How do tropical active fires respond to intra-annual climate change in the early 21st century?

Peng Li , Xianghao Jin , Xia Li

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100253

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100253 DOI: 10.1016/j.geosus.2024.100253
Research Article
review-article

How do tropical active fires respond to intra-annual climate change in the early 21st century?

Author information +
History +
PDF

Abstract

The interactions between fire, ecosystems, and climate are complex. Tropical ecosystems have dominated global active fires nowadays, yet its causes, mechanisms, and consequences remain relatively poorly understood. To investigate temporal response of remotely-sensed active fires to intra-annual climate change, several 1-km datasets, including the Moderate-resolution Imaging Spectroradiometer Collection 6 (MODIS C6) active fires and the Climatologies at High Resolution for the Earth’s Land Surface Areas (CHELSA) climate variables, were gathered to examine the climatic characteristics of active fire incidences, fire-climate correlations, and the average monthly response of active fire occurrences to climate change using the Geographic Information System (GIS) Fishnet tool, Theil-Sen Median slope estimation, Mann-Kendall significance test, and Pearson’s correlation. We concluded that climate variables’ trends of nearly two-decade active fires displayed varied degrees of increment in precipitation (Pre), temperature (Tas), and surface downwelling shortwave radiation (Rsds) and inconsistent decrement in near-surface relative humidity (Hurs) and near-surface wind speed (sfcWind). MODIS multi-year (2003–2018) active fires were moderately to strongly correlated negatively with Pre and Hurs at 10 km grid-resolution but positively with sfcWind and Rsds, showing marked geographical variations in correlation direction and strength. The most significant finding is the newly observed inverse relationship between active fires and precipitation on both sides of the equator. High occurrence areas of active fires regularly appear back and forth along with latitudinal changes (at one-degree intervals) in monthly minimum precipitation between the tropical Northern and Southern Hemispheres. The present study contributes to exploring the underlying mechanism of fire-climate interactions against the backdrop of climate warming.

Keywords

Active fires / Climate change / Minimum monthly precipitation / High fire season / The tropics

Cite this article

Download citation ▾
Peng Li, Xianghao Jin, Xia Li. How do tropical active fires respond to intra-annual climate change in the early 21st century?. Geography and Sustainability, 2025, 6(3): 100253 DOI:10.1016/j.geosus.2024.100253

登录浏览全文

4963

注册一个新账户 忘记密码

Data available statement

The data supporting the study’s findings are available from the corresponding author upon reasonable request.

CRediT authorship contribution statement

Peng Li: Writing – review & editing, Writing – original draft, Validation, Supervision, Software, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization. Xianghao Jin: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis, Data curation. Xia Li: Writing – review & editing, Validation, Supervision, Resources.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study is funded by National Natural Science Foundation of China (Grants No. 42371282 and 42130508), the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK1006), and Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020055). The authors are thankful to the anonymous referees and the Editorial Office for their valuable comments and suggestions that improve the quality of manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.100253.

References

[1]

Abatzoglou, J. T., Williams, A. P., 2016. Abatzoglou, A.P. Williams. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. U.S.A., 113 (42) , pp. 11770-11775. doi: 10.1073/pnas.1607171113.

[2]

Abatzoglou, J. T., Williams, A. P., Barbero, R., 2019. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett., 46 (1) , pp. 326-336. doi: 10.1029/2018GL080959.

[3]

Abatzoglou, J. T., Williams, A. P., Boschetti, L, Zubkova, M, Kolden, C. A., 2018. Global patterns of interannual climate–fire relationships. Glob. Change Biol., 24 (11) , pp. 5164-5175. doi: 10.1111/gcb.14405.

[4]

Alvarado, S. T., Andela, N, Silva, T. S. F., Archibald, S., 2020. Thresholds of fire response to moisture and fuel load differ between tropical savannas and grasslands across continents. Glob. Ecol. Biogeogr., 29 (2) , pp. 331-344. doi: 10.1111/geb.13034.

