Adler, C, Apple, M, Acosta, E. E., Fitzpatrick, H, Haider, J, Ikizer, G, Imperiale, A. J., 2022. Mountain resilience: a systematic literature review and paths to the future. Mt. Res. Dev., 42 (2) , pp. A23-A36. doi: 10.1659/MRD-JOURNAL-D-21-00044.1.

[75]

Yang, Z, Yang, D, Sun, D, Zhong, L., 2023. Ecological and social poverty traps: complex interactions moving toward sustainable development. Sustain. Dev., 31 (2) , pp. 853-864. doi: 10.1002/sd.2425.

[76]

Yoshimura, Y., Shiramatsu, S., Mizumoto, T., 2023. Semi-automatic summarization of spoken discourse for recording ideas using GPT-3. IIAI Lett. Informat. Interdiscipl. Res. 3, LIIR070. doi: 10.52731/liir.v003.070.

PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

/