Exploring the evolution and trade-off within a socio-ecological system in karst regions: A case study of Huanjiang County, China

Jing Tan , Li Peng , Wenxin Wu , Huijuan Zhang , Chao Tang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100256

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100256 DOI: 10.1016/j.geosus.2024.100256
Research Article
review-article

Exploring the evolution and trade-off within a socio-ecological system in karst regions: A case study of Huanjiang County, China

Author information +
History +
PDF

Abstract

Economic development, food security, and ecological preservation are important issues encountered by karst regions. Faced with complex natural and social dynamics, we attempted to explore how interdependence within socio-ecological system (SES) shaped sustainability in this region. A SES framework was constructed and three scenarios were predesigned: economic priority scenario, food security scenario, and ecological protection scenario. The System Dynamics model was used to simulate and forecast the evolution across various scenarios within the SES from 2005 to 2035. Through the Production-Possibility Frontiers in combined scenarios, trade-off potential was identified and quantified. The results showed that the decoupling between social and ecological subsystems can be weaken in economic priority scenario, while coupling between them can be strengthen in food security scenario and ecological protection scenario. Within the SES, combined scenario analyses further suggest that the rocky desertification rate and the urban-rural income ratio exhibit the least trade-off potential and intensity in combined economic priority scenario and ecological protection scenario, and the Soil Conservation and Food Supply demonstrate the least trade-off potential and intensity in combined economic priority scenario and food security scenario. We can conclude the ecological engineering plays a significant role in alleviating trade-offs within the SES, but the effectiveness is limited. In light of intertwined socio-ecological challenges, combining ecological engineering with adaptive adjustments is a crucial strategy to enhance SES resilience and promote sustainable development in the South China Karst.

Keywords

Socio-ecological system / System dynamics / Production-possibility frontier / Non-linear trade-off / Combined scenario / Karst region

Cite this article

Download citation ▾
Jing Tan, Li Peng, Wenxin Wu, Huijuan Zhang, Chao Tang. Exploring the evolution and trade-off within a socio-ecological system in karst regions: A case study of Huanjiang County, China. Geography and Sustainability, 2025, 6(3): 100256 DOI:10.1016/j.geosus.2024.100256

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jing Tan: Writing – review & editing, Writing – original draft, Supervision, Software, Methodology, Formal analysis. Li Peng: Visualization, Validation, Supervision, Methodology, Funding acquisition, Formal analysis, Conceptualization. Wenxin Wu: Supervision, Software, Investigation, Formal analysis, Data curation. Huijuan Zhang: Supervision, Methodology, Data curation, Conceptualization. Chao Tang: Visualization, Methodology, Data curation, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFF1300701) and the Sichuan Science and Technology Program (Grant No. 2022JDJQ0015).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.100256.

References

[1]

Abson, D. J., Dougill, A. J., Stringer, L. C., 2012. Using principal component analysis for information-rich socio-ecological vulnerability mapping in Southern Africa. Appl. Geogr., 35, 515-524.

[2]

An, L, Grimm, V, Sullivan, A, Turner II, B. L., Malleson, N, Heppenstall, A, Vincenot, C, Robinson, D, Ye, X, Liu, J, Lindkvist, E, Tang, W., 2021. Challenges, tasks, and opportunities in modeling agent-based complex systems. Ecol. Model., 457, 109685.

[3]

Barlas, Y., 1996. Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev., 12, 183-210.

[4]

Bayer, A. D., Lautenbach, S, Arneth, A., 2023. Benefits and trade-offs of optimizing global land use for food, water, and carbon. Proc. Natl. Acad. Sci. U. S. A., 120, e2220371120.

[5]

Berrio-Giraldo, L, Villegas-Palacio, C, Arango-Aramburo, S., 2021. Understating complex interactions in socio-ecological systems using system dynamics: a case in the tropical Andes. J. Environ. Manage., 291, 112675.