[5]

Andela, N, Morton, D. C., Giglio, L, Paugam, R, Chen, Y, Hantson, S, van der Werf, G. R., Randerson, J. T., 2019. van der Werf, J.T. Randerson. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data, 11 (2) , pp. 529-552. doi: 10.5194/essd-11-529-2019.

[6]

Andela, N, Morton, D. C., Schroeder, W, Chen, Y, Brando, P. M., Randerson, J. T., 2022. Brando, J.T. Randerson. Tracking and classifying Amazon fire events in near real time. Sci. Adv., 8 (30) , p. eabd2713. doi: 10.1126/sciadv.abd2713.

[7]

Aragão, L. E. O. C., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., Silva, C. V. J., Silva Junior, C. H. L., Arai, E, Aguiar, A. P., Barlow, J, Berenguer, E, Deeter, M. N., Domingues, L. G., Gatti, L, Gloor, M, Malhi, Y, Marengo, J. A., Miller, J. B., Phillips, O. L., Saatchi, S., 2018. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun., 9 (1) , p. 536. doi: 10.1038/s41467-017-02771-y.

[8]

Archibald, S, Lehmann, C. E. R., Gómez-Dans, J. L., Bradstock, R. A., 2013. Lehmann, J.L. Gómez-Dans, R.A. Bradstock. Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. U.S.A., 110 (16) , pp. 6442-6447. doi: 10.1073/pnas.1211466110.

[9]

Artés, T, Oom, D, de Rigo, D, Durrant, T. H., Maianti, P, Libertà, G, San-Miguel-Ayanz, J., 2019. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data, 6 (1) , p. 296. doi: 10.1038/s41597-019-0312-2.

[10]

Asfaw, A, Simane, B, Hassen, A, Bantider, A., 2018. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: a case study in Woleka sub-basin. Weather Clim. Extremes, 19 , pp. 29-41. doi: 10.1016/j.wace.2017.12.002.

[11]

Balch, J. K., Abatzoglou, J. T., Joseph, M. B., Koontz, M. J., Mahood, A. L., McGlinchy, J, Cattau, M. E., Williams, A. P., 2022. Cattau, A.P. Williams. Warming weakens the night-time barrier to global fire. Nature, 602 (2022), pp. 442-448. doi: 10.1038/s41586-021-04325-1.

[12]

Bayar, A. S., Yılmaz, M. T., Yücel, I, Dirmeyer, P., 2023. CMIP6 Earth system models project greater acceleration of climate zone change due to stronger warming rates. Earth. Future, 11 (4) , Article e2022EF002972. doi: 10.1029/2022EF002972.

[13]

Beck, H. E., McVicar, T. R., Vergopolan, N, Berg, A, Lutsko, N. J., Dufour, A, Zeng, Z, Jiang, X, van Dijk, A. I. J. M., Miralles, D. G., 2023. van Dijk, D.G. Miralles. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Sci. Data, 10 (1) , p. 724. doi: 10.1038/s41597-023-02549-6.

[14]

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N, Berg, A, Wood, E. F., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data, 5 (1) , Article 180214. doi: 10.1038/sdata.2018.214.

[15]

Bong, W, Keeley, J., 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol., 20 (7) , pp. 387-394. doi: 10.1016/j.tree.2005.04.025.

[16]

Bony, S, Bellon, G, Klocke, D, Sherwood, S, Fermepin, S, Denvil, S., 2013. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat. Geosci., 6 (6) , pp. 447-451. doi: 10.1038/ngeo1799.

[17]

Burry, L. S., Palacio, P. I., Somoza, M, Trivi De Mandri, M. E., Lindskoug, H. B., Marconetto, M. B., D'Antoni, H. L., 2018. Trivi De Mandri, H.B. Lindskoug, M.B. Marconetto, H.L. D'Antoni. Dynamics of fire, precipitation, vegetation and NDVI in dry forest environments in NW Argentina. Contributions to environmental archaeology. J. Archaeol. Sci. Rep., 18 , pp. 747-757. doi: 10.1016/j.jasrep.2017.05.019.

