Spatial mismatch between in-situ conservation and diversity hotspots of Chinese native useful vascular plants

Siqing Zhao , Yinkun Guo , Xiang Zhao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100252

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100252 DOI: 10.1016/j.geosus.2024.100252
Research Article
review-article

Spatial mismatch between in-situ conservation and diversity hotspots of Chinese native useful vascular plants

Author information +
History +
PDF

Abstract

China boasts over 10,000 native useful vascular plants (NUVPs), spanning eight families and serving twelve distinct uses. Given the importance of NUVPs, widely-confirmed in-situ conservation policies, such as establishing nature reserves, have been broadly implemented to protect them. However, the effectiveness of in-situ conservation efforts for NUVPs in China remains uncertain. Highlighting the importance of multi-family and multi-use plants, this research identified the spatial distribution pattern and diversity hotspots of NUVPs, evaluated the in-situ conservation effectiveness and provided the future conservation priority scheme. The results revealed that the spatial concentration of NUVPs is predominantly in the southwestern lowlands of China (< 3,000 m), peaking around 109°E and 25°N. Importantly, diversity hotspots exhibited a significant spatial mismatch (over 80 %) with the National Nature Reserve (NNR) network. Only about 17.7 % and 13.3 % of these hotspots are protected by NNR initiatives for endemic and nonendemic species, respectively. Additionally, the proposed Plants Conservation Effectiveness Index (PCEI) proved more representative in addressing the two main crises faced by the studied species—species loss and human pressure, and found a decline in conservation effectiveness as the number of uses increased. Finally, future conservation priorities based on the PCEI highlight the Nanling Mountains, Hengduan Mountains, Jiuwandashan, and Qilian Mountains as highly prioritized regions requiring focused efforts to address the impacts of climate change. Conversely, in sparsely distributed regions experiencing increasing human pressure, it is imperative to mitigate the expanding human footprint.

Keywords

Biodiversity hotspots / Vascular plants / National Nature Reserve / Gap analysis / Conservation effectiveness / Conservation planning

Cite this article

Download citation ▾
Siqing Zhao, Yinkun Guo, Xiang Zhao. Spatial mismatch between in-situ conservation and diversity hotspots of Chinese native useful vascular plants. Geography and Sustainability, 2025, 6(3): 100252 DOI:10.1016/j.geosus.2024.100252

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Siqing Zhao: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Resources, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Yinkun Guo: Writing – review & editing, Writing – original draft, Visualization, Validation, Resources, Project administration, Investigation, Formal analysis, Data curation. Xiang Zhao: Writing – review & editing, Supervision, Resources, Funding acquisition.

Declaration of competing interests

The author declares that there are no known competing financial interests or personal relationships that influenced the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 42330205) and the Open Fund of State Key Laboratory of Remote Sensing Science and Beijing Engineering Research Center for Global Land Remote Sensing Products (Grant No. OF202206).

We thank the Chinese Virtual Herbarium for its collaborative efforts. We are grateful to the Ministry of Ecology and Environment for providing the name list of National Nature Reserves. We are grateful to Dr. Zhao for providing valuable guidance and opinions during the revision and improvement of the manuscript. We thank Biodiverse 3.1 and Marxan 2.43 for their technical support, and we thank Dr. Hua for his introduction on the Marxan software. We also thank the flaticon (https://www.flaticon.com/), operated by Freepik Company, for providing rich drawing materials to help us produce a beautiful technical flowchart. We also thank the anonymous reviewers and editor for their valuable comments on the manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.100252.

References

[1]

Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H, Branciforte, R, Kraft, N. J. B., 2010. The geography of climate change: implications for conservation biogeography. Divers. Distrib., 16(3), 476-487.

[2]

Albuquerque, U. P., Borba do Nascimento, A. L, Chaves, Ld.S, Feitosa, I. S., Brito de Moura, J. M., Santos Goncalves, P. H., da Silva, R. H., da Silva, T. C., Ferreira Junior, W. S, Araujo, Ed.L., 2019. How to partner with people in ecological research: challenges and prospects. Perspect. Ecol. Conserv., 17(4), 193-200.

[3]

Bai, Y, Fang, Z, Hughes, A. C., 2021. Ecological redlines provide a mechanism to maximize conservation gains in Mainland Southeast Asia. One Earth 4(10), 1491-1504.

[4]

Beck, J, Holloway, J. D., Schwanghart, A., 2013. Undersampling and the measurement of beta diversity. Methods Ecol. Evol., 4(4), 370-382.