[6]

Brandt, M, Yue, Y, Wigneron, J. P., Tong, X, Tian, F, Jepsen, M. R., Xiao, X, Verger, A, Mialon, A, Al-Yaari, A, Wang, K, Fensholt, R., 2018. Satellite-observed major greening and biomass increase in South China Karst during recent decade. Earth. Future 6, 1017-1028.

[7]

Bryan, B. A., Gao, L, Ye, Y, Sun, X, Connor, J. D., Crossman, N. D., Stafford-Smith, M, Wu, J, He, C, Yu, D, Liu, Z, Li, A, Huang, Q, Ren, H, Deng, X, Zheng, H, Niu, J, Han, G, Hou, X., 2018. China's response to a national land-system sustainability emergency. Nature 559, 193-204.

[8]

Camara, M. V. O., Ribeiro, G. M., Tosta, M. D. R., 2018. A Pareto optimal study for the multi-objective oil platform location problem with NSGA-II. J. Pet. Sci. Eng., 169, 258-268.

[9]

Chen, M, Chen, H., 2019. Study on the coupling relationship between economic system and water environmental system in Beijing based on structural equation model. Appl. Ecol. Environ. Res., 17, 617-632.

[10]

Chen, J.D. , Gao, M., Cheng, S.L., Hou, W.X., Song, M.L., Liu, X., Liu, Y., Sha, Y.L., 2020. County-level, CO2 emissions in, China. figshare. 10.6084/m9.figshare.12887213.

[11]

Chen, T, Huang, Q, Wang, Q., 2022. Differentiation characteristics and driving factors of ecosystem services relationships in karst mountainous area based on geographic detector modeling: a case study of Guizhou Province. Acta Ecol. Sin., 42, 6959-6972.

[12]

Chen, T, Wang, Y, Peng, L., 2024. Exploring social-ecological system resilience in South China Karst: quantification, interaction and policy implication. Geogr. Sustain., 5, 289-301.

[13]

Costanza, R, d'Arge, R, de Groot, R, Farber, S, Grasso, M, Hannon, B, Limburg, K, Naeem, S, O'Neill, R. V., Paruelo, J, Raskin, R. G., Sutton, P, van den Belt, M., 1997. The value of the world's ecosystem services and natural capital. Nature 387, 253-260.

[14]

Costanza, R, de Groot, R, Sutton, P, van der Ploeg, S, Anderson, S. J., Kubiszewski, I, Farber, S, Turner, R. K., 2014. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152-158.

[15]

Cumming, G. S., Von Cramon-Taubadel, S., 2018. Linking economic growth pathways and environmental sustainability by understanding development as alternate social-ecological regimes. Proc. Acad. Natl. U. S. A., 115, 9533-9538.

[16]

Dai, D, Sun, M, Lv, X, Hu, J, Zhang, H, Xu, X, Lei, K., 2022. Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model, a case study of Yongding River Basin in North China. J. Clean. Prod., 344, 131137.

[17]

Díaz, S, Demissew, S, Carabias, J, Joly, C, Lonsdale, M, Ash, N, Larigauderie, A, Adhikari, J. R., Arico, S, Báldi, A, Bartuska, A, Baste, I. A., Bilgin, A, Brondizio, E, Chan, K. M. A., Figueroa, V. E., Duraiappah, A, Fischer, M, Hill, R, Koetz, T, Leadley, P, Lyver, P, Mace, G. M., Martin-Lopez, B, Okumura, M, Pacheco, D, Pascual, U, Pérez, E. S., Reyers, B, Roth, E, Saito, O, Scholes, R. J., Sharma, N, Tallis, H, Thaman, R, Watson, R, Yahara, T, Hamid, Z. A., Akosim, C, Al-Hafedh, Y, Allahverdiyev, R, Amankwah, E, Asah, S. T., Asfaw, Z, Bartus, G, Brooks, L. A., Caillaux, J, Dalle, G, Darnaedi, D, Driver, A, Erpul, G, Escobar-Eyzaguirre, P, Failler, P, Fouda, A. M. M., Fu, B, Gundimeda, H, Hashimoto, S, Homer, F, Lavorel, S, Lichtenstein, G, Mala, W. A., Mandivenyi, W, Matczak, P, Mbizvo, C, Mehrdadi, M, Metzger, J. P., Mikissa, J. B., Moller, H, Mooney, H. A., Mumby, P, Nagendra, H, Nesshover, C, Oteng-Yeboah, A. A., Pataki, G, Roué, M, Rubis, J, Schultz, M, Smith, P, Sumaila, R, Takeuchi, K, Thomas, S, Verma, M, Yeo-Chang, Y, Zlatanova, D., 2015. The IPBES conceptual framework — connecting nature and people. Curr. Opin. Environ. Sustain., 14, 1-16.