[18]

Chen, Y, Morton, D. C., Andela, N, Giglio, L, Randerson, J. T., 2016. How much global burned area can be forecast on seasonal time scales using sea surface temperatures?. Environ. Res. Lett., 11 (4) , pp. 45001-45013. doi: 10.1088/1748-9326/11/4/045001.

[19]

Chen, Y, Morton, D. C., Andela, N, van der Werf, G. R., Giglio, L, Randerson, J. T., 2017. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Chang., 7 (12) , pp. 906-911. doi: 10.1038/s41558-017-0014-8.

[20]

Davies, D. K., Ilavajhala, S, Wong, M. M., Justice, C. O., 2009. Wong, C.O. Justice. Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Trans. Geosci. Remote Sens., 47 (1) , pp. 72-79. doi: 10.1109/TGRS.2008.2002076.

[21]

de Oliveira-Junior, J. F., Correia, F. W., de Barros, S. D., de Gois, G, Da, S. C. M., Da, S. J. C., Teodoro, P. E., Freire, F. M., 2021. Da, S.J.C. Da, P.E. Teodoro, F.M. Freire. Rainfall in Brazilian Northeast via in situ data and CHELSA product: mapping, trends, and socio-environmental implications. Environ. Monit. Assess., 193 (5) , p. 263. doi: 10.1007/s10661-021-09043-9.

[22]

Fanin, T, van der Werf, G. R., 2017. van der Werf. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences, 14 (18) , pp. 3995-4008. doi: 10.5194/bg-14-3995-2017.

[23]

Fasullo, J. T., Rosenbloom, N, Buchholz, R., 2023. A multiyear tropical Pacific cooling response to recent Australian wildfires in CESM2. Sci. Adv., 9 (19) , p. eadg1213. doi: 10.1126/sciadv.adg1213.

[24]

Field, R. D., van der Werf, G. R., Fanin, T, Fetzer, E. J., Fuller, R, Jethva, H, Levy, R, Livesey, N. J., Luo, M, Torres, O, Worden, H. M., 2016. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. U.S.A., 113 (33) , pp. 9204-9209. doi: 10.1073/pnas.1524888113.

[25]

Giglio, L, Justice, C. O., 2024. Early polar-orbiting satellite-based fire remote sensing during the 1960s. Int. J. Remote Sens., 45 (16) , pp. 5605-5615. doi: 10.1080/01431161.2024.2377838.

[26]

Giglio, L, Schroeder, W, Justice, C. O., 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ., 178 , pp. 31-41. doi: 10.1016/j.rse.2016.02.054.

[27]

Gocic, M, Trajkovic, S., 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Glob. Planet. Change, 100 , pp. 172-182. doi: 10.1016/j.gloplacha.2012.10.014.

[28]

Hamed, M. M., Nashwan, M. S., Shahid, S., 2021. Performance evaluation of reanalysis precipitation products in Egypt using fuzzy entropy time series similarity analysis. Int. J. Climatol., 41 (11) , pp. 5431-5446. doi: 10.1002/joc.7286.

[29]

Hantson, S, Pueyo, S, Chuvieco, E., 2015. 24 (1) , pp. 77-86. doi: 10.1111/geb.12246.

[30]

Hayasaka, H, Sokolova, G. V., Ostroukhov, A, Naito, D., 2020. Classification of active fires and weather conditions in the Lower Amur River Basin. Remote Sens., 12 (19) , p. 3204. doi: 10.3390/rs12193204.

[31]

Hurteau, M. D., Bradford, J. B., Fulé, P. Z., Taylor, A. H., Martin, K. L., 2014. Hurteau, J.B. Bradford, P.Z. Fulé, A.H. Taylor, K.L. Martin. Climate change, fire management, and ecological services in the southwestern US. For. Ecol. Manage., 327 , pp. 280-289. doi: 10.1016/j.foreco.2013.08.007.

[32]

Hurteau, M. D., Liang, S, Westerling, A. L., Wiedinmyer, C., 2019. Vegetation-fire feedback reduces projected area burned under climate change. Sci. Rep., 9 (1) , p. 2838. doi: 10.1038/s41598-019-39284-1.