[5]

Bridgewater, P, Régnier, M, García, R. C., 2015. Implementing SDG 15: can large-scale public programs help deliver biodiversity conservation, restoration and management, while assisting human development?. Nat. Resour. Forum 39(3–4), 214-223.

[6]

Brooks, T. M., Mittermeier, R. A., da Fonseca, G. A. B., Gerlach, J, Hoffmann, M, Lamoreux, J. F., Mittermeier, C. G., Pilgrim, J. D., Rodrigues, A. S. L., 2006. Global biodiversity conservation priorities. Science 313(5783), 58-61.

[7]

Brum, F. T., Graham, C. H., Costa, G. C., Hedges, S. B., Penone, C, Radeloff, V. C., Rondinini, C, Loyola, R, Davidson, A. D., 2017. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl. Acad. Sci. U.S.A., 114(29), 7641-7646.

[8]

Brummitt, N, Araújo, A. C., Harris, T., 2021. Areas of plant diversity—what do we know?. Plants People Planet 3(1), 33-44.

[9]

Buckley, H. L., Day, N. J., Case, B. S., Lear, G., 2021. Measuring change in biological communities: multivariate analysis approaches for temporal datasets with low sample size. PeerJ 9, e11096.

[10]

Buckley, H. L., Day, N. J., Lear, G, Case, B. S., 2021. Changes in the analysis of temporal community dynamics data: a 29-year literature review. PeerJ 9, e11250.

[11]

Cai, H, Lyu, L, Shrestha, N, Tang, Z, Su, X, Xu, X, Dimitrov, D, Wang, Z., 2021. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Divers. Distrib., 27(1), 179-194.

[12]

Carroll, C, Roberts, D. R., Michalak, J. L., Lawler, J. J., Nielsen, S. E., Stralberg, D, Hamann, A, Mcrae, B. H., Wang, T., 2017. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Glob. Change Biol., 23(11), 4508-4520.

[13]

Chen, S-L, Yu, H, H-Luo, M, Wu, Q, C-Li, F, Steinmetz, A., 2016. Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin. Med., 11, 37.

[14]

Chen, S, Jiang, G, Ouyang, Z, Xu, W, Xiao, Y., 2011. Relative importance of water, energy, and heterogeneity in determining regional pteridophyte and seed plant richness in China. J. Syst. Evol., 49(2), 95-107.

[15]

Chi, X, Zhang, Z, Xu, X, Zhang, X, Zhao, Z, Liu, Y, Wang, Q, Wang, H, Li, Y, Yang, G, Guo, L, Tang, Z, Huang, L., 2017. Threatened medicinal plants in China: distributions and conservation priorities. Biol. Conserv., 210, 89-95.

[16]

Cincotta, R. P., Wisnewski, J, Engelman, R., 2000. Human population in the biodiversity hotspots. Nature 404(6781), 990-992.

[17]

Collen, B, Whitton, F, Dyer, E. E., Baillie, J. E. M., Cumberlidge, N, Darwall, W. R. T., Pollock, C, Richman, N. I, Soulsby, A-.M, Boehm, M., 2014. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr., 23(1), 40-51.

[18]

Corlett, R. T., 2016. Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers., 38(1), 10-16.

[19]

Cunze, S, Heydel, F, Tackenberg, O., 2013. Are plant species able to keep pace with the rapidly changing climate?. PLoS One 8(7), e67909.

[20]

Delavenne, J, Metcalfe, K, Smith, R. J., Vaz, S, Martin, C. S., Dupuis, L, Coppin, F, Carpentier, A., 2012. Systematic conservation planning in the eastern English Channel: comparing the Marxan and Zonation decision-support tools. ICES J. Mar. Sci., 69(1), 75-83.

[21]

Dinerstein, E, Vynne, C, Sala, E, Joshi, A. R., Fernando, S, Lovejoy, T. E., Mayorga, J, Olson, D, Asner, G. P., Baillie, J. E. M., Burgess, N. D., Burkart, K, Noss, R. F., Zhang, Y. P., Baccini, A, Birch, T, Hahn, N, Joppa, L. N., Wikramanayake, E., 2019. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv., 5(4), eaaw2869.

[22]

Doak, D. F., Bakker, V. J., Goldstein, B. E., Hale, B., 2014. What is the future of conservation?. Trends Ecol. Evol., 29(2), 77-81.

[23]

Dobson, A. P., Rodriguez, J. P., Roberts, W. M., Wilcove, D. S., 1997. Geographic distribution of endangered species in the United States. Science 275(5299), 550-553.

