Dissecting the natural and human drivers of urban thermal resilience across climates
Renlu Qiao , Tao Wu , Zexu Zhao , Shuo Gao , Ting Yang , Chenyang Duan , Shiqi Zhou , Xiaochang Liu , Li Xia , Xi Meng , Lei Jin , Zhiyu Liu , Zhiqiang Wu
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100255
Dissecting the natural and human drivers of urban thermal resilience across climates
In the context of current global warming, understanding urban thermal resilience (UTR) dynamics across different climatic zones is crucial. This study aims to examine the complex interactions among urban morphology, green-blue infrastructure, and climate factors affecting UTR. Moving beyond traditional methods that compare urban and rural thermal differences, our research innovatively measures UTR by evaluating urban disturbances caused by extreme thermal events. To improve accuracy and reliability, we utilize an AI-powered Monte Carlo Simulation framework. Our findings emphasize the critical role of blue-green spaces in boosting UTR, whereas urban morphology often has a suppressive impact. Additionally, atmospheric humidity is identified as a critical factor affecting UTR. The study interestingly finds varied climatic responses: dense urban areas enhance resilience in arid and cold regions but reduce it in tropical and temperate zones. These findings highlight the need for a balance between sustainable urban living and infrastructure development.
Urban thermal resilience / Extreme heat events / Climatic heterogeneity / Green-blue factors / Urban morphology
| [1] |
|
| [2] |
Azhdari, A., Soltani, A., Alidadi, M., 2018. Urban morphology and landscape structure effect on land surface temperature: evidence from Shiraz, a semi-arid city. Sustain. Cities Soc. 41, 853–864. doi: 10.1016/j.scs.2018.06.034. |
| [3] |
|
| [4] |
Chen, J., Gao, M., Cheng, S., Hou, W., Song, M., Liu, X., Liu, Y., Shan, Y., 2020a. Countylevel CO2 emissions and sequestration in China during 1997–2017. Sci. Data 7 (1), 391. doi: 10.1038/s41597- 020- 00736- 3. |
| [5] |
Chen, Z., Yu, B., Yang, C., Zhou, Y., Yao, S., Qian, X., Wang, C., Wu, B., Wu, J., 2020b. An extended time-series (2000–2018) of global NPP-VIIRS-like nighttime light data. Harvard Dataverse, V3 doi: 10.7910/DVN/YGIVCD. |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
Javanroodi, K., Mahdavinejad, M., Nik, V.M., 2018. Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate. Appl. Energy 231, 714–746. doi: 10.1016/j.apenergy.2018.09.116. |
| [28] |
|
| [29] |
|
| [30] |
Leuzinger, S., Vogt, R., Körner, C., 2010. Tree surface temperature in an urban environment. Agric. For. Meteorol. 150 (1), 56–62. doi: 10.1016/j.agrformet.2009.08.006. |
| [31] |
|
| [32] |
|
| [33] |
Liao, W., Hong, T., Heo, Y., 2021. The effect of spatial heterogeneity in urban morphology on surface urban heat islands. Energy Build. 244, 111027. doi: 10.1016/j.enbuild. 2021.111027. |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
Peng, H., Nishiyama, Y., Sezaki, K., 2022. Assessing environmental benefits from shared micromobility systems using machine learning algorithms and Monte Carlo simulation. Sustain. Cities Soc. 87, 104207. doi: 10.1016/j.scs.2022.104207. |
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
Qiao, R., Liu, X., Gao, S., Liang, D., GesangYangji, G., Xia, L., Zhou, S., Ao, X., Jiang, Q., Wu, Z., 2024a. Industrialization, urbanization, and innovation: nonlinear drivers of carbon emissions in Chinese cities. Appl. Energy 358, 122598. doi: 10.1016/j. apenergy.2023.122598. |
| [44] |
Qiao, R., Wu, Z., Jiang, Q., Liu, X., Gao, S., Xia, L., Yang, T., 2024b. The nonlinear influence of land conveyance on urban carbon emissions: an interpretable ensemble learning-based approach. Land Use Policy 140, 107117. doi: 10.1016/j.landusepol. 2024.107117. |
| [45] |
Qiao, R., Gao, S., Liu, X., Xia, L., Zhang, G., Meng, X., Liu, Z., Wang, M., Zhou, S., Wu, Z., 2024c. Understanding the global subnational migration patterns driven by hydrological intrusion exposure. Nat. Commun. 15 (1), 6285. doi: 10.1038/ s41467- 024- 49609- y. |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
Slee, B., Parkinson, T., Hyde, R., 2014. Quantifying useful thermal mass: how much thermal mass do you need? Archit. Sci. Rev. 57 (4), 271–285. doi: 10.1080/00038628.2014.951312. |
| [54] |
Stone, B., Hess Jeremy, J., Frumkin, H., 2010. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environ. Health Perspect. 118 (10), 1425–1428. doi: 10.1289/ehp.0901879. |
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
Yan, C., Guo, Q., Li, H., Li, L., Qiu, G.Y., 2020a. Quantifying the cooling effect of urban vegetation by mobile traverse method: a local-scale urban heat island study in a subtropical megacity. Build. Environ. 169, 106541. doi: 10.1016/j.buildenv.2019.106541. |
| [68] |
Yan, H., Liu, Q., Zhao, W., Pang, C., Dong, M., Zhang, H., Gao, J., Wang, H., Hu, B., Yang, L., Wang, L., 2020b. The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China. Build. Environ. 177, 106898. doi: 10.1016/j.buildenv.2020.106898. |
| [69] |
|
| [70] |
|
| [71] |
Zhang, L., Nikolopoulou, M., Guo, S., Song, D., 2022a. Impact of LCZs spatial pattern on urban heat island: a case study in Wuhan, China. Build. Environ. 226, 109785. doi: 10.1016/j.buildenv.2022.109785. |
| [72] |
Zhang, T., Zhou, Y., Zhu, Z., Li, X., Asrar, G.R., 2022b. A global seamless 1 km resolution daily land surface temperature dataset (2003–2020). Earth Syst. Sci. Data 14 (2), 651–664. doi: 10.5194/essd- 14- 651- 2022. |
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
/
| 〈 |
|
〉 |