[33]

Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., Bowman, D. M. J. S., 2015. Jolly, M.A. Cochrane, P.H. Freeborn, Z.A. Holden, T.J. Brown, G.J. Williamson, D.M.J.S. Bowman. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun., 6 (1) , p. 7537. doi: 10.1038/ncomms8537.

[34]

Jones, M. W., Abatzoglou, J. T., Veraverbeke, S, Andela, N, Lasslop, G, Forkel, M, Smith, A. J. P., Burton, C, Betts, R. A., van der Werf, G. R., Sitch, S, Canadell, J. G., Santín, C, Kolden, C, Doerr, S. H., Le Quéré, C., 2022. Global and regional trends and drivers of fire under climate change. Rev. Geophys., 60 (3) , Article e2020RG000726. doi: 10.1029/2020RG000726.

[35]

Karger, D. N., Conrad, O, Böhner, J, Kawohl, T, Kreft, H, Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., Kessler, M., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data, 4 (1) , Article 170122. doi: 10.1038/sdata.2017.122.

[36]

Karger, D. N., Zimmermann, N. E., 2019. Karger, N.E. Zimmermann. Climatologies at High Resolution for the Earth Land Surface Areas CHELSA V1. 2: Technical Specification. Swiss Federal Research Institute WSL, Switzerland , p. 41

[37]

Lanini, J. S., Clark, E. A., Lettenmaier, D. P., 2009. Lanini, E.A. Clark, D.P. Lettenmaier. Effects of fire-precipitation timing and regime on post-fire sediment delivery in Pacific Northwest forests. Geophys. Res. Lett., 36 (1) , p. L01402. doi: 10.1029/2008GL034588.

[38]

Lasslop, G, Coppola, A. I., Voulgarakis, A, Yue, C, Veraverbeke, S., 2019. Influence of fire on the carbon cycle and climate. Curr. Clim. Chang. Rep., 5 (2) , pp. 112-123. doi: 10.1007/s40641-019-00128-9.

[39]

Laurent, P, Mouillot, F, Moreno, M. V., Yue, C, Ciais, P., 2019. Varying relationships between fire radiative power and fire size at a global scale. Biogeosciences, 16 (2) , pp. 275-288. doi: 10.5194/bg-16-275-2019.

[40]

Lehsten, V, Tansey, K, Balzter, H, Thonicke, K, Spessa, A, Weber, U, Smith, B, Arneth, A., 2009. Estimating carbon emissions from African wildfires. Biogeosciences, 6 (3) , pp. 349-360. doi: 10.5194/bg-6-349-2009.

[41]

Li, P, Xiao, C, Feng, Z., 2022. 33 (2) , pp. 388-392. doi: 10.1002/ldr.4152.

[42]

Li, P, Xiao, C, Feng, Z, Li, W, Zhang, X., 2020. Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Glob. Change Biol., 26 (5) , pp. 2970-2987. doi: 10.1111/gcb.15034.

[43]

Liu, Y, Qian, Y, Rasch, P. J., Zhang, K, Wang, Y, Wang, M, Wang, H, Yang, X. Q., 2024. Fire-precipitation interactions amplify the quasi-biennial variability of fires over southern Mexico and Central America. EGUsphere, 24 (5) , pp. 3115-3128. doi: 10.5194/acp-24-3115-2024.

[44]

Lund, M. T., Nordling, K, Gjelsvik, A. B., Samset, B. H., 2023. Gjelsvik, B.H. Samset. The influence of variability on fire weather conditions in high latitude regions under present and future global warming. Environ. Res. Commun., 5 (6) , p. 65016. doi: 10.1088/2515-7620/acdfad.

[45]

Marques, J. F., Alves, M. B., Silveira, C. F., Amaral, A Silva, E, Silva, T. A., Dos Santos, V. J., Calijuri, M. L., 2021. Silva, V.J. Dos Santos, M.L. Calijuri. Fires dynamics in the Pantanal: impacts of anthropogenic activities and climate change. J. Environ. Manage., 299 , Article 113586. doi: 10.1016/j.jenvman.2021.113586.