[24]

Dorofeev, V. F., Filatenko, A. A., 1987. Establishment and development of Vavilov, N. I. theory of the centers of cultivated plants origin. Genetika 23(11), 1916-1926.

[25]

Doxa, A, Holon, F, Deter, J, Villeger, S, Boissery, P, Mouquet, N., 2016. Mapping biodiversity in three-dimensions challenges marine conservation strategies: the example of coralligenous assemblages in North-Western Mediterranean Sea. Ecol. Indic., 61, 1042-1054.

[26]

Dudley, N., Furuta, N., Natori, Y., Okano, N., 2022. Nature-based Solutions and Protected and Conserved Areas, 1 ed. IUCN, Gland, Switzerland in collaboration with the Ministry of the Environment, Government of Japan (MOEJ).

[27]

Duffield, S. J., Bas, B. L., Morecroft, M. D., 2021. Climate change vulnerability and the state of adaptation on England's National Nature Reserves. Biol. Conserv., 254, 108938.

[28]

Eichenberg, D, Bowler, D. E., Bonn, A, Bruelheide, H, Grescho, V, Harter, D, Jandt, U, May, R, Winter, M, Jansen, F., 2021. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol., 27(5), 1097-1110.

[29]

Gaoue, O. G., Coe, M. A., Bond, M, Hart, G, Seyler, B. C., McMillen, H., 2017. Theories and Major Hypotheses in Ethnobotany. Econ. Bot., 71(3), 269-287.

[30]

Goke, C, Dahl, K, Mohn, C., 2018. Maritime spatial planning supported by systematic site selection: applying Marxan for offshore wind power in the western Baltic Sea. PLoS One 13(3), e0194362.

[31]

Griffiths, K. E., Balding, S. T., Dickie, J. B., Lewis, G. P., Pearce, T. R., Grenyer, R., 2015. Maximizing the phylogenetic diversity of seed banks. Conserv. Biol., 29(2), 370-381.

[32]

Guerin, G. R., Ruokolainen, L, Lowe, A. J., 2015. A georeferenced implementation of weighted endemism. Methods Ecol. Evol., 6(7), 845-852.

[33]

Guo, Z, Wang, L., 2013. The horizontal distribution pattern of Orchidaceae in China along latitude and longitude. J. Biol., 30(5), 49-53.

[34]

Havens, K, Kramer, A. T., Guerrant Jr, E. O., 2014. Getting plant conservation right (or not): the case of the United States. Int. J. Plant Sci., 175(1), 3-10.

[35]

Hernandez, S, Benham, C, Miller, R. L., Sheaves, M, Duce, S., 2021. What drives modern protected area establishment in Australia?. Conserv. Sci. Pract., 3(10), e501.

[36]

Heywood, V. H., 2017. Plant conservation in the Anthropocene – challenges and future prospects. Plant Divers., 39(6), 314-330.

[37]

Hijmans, R. J., 2001. Global distribution of the potato crop. Am. J. Potato Res., 78(6), 403-412.

[38]

Hua, T, Zhao, W, Cherubini, F, Hu, X, Pereira, P., 2023. Upgrading protected areas can improve or reverse the decline in conservation effectiveness: evidence from the Tibetan Plateau, China. Sci. Total Environ., 873, 162345.

[39]

Huang, J, Huang, J, Liu, C, Zhang, J, Lu, X, Ma, K., 2016. Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biol. Conserv., 198, 104-112.

[40]

Huang, J, Lu, X, Huang, J, Ma, K., 2016. Conservation priority of endemic Chinese flora at family and genus levels. Biodivers. Conserv., 25(1), 23-35.

[41]

Hunger, S. P., Lu, X, Devidas, M, Camitta, B. M., Gaynon, P. S., Winick, N. J., Reaman, G. H., Carroll, W. L., 2012. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group. J. Clin. Oncol., 30(14), 1663-1669.

[42]

Hurlbert, A. H., Jetz, W., 2007. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. U.S.A., 104(33), 13384-13389.

[43]

Hurlbert, A. H., White, E. P., 2005. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett., 8(3), 319-327.

[44]

Isaac, N. J. B., Pocock, M. J. O., 2015. Bias and information in biological records. Biol. J. Linnean Soc., 115(3), 522-531.

[45]

Jetz, W, Rahbek, C., 2002. Geographic range size and determinants of avian species richness. Science 297(5586), 1548-1551.