[18]

Dou, H, Cheng, G, Zhang, J, Wang, C., 2023. Sustainable development strategies in multi-scenario of rural production space system: a case from mountainous and hilly countryside in southwest China. J. Clean. Prod., 424, 138901.

[19]

Du, W, Yan, H, Zhen, L, Hu, Y., 2019. The experience and practice of desertification control in karst region of southwest China. Acta Ecol. Sin., 39, 5798-5808.

[20]

Fu, B, Wu, X, Wang, Z, Wu, X, Wang, S., 2022. Coupling human and natural systems for sustainability: experience from China's Loess Plateau. Earth Syst. Dyn., 13, 795-808.

[21]

Gao, J, Bian, H., 2019. The impact of the plains afforestation program and alternative land use scenarios on ecosystem services in an urbanizing watershed. Urban For. Urban Green., 43, 126373.

[22]

Gao, J, Du, F, Zuo, L, Jiang, Y., 2021. Integrating ecosystem services and rocky desertification into identification of karst ecological security pattern. Landsc. Ecol., 36, 2113-2133.

[23]

Gao, F, Yue, P, Zhang, C, Wang, M., 2019. Coupling components and services for integrated environmental modelling. Environ. Model. Softw., 118, 14-22.

[24]

Gao, J. Z., Zuo, L, Wang, I., 2019. The spatial trade-offs and differentiation characteristics of ecosystem services in karst peak-cluster depression. Acta Ecol. Sin., 39, 7829-7839.

[25]

Ge, Y, Hu, S, Song, Y, Zheng, H, Liu, Y, Ye, X, Ma, T, Liu, M, Zhou, C., 2023. Sustainable poverty reduction models for the coordinated development of the social economy and environment in China. Sci. Bull., 68, 2236-2246.

[26]

Godfray, H. C. J., Aveyard, P, Garnett, T, Hall, J. W., Key, T. J., Lorimer, J, Pierrehumbert, R. T., Scarborough, P, Springmann, M, Jebb, S. A., 2018. Meat consumption, health, and the environment. Science 361(6399), eaam5324.

[27]

Green, S. M., Dungait, J. A. J., Tu, C. L., Buss, H. L., Sanderson, N, Hawkes, S. J., Xing, K. X., Yue, F. J., Hussey, V. L., Peng, J, Johnes, P, Barrows, T, Hartley, I. P., Song, X. W., Jiang, Z. H., Meersmans, J, Zhang, X. Y., Tian, J, Wu, X. C., Liu, H. Y., Song, Z. L., Evershed, R, Gao, Y, Quine, T. A., 2019. Soil functions and ecosystem services research in the Chinese karst Critical Zone. Chem. Geol., 527, 119107.

[28]

Gu, B, Zhang, X, Bai, X, Fu, B, Chen, D., 2019. Four steps to food security for swelling cities. Nature 566, 31-33.

[29]

Han, H, Gao, H, Huang, Y, Chen, X, Chen, M, Li, J., 2019. Effects of drought on freshwater ecosystem services in poverty-stricken mountain areas. Glob. Ecol. Conserv., 17, e00537.

[30]

Hou, W, Gao, J., 2020. Spatially variable relationships between Karst landscape pattern and vegetation activities. Remote Sens., 12, 1134.

[31]

Jiang, W, Gao, G, Wu, X, Lv, Y., 2023. Assessing temporal trade-offs of ecosystem services by production possibility frontiers. Remote Sens., 15, 749.