[46]

Mataveli, G. A. V., Silva, M. E. S., Pereira, G, Da Silva Cardozo, F, Kawakubo, F. S., Bertani, G, Costa, J. C., de Cássia Ramos, R, Da Silva, V. V., 2018. Da Silva. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas. Nat. Hazards Earth Syst. Sci., 18 (1) , pp. 125-144. doi: 10.5194/nhess-18-125-2018.

[47]

Phillips, C. A., Rogers, B. M., Elder, M, Cooperdock, S, Moubarak, M, Randerson, J. T., Frumhoff, P. C., 2022. Randerson, P.C. Frumhoff. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Sci. Adv., 8 (17) , p. eabl7161. doi: 10.1126/sciadv.abl7161.

[48]

Putra, E. I., 2011. Putra, Hiroshi. The effect of the precipitation pattern of the dry season on peat fire occurrence in the Mega Rice Project area, Central Kalimantan, Indonesia. Tropics, 19 (4) , pp. 145-156. doi: 10.3759/tropics.19.145.

[49]

Ramo, R, Roteta, E, Bistinas, I, van Wees, D, Bastarrika, A, Chuvieco, E, van der Werf, G. R., 2021. van der Werf. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. U.S.A., 118 (9) , Article e2011160118. doi: 10.1073/pnas.2011160118.

[50]

Randerson, J. T., Chen, Y, van der Werf, G. R., Rogers, B. M., Morton, D. C., 2012. van der Werf, B.M. Rogers, D.C. Morton. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci., 117 , p. G04012. doi: 10.1029/2012JG002128.

[51]

Räsänen, T. A., Lindgren, V, Guillaume, J. H. A., Buckley, B. M., Kummu, M., 2016. On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia. Clim. Past., 12 (9) , pp. 1889-1905. doi: 10.5194/cp-12-1889-2016.

[52]

Roteta, E, Bastarrika, A, Padilla, M, Storm, T, Chuvieco, E., 2019. Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ., 222 , pp. 1-17. doi: 10.1016/j.rse.2018.12.011.

[53]

Rull, V, Montoya, E, Vegas-Vilarrúbia, T, Ballesteros, T., 2015. New insights on palaeofires and savannisation in northern South America. Quat. Sci. Rev., 122 , pp. 158-165. doi: 10.1016/j.quascirev.2015.05.032.

[54]

Schroeder, W, Oliva, P, Giglio, L, Csiszar, I. A., 2014. The New VIIRS 375 m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ., 143 , pp. 85-96. doi: 10.1016/j.rse.2013.12.008.

[55]

Schroeder, W, Oliva, P, Giglio, L, Quayle, B, Lorenz, E, Morelli, F., 2016. Active fire detection using Landsat-8/OLI data. Remote Sens. Environ., 185 , pp. 210-220. doi: 10.1016/j.rse.2015.08.032.

[56]

Sen, P. K., 1968. Estimates of the regression coefficient based on Kendall's Tau. J. Am. Stat. Assoc., 63(324), 1379-1389.

[57]

Sheldon, K. S., 2019. Climate change in the tropics: ecological and evolutionary responses at low latitudes. Annu. Rev. Ecol. Evol. Syst., 50 (1) , pp. 303-333. doi: 10.1146/annurev-ecolsys-110218-025005.

[58]

Shryock, D. F., Esque, T. C., Chen, F. C., 2015. Shryock, T.C. Esque, F.C. Chen. Topography and climate are more important drivers of long-term, post-fire vegetation assembly than time-since-fire in the Sonoran Desert, US. J. Veg. Sci., 26 (6) , pp. 1134-1147. doi: 10.1111/jvs.12324.

[59]

Silva, C. V. J., Aragão, L. E. O. C., Barlow, J, Espirito-Santo, F, Young, P. J., Anderson, L. O., Berenguer, E, Brasil, I, Foster Brown, I, Castro, B, Farias, R, Ferreira, J, França, F, Graça, P. M. L. A., Kirsten, L, Lopes, A. P., Salimon, C, Scaranello, M. A., Seixas, M, Souza, F. C., Xaud, H. A. M., 2018. Souza, H.A.M. Xaud. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos. Trans. R. Soc. B: Biol. Sci., 373 (2018), Article 20180043. doi: 10.1098/rstb.2018.0043.