[46]

Jung, M, Arnell, A, de Lamo, X, Garcia-Rangel, S, Lewis, M, Mark, J, Merow, C, Miles, L, Ondo, I, Pironon, S, Ravilious, C, Rivers, M, Schepaschenko, D, Tallowin, O, van Soesbergen, A, Govaerts, R, Boyle, B. L., Enquist, B. J., Feng, X, Gallagher, R, Maitner, B, Meiri, S, Mulligan, M, Ofer, G, Roll, U, Hanson, J. O., Jetz, W, Di Marco, M, McGowan, J, Rinnan, D. S., Sachs, J. D., Lesiv, M, Adams, V. M., Andrew, S. C., Burger, J. R., Hannah, L, Marquet, P. A., McCarthy, J. K., Morueta-Holme, N, Newman, E. A., Park, D. S., Roehrdanz, P. R, Svenning, J-.C, Violle, C, Wieringa, J. J., Wynne, G, Fritz, S, Strassburg, B. B. N., Obersteiner, M, Kapos, V, Burgess, N, Schmidt-Traub, G, Visconti, P., 2021. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol., 5(11), 1557.

[47]

Khakurel, D, Uprety, Y, Ahn, G, J-Cha, Y, W-Kim, Y, S-Lee, H, Rajbhandary, S., 2022. Diversity, distribution, and sustainability of traditional medicinal plants in Kaski district, western Nepal. Front. Pharmacol., 13, 1076351.

[48]

Khoury, C. K., Amariles, D, Stivens Soto, J, Victoria Diaz, M, Sotelo, S, Sosa, C. C., Ramirez-Villegas, J, Achicanoy, H. A., Velasquez-Tibata, J, Guarino, L, Leon, B, Navarro-Racines, C, Castaneda-Alvarez, N. P., Dempewolf, H, Wiersema, J. H., Jarvis, A., 2019. Comprehensiveness of conservation of useful wild plants: an operational indicator for biodiversity and sustainable development targets. Ecol. Indic., 98, 420-429.

[49]

Krauss, J. E., 2022. Unpacking SDG 15, its targets and indicators: tracing ideas of conservation. Globalizations 19(8), 1179-1194.

[50]

Laffan, S. W., Lubarsky, E, Rosauer, D. F., 2010. Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 33(4), 643-647.

[51]

Leclere, D, Obersteiner, M, Barrett, M, Butchart, S. H. M., Chaudhary, A, De Palma, A, DeClerck, F. A. J., Di Marco, M, Doelman, J. C., Duerauer, M, Freeman, R, Harfoot, M, Hasegawa, T, Hellweg, S, Hilbers, J. P., Hill, S. L. L., Humpenoeder, F, Jennings, N, Krisztin, T, Mace, G. M., Ohashi, H, Popp, A, Purvis, A, Schipper, A. M., Tabeau, A, Valin, H, van Meijl, H, W-Van Zeist, J, Visconti, P, Alkemade, R, Almond, R, Bunting, G, Burgess, N. D., Cornell, S. E., Di Fulvio, F, Ferrier, S, Fritz, S, Fujimori, S, Grooten, M, Harwood, T, Havlik, P, Herrero, M, Hoskins, A. J., Jung, M, Kram, T, Lotze-Campen, H, Matsui, T, Meyer, C, Nel, D, Newbold, T, Schmidt-Traub, G, Stehfest, E, Strassburg, B. B. N., van Vuuren, D. P., Ware, C, Watson, J. E. M., Wu, W, Young, L., 2020. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585(7826), 551-556.

[52]

Lennon, J. J., Beale, C. M., Reid, C. L., Kent, M, Pakeman, R. J., 2011. Are richness patterns of common and rare species equally well explained by environmental variables?. Ecography 34(4), 529-539.

[53]

Li, G, Xiao, N, Luo, Z, Liu, D, Zhao, Z, Guan, X, Zang, C, Li, J, Shen, Z., 2021. Identifying conservation priority areas for gymnosperm species under climate changes in China. Biol. Conserv., 253, 108914.

[54]

Liu, Y, Shen, Z, Wang, Q, Su, X, Zhang, W, Shrestha, N, Xu, X, Wang, Z., 2017. Determinants of richness patterns differ between rare and common species: implications for Gesneriaceae conservation in China. Divers. Distrib., 23(3), 235-246.

[55]

Loarie, S. R., Duffy, P. B., Hamilton, H, Asner, G. P., Field, C. B., Ackerly, D. D., 2009. The velocity of climate change. Nature 462(7276), 1052-1055.