[32]

Lang, Y, Song, W, Zhang, Y., 2017. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys. Chem. Earth 101, 102-111.

[33]

Langat, D, Maranga, E, Aboud, A, Cheboiwo, J., 2016. Role of forest resources to local livelihoods: the case of East Mau forest ecosystem, Kenya. Int. J. For. Res., 2016, 4537354.

[34]

Lengefeld, E, Metternicht, G, Nedungadi, P., 2020. Behavior change and sustainability of ecological restoration projects. Restor. Ecol., 28, 724-729.

[35]

Li, L, Xiong, K., 2021. Study on peak cluster-depression rocky desertification landscape evolution and human activity-influence in South of China. Eur. J. Remote Sens., 54, 309-317.

[36]

Li, S, Peng, L, Wu, W, Huang, Z, Liu, Y., 2023. Does labor out-migration affect the sustainability of disaster mitigation? Insight from the social–ecological system perspective. Sustain. Dev., 32, 1-14.

[37]

Li, W, Tan, M., 2018. Influences of vertical differences in population emigration on mountainous vegetation greenness: a case study in the Taihang Mountains. Sci. Rep., 8, 16954.

[38]

Li, Y, Sang, S, Mote, S, Rivas, J, Kalnay, E., 2023. Challenges and opportunities for modeling coupled human and natural systems. Natl. Sci. Rev., 10, nwad054.

[39]

Liao, C, Yue, Y, Wang, K, Fensholt, R, Tong, X, Brandt, M., 2018. Ecological restoration enhances ecosystem health in the karst regions of southwest China. Ecol. Indic., 90, 416-425.

[40]

Lin, Y, Lin, W, Wang, Y, Lien, W, Huang, T, Hsu, C, Schmeller, D. S., Crossman, N. D., 2017. Systematically designating conservation areas for protecting habitat quality and multiple ecosystem services. Environ. Model. Softw., 90, 126-146.

[41]

Liu, L, Wu, J., 2024. Space cannot substitute for time in the study of the ecosystem services-human wellbeing relationship. Geogr. Sustain., 6 , p. 100221. doi: 10.1016/j.geosus.2024.08.002.

[42]

Liu, T, Ma, L, Cheng, L, Hou, Y, Wen, Y., 2021. Is ecological birdwatching tourism a more effective way to transform the value of ecosystem services?—A case study of birdwatching destinations in Mingxi County, China. Int. J. Environ. Res. Public Health 18, 12424.

[43]

Liu, Y, Li, J., 2017. Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China. Acta Geogr. Sin., 72, 161-173.

[44]

Locher-Krause, K. E., Lautenbach, S, Volk, M., 2017. Spatio-temporal change of ecosystem services as a key to understand natural resource utilization in Southern Chile. Reg. Environ. Change 17, 2477-2493.

[45]

Lu, Y, Jenkins, A, Ferrier, R. C., Bailey, M, Gordon, I. J., Song, S, Huang, J, Jia, S, Zhang, F, Liu, X, Feng, Z, Zhang, Z., 2015. Addressing China's grand challenge of achieving food security while ensuring environmental sustainability. Sci. Adv., 1, e1400039.

[46]

Lu, Y, Zhang, Y, Cao, X, Wang, C, Wang, Y, Zhang, M, Ferrier, R. C., Jenkins, A, Yuan, J, Bailey, M. J., Chen, D, Tian, H, Li, H, von Weizsäcker, E. U., Zhang, Z., 2019. Forty years of reform and opening up: China's progress toward a sustainable path. Sci. Adv., 5, eaau9413.

[47]

Luan, C, Liu, R, Zhang, Q, Sun, J, Liu, J., 2024. Multi-objective land use optimization based on integrated NSGA–II–PLUS model: comprehensive consideration of economic development and ecosystem services value enhancement. J. Clean. Prod., 434, 140306.

[48]

Ma, B, Cai, Z, Zheng, J, Wen, Y., 2019. Conservation, ecotourism, poverty, and income inequality – a case study of nature reserves in Qinling, China. World Dev., 115, 236-244.