[60]

Smith, C, Perkins, O, Mistry, J., 2022. 5 (6) , pp. 542-551. doi: 10.1038/s41893-022-00867-y.

[61]

Theil, H. A., 1950. A rank-invariant method of linear and polynomial regression analysis. Indag. Math., 12(85), 173.

[62]

Tian, C, Yue, X, Zhu, J, Liao, H, Yang, Y, Lei, Y, Zhou, X, Zhou, H, Ma, Y, Cao, Y., 2022. Fire–climate interactions through the aerosol radiative effect in a global chemistry–climate–vegetation model. Atmos. Chem. Phys., 22 (18) , pp. 12353-12366. doi: 10.5194/acp-22-12353-2022.

[63]

Turetsky, M. R., Benscoter, B, Page, S, Rein, G, van der Werf, G. R., Watts, A., 2015. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci., 8 (1) , pp. 11-14. doi: 10.1038/ngeo2325.

[64]

Vadrevu, K, Eaturu, A, Casadaban, E, Lasko, K, Schroeder, W, Biswas, S, Giglio, L, Justice, C., 2022. Spatial variations in vegetation fires and emissions in South and Southeast Asia during COVID-19 and pre-pandemic. Sci. Rep., 12 (1) , p. 18233. doi: 10.1038/s41598-022-22834-5.

[65]

van der Werf, G. R., Dempewolf, J, Trigg, S. N., Randerson, J. T., Kasibhatla, P. S., Giglio, L, Murdiyarso, D, Peters, W, Morton, D. C., Collatz, G. J., Dolman, A. J., DeFries, R. S., 2008. Morton, G.J. Collatz, A.J. Dolman, R.S. DeFries. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl. Acad. Sci. U.S.A., 105 (51) , pp. 20350-20355. doi: 10.1073/pnas.0803375105.

[66]

Wooster, M. J., Roberts, G. J., Giglio, L, Roy, D. P., Freeborn, P. H., Boschetti, L, Justice, C, Ichoku, C, Schroeder, W, Davies, D, Smith, A. M. S., Setzer, A, Csiszar, I, Strydom, T, Frost, P, Zhang, T, Xu, W, de Jong, M. C., Johnston, J. M., Ellison, L, Vadrevu, K, Sparks, A. M., Nguyen, H, McCarty, J, Tanpipat, V, Schmidt, C, San-Miguel-Ayanz, J., 2021. Satellite remote sensing of active fires: history and current status, applications and future requirements. Remote Sens. Environ., 267 , Article 112694. doi: 10.1016/j.rse.2021.112694.

[67]

Xiao, C, Feng, Z, Li, P., 2022. 28 (8) , pp. 2790-2803. doi: 10.1111/gcb.16097.

[68]

Yeh, S. W., Cai, W, Min, S. K., McPhaden, M. J., Dommenget, D, Dewitte, B, Collins, M, Ashok, K, An, S. I., Yim, B. Y., Kug, J. S., 2018. An, B.Y. Yim, J.S. Kug. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56 (1) , pp. 185-206. doi: 10.1002/2017RG000568.

[69]

Zhang, L.Y., Du, Y., Cai, W., Chen, Z., Tozuka, T., Yu, J.Y., 2020a. Triggering the Indian Ocean dipole from the Southern Hemisphere. Geophys. Res. Lett. 47 (15), e2020GL088648. doi: 10.1029/2020GL088648.

[70]

Zhang, G., Zeng, G., Iyakaremye, V., You, Q., 2020b. Regional changes in extreme heat events in China under stabilized 1.5 °C and 2.0 °C global warming. Adv. Clim. Chang. Res. 11 (3), 198–209. doi: 10.1016/j.accre.2020.08.003.

[71]

Zhao, F, Liu, Y., 2021. Important meteorological predictors for long-range wildfires in China. For. Ecol. Manage., 499 (1) , Article 119638. doi: 10.1016/j.foreco.2021.119638.

PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

/