[56]

Loh, J, Harmon, D., 2005. A global index of biocultural diversity. Ecol. Indic., 5(3), 231-241.

[57]

Lopez-Pujol, J, F-Zhang, M, Ge, S., 2006. Plant biodiversity in China: richly varied, endangered, and in need of conservation. Biodivers. Conserv., 15(12), 3983-4026.

[58]

Lopez-Pujol, J, F-Zhang, M, H-Sun, Q, T-Ying, S, Ge, S., 2011. Centres of plant endemism in China: places for survival or for speciation?. J. Biogeogr., 38(7), 1267-1280.

[59]

Ma, L, Pan, J., 2024. Spatial identification and priority conservation areas determination of wilderness in China. J. Clean. Prod., 451, 142069.

[60]

Ma, Z, Chen, Y, Melville, D. S., Fan, J, Liu, J, Dong, J, Tan, K, Cheng, X, Fuller, R. A., Xiao, X, Li, B., 2019. Changes in area and number of nature reserves in China. Conserv. Biol., 33(5), 1066-1075.

[61]

Mattalia, G, McAlvay, A, Teixidor-Toneu, I, Lukawiecki, J, Moola, F, Asfaw, Z, Camara-Leret, R, Diaz, S, Franco, F. M., Halpern, B. S., O'Hara, C, Renard, D, Uprety, Y, Wall, J, Zafra-Calvo, N, Reyes-Garcia, V., 2024. Cultural keystone species as a tool for biocultural stewardship. A global review. People Nat . doi: 10.1002/pan3.10653.

[62]

Maxwell, S. L., Cazalis, V, Dudley, N, Hoffmann, M, Rodrigues, A. S. L., Stolton, S, Visconti, P, Woodley, S, Kingston, N, Lewis, E, Maron, M, Strassburg, B. B. N., Wenger, A, Jonas, H. D., Venter, O, Watson, J. E. M., 2020. Area-based conservation in the twenty-first century. Nature 586(7828), 217-227.

[63]

Mazel, F, Guilhaumon, F, Mouquet, N, Devictor, V, Gravel, D, Renaud, J, Cianciaruso, M. V., Loyola, R, Felizola Diniz-Filho, J. A., Mouillot, D, Thuiller, W., 2014. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr., 23(8), 836-847.

[64]

McLachlan, J. S., Clark, J. S., Manos, P. S., 2005. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86(8), 2088-2098.

[65]

McOwen, C. J., Ivory, S, Dixon, M. J. R., Regan, E. C., Obrecht, A, Tittensor, D. P., Teller, A, Chenery, A. M., 2016. Sufficiency and suitability of global biodiversity indicators for monitoring progress to 2020 targets. Conserv. Lett., 9(6), 489-494.

[66]

Meng, Z, Dong, J, Zhai, J, Huang, L, Liu, M, Ellis, E. C., 2022. Effectiveness in protected areas at resisting development pressures in China. Appl. Geogr., 141, 102682.

[67]

Ministry of, Ecology and, Envionment of the, People’s, Republic ofhina, C., 2018. Bulletin on ecological environment state. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201905/P020190619587632630618.pdf. (accessed 25 November 2022).

[68]

Morgan, J. W., Venn, S., 2017. Alpine plant species have limited capacity for long-distance seed dispersal. Plant Ecol., 218, 813-819.

[69]

Mu, H, Li, X, Wen, Y, Huang, J, Du, P, Su, W, Miao, S, Geng, M., 2022. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 9(1), 176.

[70]

Myers, N, Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772), 853-858.

[71]

Orme, C. D. L., Davies, R. G., Burgess, M, Eigenbrod, F, Pickup, N, Olson, V. A., Webster, A. J, Ding, T-.S, Rasmussen, P. C., Ridgely, R. S., Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J., Owens, I. P. F., 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436(7053), 1016-1019.

[72]

Paneque-Galvez, J, Perez-Llorente, I, Luz, A. C., Gueze, M, J-Mas, F, Macia, M. J., Orta-Martinez, M, Reyes-Garcia, V., 2018. High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon. Ambio 47(8), 908-923.

[73]

Pelletier, T. A., Carstens, B. C., Tank, D. C., Sullivan, J, Espindola, A., 2018. Predicting plant conservation priorities on a global scale. Proc. Natl. Acad. Sci. U.S.A., 115(51), 13027-13032.

[74]

Peng, S. J., Zhang, J, Zhang, X. L., Li, Y. Q., Liu, Y. P., Wang, Z. H., 2022. Conservation of woody species in China under future climate and land-cover changes. J. Appl. Ecol., 59(1), 141-152.