[49]

Macal, C. M., North, M. J., 2010. Tutorial on agent-based modelling and simulation. J. Simul., 4, 151-162.

[50]

Mastrogiacomo, E, Gianin, E. R., 2015. Pareto optimal allocations and optimal risk sharing for quasiconvex risk measures. Math. Financ. Econ., 9, 149-167.

[51]

McAvoy, S, Grant, T, Smith, C, Bontinck, P., 2021. Combining life cycle assessment and system dynamics to improve impact assessment: a systematic review. J. Clean. Prod., 315, 128060.

[52]

Montibeller, G, Gummer, H, Tumidei, D., 2006. Combining scenario planning and multi-criteria decision analysis in practice. J. Multi-Crit. Decis. Anal., 14, 5-20.

[53]

Morán-Ordóñez, A, Roces-Díaz, J. V., Otsu, K, Ameztegui, A, Coll, L, Lefevre, F, Retana, J, Brotons, L., 2019. The use of scenarios and models to evaluate the future of nature values and ecosystem services in Mediterranean forests. Reg. Environ. Change 19, 415-428.

[54]

Naderi, M. M., Mirchi, A, Bavani, A. R. M., Goharian, E, Madani, K., 2021. System dynamics simulation of regional water supply and demand using a food-energy-water nexus approach: application to Qazvin Plain, Iran. J. Environ. Manage., 280, 111843.

[55]

Nguyen, M. T., Vink, S, Ziemski, M, Barrett, D. J., 2014. Water and energy synergy and trade-off potentials in mine water management. J. Clean. Prod., 84, 629-638.

[56]

Noble, M. M., Harasti, D, Pittock, J, Doran, B., 2021. Using GIS fuzzy-set modelling to integrate social-ecological data to support overall resilience in marine protected area spatial planning: a case study. Ocean Coast. Manage., 212, 105745.

[57]

Pan, J., 2012. From industrial toward ecological in China. Science 336(6087), 1397.

[58]

Peng, J, Wang, X, Zheng, H, Xu, Z., 2024. Applying production-possibility frontier based ecosystem services trade-off to identify optimal scenarios of Grain-for-Green Program. Landsc. Urban Plan., 242, 104956.

[59]

Peng, L, Chen, T, Wang, Y, Wang, Q., 2023. Decoupling and partitioning the effect of climate and afforestation on long-term vegetation greening in China since the 1990s. Land Degrad. Dev., 34, 3179-3195.

[60]

Puga, J. L., Krzywinski, M, Altman, N., 2015. Bayesian networks. Nat. Methods 12, 799-800.

[61]

Qiu, S, Peng, J, Quine, T. A., Green, S. M., Liu, H, Liu, Y, Hartley, I. P., Meersmans, J., 2022. Unraveling trade-offs among reforestation, urbanization, and food security in the South China karst region: how can a hinterland province achieve SDGs?. Earth. Future 10, e2022EF002867.

[62]

Qiu, S, Peng, J, Zheng, H, Xu, Z, Meersmans, J., 2022. How can massive ecological restoration programs interplay with social-ecological systems? A review of research in the South China karst region. Sci. Total Environ., 807, 150723.

[63]

Reynolds, M, Holwell, S., 2020. Systems Approaches to Making Change: A Practical Guide. Springer, London

[64]

Richardson, G. P., 2011. Reflections on the foundations of system dynamics. Syst. Dyn. Rev., 27, 219-243.

[65]

Rickson, R. J., Deeks, L. K., Graves, A, Harris, J. A. H., Kibblewhite, M. G., Sakrabani, R., 2015. Input constraints to food production: the impact of soil degradation. Food Secur., 7, 351-364.

[66]

Rodríguez-Loinaz, G, Alday, J. G., Onaindia, M., 2015. Multiple ecosystem services landscape index: a tool for multifunctional landscapes conservation. J. Environ. Manage., 147, 152-163.