[75]

Pimm, S. L., Jenkins, C. N., Abell, R, Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., Sexton, J. O., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187), 1246752.

[76]

Pironon, S, Borrell, J. S., Ondo, I, Douglas, R, Phillips, C, Khoury, C. K., Kantar, M. B., Fumia, N, Soto Gomez, M, Viruel, J, Govaerts, R, Forest, F, Antonelli, A., 2020. Toward unifying global hotspots of wild and domesticated biodiversity. Plants 9(9), 1128.

[77]

Pironon, S, Ondo, I, Diazgranados, M, Allkin, R, Baquero, A. C., Camara-Leret, R, Canteiro, C, Dennehy-Carr, Z, Govaerts, R, Hargreaves, S, Hudson, A. J., Lemmens, R, Milliken, W, Nesbitt, M, Patmore, K, Schmelzer, G, Turner, R. M., van Andel, T. R., Ulian, T, Antonelli, A, Willis, K. J., 2024. The global distribution of plants used by humans. Science 383(6680), 293-297.

[78]

Pironon, S, Soto Gomez, M., 2021. Plant agrodiversity to the rescue. Nat. Clim. Change 11(1), 6-8.

[79]

Prendergast, J. R., Quinn, R. M., Lawton, J, Eversham, B, Gibbons, D., 1993. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365(6444), 335-337.

[80]

Prendergast, J. R., Wood, S. N., Lawton, J. H., Eversham, B. C., 1993. Correcting for variation in recording effort in analyses of diversity hotspots. Biodivers. Lett., 1(2), 39-53.

[81]

Primack, R. B., Ellwood, E. R., Gallinat, A. S., Miller-Rushing, A. J., 2021. The growing and vital role of botanical gardens in climate change research. New Phytol., 231(3), 917-932.

[82]

Pringle, R. M., 2017. Upgrading protected areas to conserve wild biodiversity. Nature 546(7656), 91-99.

[83]

Qin, F, Xue, T, Yang, X, Zhang, W, Wu, J, Huang, Y, Khan, G, Yu, S., 2022. Conservation status of threatened land plants in China and priority sites for better conservation targets: distribution patterns and conservation gap analysis. Biodiver. Conserv., 31(8–9), 2063-2082.

[84]

Ren, H., 2020. Conservation and Reintroduction of Rare and Endangered Plants in China. Springer

[85]

Ren, H, Blackmore, S., 2023. The role of national botanical gardens to benefit sustainable development. Trends Plant Sci., 28(7), 731-733.

[86]

Reyes-Garcia, V, Camara-Leret, R, Halpern, B. S., O'Hara, C, Renard, D, Zafra-Calvo, N, Diaz, S., 2023. Biocultural vulnerability exposes threats of culturally important species. Proc. Natl. Acad. Sci. U.S.A., 120(2), e2217303120.

[87]

Ribeiro, B. R., Atadeu, M., 2019. Systematic conservation planning: trends and patterns among highly-cited papers. J. Nat. Conserv., 50, 125714.

[88]

Roberts, C. M., McClean, C. J., Veron, J. E. N., Hawkins, J. P., Allen, G. R., McAllister, D. E., Mittermeier, C. G., Schueler, F. W., Spalding, M, Wells, F, Vynne, C, Werner, T. B., 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295(5558), 1280-1284.

[89]

Schaal, B., 2019. Plants and people: our shared history and future. Plants People Planet 1(1), 14-19.

[90]

Shrestha, N, Su, X, Xu, X, Wang, Z., 2018. The drivers of high Rhododendron diversity in south-west China: does seasonality matter?. J. Biogeogr., 45(2), 438-447.

[91]

Shrestha, N, Xu, X, Meng, J, Wang, Z., 2021. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun., 12(1), 1632.

[92]

Song, Y., Wang, X., Yan, E., 2013. Evergreen Broad-leaved Forests in China: Classification, Ecology, Conservation. Science Press, Beijing.

[93]

Stinca, A., 2022. An introduction to conservation biology of vascular plants. Diversity 14(8), 670.

[94]

Struhsaker, T. T., Struhsaker, P. J., Siex, K. S., 2005. Conserving Africa's rain forests: problems in protected areas and possible solutions. Biol. Conserv., 123(1), 45-54.

[95]

Su, Y, Guo, Q, Guan, H, Hu, T, Jin, S, Wang, Z, Liu, L, Jiang, L, Guo, K, Xie, Z., 2022. Human-climate coupled changes in vegetation community complexity of China since 1980s. Earth. Future 10(7), e2021EF002553.

[96]

Sun, S, Sang, W, Axmacher, J. C., 2020. China's national nature reserve network shows great imbalances in conserving the country's mega-diverse vegetation. Sci. Total Environ., 717, 137159.

[97]

Tittensor, D. P., Walpole, M, Hill, S. L. L., Boyce, D. G., Britten, G. L., Burgess, N. D., Butchart, S. H. M., Leadley, P. W., Regan, E. C., Alkemade, R, Baumung, R, Bellard, C, Bouwman, L, Bowles-Newark, N. J., Chenery, A. M., Cheung, W. W. L., Christensen, V, Cooper, H. D., Crowther, A. R., Dixon, M. J. R., Galli, A, Gaveau, V, Gregory, R. D., Gutierrez, N. L., Hirsch, T. L., Hoeft, R, Januchowski-Hartley, S. R., Karmann, M, Krug, C. B., Leverington, F. J., Loh, J, Lojenga, R. K., Malsch, K, Marques, A, Morgan, D. H. W., Mumby, P. J., Newbold, T, Noonan-Mooney, K, Pagad, S. N., Parks, B. C., Pereira, H. M., Robertson, T, Rondinini, C, Santini, L, Scharlemann, J. P. W., Schindler, S, Sumaila, U. R., Teh, L. S. L., van Kolck, J, Visconti, P, Ye, Y., 2014. A mid-term analysis of progress toward international biodiversity targets. Science 346(6206), 241-244.

[98]

Ulicsni, V, Babai, D, Vadasz, C, Vadasz-Besnyoi, V, Baldi, A, Molnar, Z., 2019. Bridging conservation science and traditional knowledge of wild animals: the need for expert guidance and inclusion of local knowledge holders. Ambio 48(7), 769-778.

[99]

Wang, W, Feng, C, Liu, F, Li, J., 2020. Biodiversity conservation in China: a review of recent studies and practices. Environ. Sci. Ecotechnol., 2, 100025.

[100]

Wang, Z, Fang, J, Tang, Z, Shi, L., 2012. Geographical patterns in the beta diversity of China's woody plants: the influence of space, environment and range size. Ecography 35(12), 1092-1102.

[101]

Wurz, A, Tscharntke, T, Martin, D. A., Osen, K, Rakotomalala, A. A. N. A., Raveloaritiana, E, Andrianisaina, F, Droege, S, Fulgence, T. R., Soazafy, M. R., Andriafanomezantsoa, R, Andrianarimisa, A, Babarezoto, F. S., Barkmann, J, Haenke, H, Hoelscher, D, Kreft, H, Rakouth, B, Guerrero-Ramirez, N. R., Ranarijaona, H. L. T., Randriamanantena, R, Ratsoavina, F. M., Ravaomanarivo, L. H. R., Grass, I., 2022. Win-win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry. Nat. Commun., 13(1), 4127.

[102]

Xia, C, Huang, Y, Qi, Y, Yang, X, Xue, T, Hu, R, Deng, H, Bussmann, R. W., Yu, S., 2022. Developing long-term conservation priority planning for medicinal plants in China by combining conservation status with diversity hotspot analyses and climate change prediction. BMC Biol., 20(1), 89.

[103]

Xie, D, X-Liu, Q, Y-Chen, X, Jiao, D, J-Lou, X, X-Qiu, F, W-Xu, H, Z-Wang, H, J-Ran, H, X-Wang, Q., 2021. Distribution and conservation of threatened gymnosperms in China. Glob. Ecol. Conserv., 32, e01915.

[104]

Xie, H, Tang, Y, Fu, J, Chi, X, Du, W, Dimitrov, D, Liu, J, Xi, Z, Wu, J, Xu, X., 2022. Diversity patterns and conservation gaps of Magnoliaceae species in China. Sci. Total Environ., 813, 152665.

[105]

Xu, W-B, J-Svenning, C, G-Chen, K, M-Zhang, G, J-Huang, H, Chen, B, Ordonez, A, K-Ma, P., 2019. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proc. Natl. Acad. Sci. U.S.A., 116(52), 26674-26681.

[106]

Xu, Y, Huang, J, Lu, X, Ding, Y, Zang, R., 2019. Priorities and conservation gaps across three biodiversity dimensions of rare and endangered plant species in China. Biol. Conserv., 229, 30-37.