[67]

Ruckelshaus, M. H., Jackson, S. T., Mooney, H. A., Jacobs, K. L., Kassam, K. A. S., Arroyo, M. T. K., Báldi, A, Bartuska, A. M., Boyd, J, Joppa, L. N., Kovács-Hostyánszki, A, Parsons, J. P., Scholes, R. J., Shogren, J. F., Ouyang, Z., 2020. The IPBES global assessment: pathways to action. Trends Ecol. Evol., 35, 407-414.

[68]

Shi, H, Luo, G, Zheng, H, Chen, C, Bai, J, Liu, T, Ochege, F. U., De Maeyer, P., 2020. Coupling the water-energy-food-ecology nexus into a Bayesian network for water resources analysis and management in the Syr Darya River basin. J. Hydrol., 581, 124387.

[69]

Sitarz, S., 2009. Pareto optimal allocations and dynamic programming. Ann. Oper. Res., 172, 203-219.

[70]

Sokame, B. M., Agboka, K. M., Kimathi, E, Mudereri, B. T., Abdel-Rahman, E. M., Landmann, T, Rwaheru, M. M., Abdalla, O, Mafabi, M. M., Lubango, L. M., 2024. An integrated assessment approach for socio-economic implications of the desert locust in Eastern Africa. Earth. Future 12, e2023EF003841.

[71]

Song, X, Liu, S, Xun, R, Wang, K., 2017. Primary research “forage grasses—livestock” ecological product mode, the karst region of Zhougu Villige in northwest Guangxi. Hunan Agric. Sci., 6, 66-69.

[72]

Suleiman, M. S., Wasonga, V. O., Mbau, J. S., Suleiman, A, Elhadi, Y. A., 2017. Non-timber forest products and their contribution to households income around Falgore Game Reserve in Kano, Nigeria. Ecol. Process., 6, 23.

[73]

Sun, L, Yu, H, Sun, M, Wang, Y., 2023. Coupled impacts of climate and land use changes on regional ecosystem services. J. Environ. Manage., 326, 116753.

[74]

Sun, Y, Ren, Z, Zhao, S, Zhang, J., 2017. Spatial and temporal changing analysis of synergy and trade-off between ecosystem services in valley basins of Shaanxi Province. Acta Geogr. Sin., 72, 521-532.

[75]

Tan, J, Peng, L, Wu, W, Huang, Q., 2023. Mapping the evolution patterns of urbanization, ecosystem service supply–demand, and human well-being: a tree-like landscape perspective. Ecol. Indic., 154, 110591.

[76]

Tan, Y, Jiao, L, Shuai, C, Shen, L., 2018. A system dynamics model for simulating urban sustainability performance: a China case study. J. Clean. Prod., 199, 1107-1115.

[77]

Tang, Y, Wang, H, Lin, Z., 2023. Spatial heterogeneity effects of green finance on absolute and relative poverty. Sustainability 15, 6206.

[78]

Tapio, P., 2005. Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 12, 137-151.

[79]

Wang, C, Wen, Y, Duan, W, Han, F., 2013. Coupling relationship analysis on households’ production behaviors, protection attitudes, resource endowment and family wealth in nature reserves: a structural equation model. Chin. Geogr. Sci., 23, 506-518.

[80]

Wang, K, Yue, Y, Chen, H, Wu, X, Xiao, J, Qi, X, Zhang, W, Du, H., 2019. The comprehensive treatment of karst rocky desertification and its regional restoration effects. Acta Ecol. Sin., 39, 7432-7440.

[81]

voneizsäcker, W.U., 1990. Erdpolitik: Ökologische, Realpolitik an der, Schwelle zum, Jahrhundert dermwelt, U, Germany.

[82]

Wu, L, Fan, F., 2022. Assessment of ecosystem services in new perspective: a comprehensive ecosystem service index (CESI) as a proxy to integrate multiple ecosystem services. Ecol. Indic., 138, 108800.

[83]

Xia, H, Yuan, S, Prishchepov, A. V., 2023. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: implications for spatial planning and management. Resour. Conserv. Recycl., 189, 106767.