[107]

Xu, Y, Shen, Z, Ying, L, Wang, Z, Huang, J, Zang, R, Jiang, Y., 2017. Hotspot analyses indicate significant conservation gaps for evergreen broadleaved woody plants in China. Sci. Rep., 7, 1859.

[108]

Xu, Y, Zang, R., 2023. Conservation of rare and endangered plant species in China. iScience 26(2), 106008.

[109]

Yang, Q, Weigelt, P, Fristoe, T. S., Zhang, Z, Kreft, H, Stein, A, Seebens, H, Dawson, W, Essl, F, Koenig, C, Lenzner, B, Pergl, J, Pouteau, R, Pysek, P, Winter, M, Ebel, A. L., Fuentes, N, Giehl, E. L. H., Kartesz, J, Krestov, P, Kukk, T, Nishino, M, Kupriyanov, A, Luis Villasenor, J, Wieringa, J. J., Zeddam, A, Zykova, E, van Kleunen, M., 2021. The global loss of floristic uniqueness. Nat. Commun., 12(1), 7290.

[110]

Ye, J, Shan, Z, Peng, D, Sun, M, Niu, Y, Liu, Y, Zhang, Q, Yang, Y, Lin, Q, Chen, J, Zhu, R, Wang, Y, Chen, Z., 2023. Identifying gaps in the ex situ conservation of native plant diversity in China. Biol. Conserv., 282, 110044.

[111]

Ye, P-C, G-Zhang, F, J-Wu, Y., 2020. Hotspots and conservation gaps: a case study of key higher plant species from Northwest Yunnan, China. Glob. Ecol. Conserv., 23, e01005.

[112]

Yu, F, Skidmore, A. K., Wang, T, Huang, J, Ma, K, Groen, T. A., 2017. Rhododendron diversity patterns and priority conservation areas in China. Divers. Distrib., 23(10), 1143-1156.

[113]

Zeng, Y, L-Wang, E, Zhong, L., 2022. Spatiotemporal variations of human pressure on key biodiversity areas in the Qinghai–Tibet Plateau: a comparative analysis. Front. Ecol. Evol., 10, 960634.

[114]

Zhang, F, Batley, J., 2020. Exploring the application of wild species for crop improvement in a changing climate. Curr. Opin. Plant Biol., 56, 218-222.

[115]

Zhang, H, Qiu, D, Zhu, Y, Han, T, Ren, Y, Yu, S., 2024. Evolutionary distinctiveness and conservation priorities for vascular endemic plants on the Qinghai-Tibet Plateau. Glob. Ecol. Conserv., 54, e03125.

[116]

Zhang, L, Li, J., 2022. Identifying priority areas for biodiversity conservation based on Marxan and InVEST model. Landsc. Ecol., 37(12), 3043-3058.

[117]

Zhang, L, Luo, Z, Mallon, D, Li, C, Jiang, Z., 2017. Biodiversity conservation status in China's growing protected areas. Biol. Conserv., 210, 89-100.

[118]

Zhang, M-G, Z-Zhou, K, W-Chen, Y, Cannon, C. H., Raes, N, Slik, J. W. F., 2014. Major declines of woody plant species ranges under climate change in Yunnan, China. Divers. Distrib., 20(4), 405-415.

[119]

Zhang, Y, Wang, G, Zhuang, H, Wang, L, Innes, J. L., Ma, K., 2021. Integrating hotspots for endemic, threatened and rare species supports the identification of priority areas for vascular plants in SW China. For. Ecol. Manage., 484, 118952.

[120]

Zhang, Z, Yan, Y, Tian, Y, Li, J, J-He, S, Tang, Z., 2015. Distribution and conservation of orchid species richness in China. Biol. Conserv., 181, 64-72.

[121]

Zhao, L, Li, J, Liu, H, Qin, H., 2016. Distribution, congruence, and hotspots of higher plants in China. Sci. Rep., 6, 19080.

[122]

Zhuang, H, Wang, C, Wang, Y, Jin, T, Huang, R, Lin, Z, Wang, Y., 2021. Native useful vascular plants of China: a checklist and use patterns. Plant Divers., 43(2), 134-141.

[123]

Zizka, A, Silvestro, D, Andermann, T, Azevedo, J, Duarte Ritter, C, Edler, D, Farooq, H, Herdean, A, Ariza, M, Scharn, R., 2019. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol., 10(5), 744-751.

[124]

Zou, D, Wang, Q, Luo, A, Wang, Z., 2019. Species richness patterns and resource plant conservation assessments of Rosaceae in China. Chin. J. Plant Ecol., 43(1), 1.

PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

/