[84]

Yang, L, Li, Y, Yu, L, Chen, M, Zhang, Y, Ren, X., 2024. Characteristics of bare rocky land evolution in karst mountain areas of Southwest China based on socio-ecological system perspectives: the case study of Huajiang Canyon. Catena 242, 108139.

[85]

Yang, L, Liu, M, Min, Q, He, S, Jiao, W., 2019. Review of eco-environmental effect of farmers’ livelihood strategy transformation. Acta Ecol. Sin., 39, 8172-8182.

[86]

Yang, W, Pan, J., 2023. The role of vegetation carbon sequestration in offsetting energy carbon emissions in the Yangtze River Basin, China. Environ. Dev. Sustain., 26, 22689-22714.

[87]

Yang, Y, Bao, W, de Sherbinin, A. M., 2023. Mapping fine-resolution nested social-ecological system archetypes to reveal archetypical human-environmental interactions. Landsc. Urban Plan., 239, 104863.

[88]

Yang, Y, Bao, W, Liu, Y., 2020. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic., 117, 106512.

[89]

Yao, L, Li, X, Li, Q, Wang, J., 2019. Temporal and spatial changes in coupling and coordinating degree of new urbanization and ecological-environmental stress in China. Sustainability 11, 1171.

[90]

Yi, X, Dai, Q, Yan, Y, Zhang, Y, He, J, Wang, Y, Yao, Y., 2023. Research progress on the ecological environment effect of farmland abandonment in karst areas of Southwest China. Acta Ecol. Sin., 43, 925-936.

[91]

Ying, B, Li, S, Xiong, K, Hou, Y, Liu, T, Sun, R., 2023. Research on the resilience assessment of rural landscapes in the context of karst rocky desertification control: a case study of Fanhua Village in Guizhou Province. Forests 14, 733.

[92]

Yue, Y, Qi, X, Wang, K, Liao, C, Tong, X, Brandt, M, Liu, B., 2022. Large scale rocky desertification reversal in South China karst. Prog. Phys. Geogr., 46, 661-675.

[93]

Yue, Y, Wang, L, Brandt, M, Zhang, X, Wang, K., 2024. A social-ecological framework to enhance sustainable reforestation under geological constraints. Earth. Future 12, e2023EF004335.

[94]

Zeng, Y, Koh, L. P., Wilcove, D. S., 2022. Gains in biodiversity conservation and ecosystem services from the expansion of the planet's protected areas. Sci. Adv., 8, eabl9885.

[95]

Zhang, C., Dong, J., Ge, Q. 2022. The 500-m irrigated cropland maps in China during 2000–2019 based on a synergy mapping method. figshare. 10.6084/m9.figshare.20363115.v1.

[96]

Zhang, J, Wang, T., 2023. Urban resilience under the COVID-19 pandemic: a quantitative assessment framework based on system dynamics. Cities 136, 104265.

[97]

Zhang, K, Lyu, Y, Fu, B, Yin, L, Yu, D., 2020. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau. Acta Geogr. Sin., 75, 949-960.

[98]

Zhang, M, Wang, K, Liu, H, Zhang, C, Yue, Y, Qi, X., 2018. Effect of ecological engineering projects on ecosystem services in a karst region: a case study of northwest Guangxi, China. J. Clean. Prod., 183, 831-842.

[99]

Zhang, X, Yue, Y, Tong, X, Wang, K, Qi, X, Deng, C, Brandt, M., 2021. Eco-engineering controls vegetation trends in southwest China karst. Sci. Total Environ., 770, 145160.

[100]

Zhao, Q, Li, J, Cuan, Y, Zhou, Z., 2020. The evolution response of ecosystem cultural services under different scenarios based on system dynamics. Remote Sens., 12, 418.

[101]

Zhao, S, Wu, X, Zhou, J, Pereira, P., 2021. Spatiotemporal tradeoffs and synergies in vegetation vitality and poverty transition in rocky desertification area. Sci. Total Environ., 752, 141770.

PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

/