Effect of food value-chain connections on land-use change

P.M. Post , Y. Dou , A. Nelson

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100247

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100247 DOI: 10.1016/j.geosus.2024.10.003
Research Article
review-article

Effect of food value-chain connections on land-use change

Author information +
History +
PDF

Abstract

Changes in food production, often driven by distant demand, have a significant influence on sustainable management and use of land and water, and are in turn a driving factor of biodiversity change. While the connection between land use and demand through value chains is increasingly understood, there is no comprehensive conceptualisation of this relationship. To address this gap, we propose a conceptual framework and use it as a basis for a systematic review to characterise value-chain connection and explore its influence on land-use and -cover change. Our search in June 2022 on Web of Science and Scopus yielded 198 documents, describing studies completed after the year 2000 that provide information on both value-chain connection and land-use or -cover change. In total, we used 531 distinct cases to assess how frequently particular types of land-use or -cover change and value-chain connections co-occurred, and synthesized findings on their relations. Our findings confirm that 1) market integration is associated with intensification; 2) land managers with environmental standards more frequently adopt environmentally friendly practices; 3) physical and value-chain distances to consumers play a crucial role, with shorter distances associated with environmentally friendly practices and global chains linked to intensification and expansion. Incorporating these characteristics in existing theories of land-system change, would significantly advance understanding of land managers’ decision-making, ultimately guiding more environmentally responsible production systems and contributing to global sustainability goals.

Keywords

LUCC / Contract farming / Alternative food network / Certification / Supply chain / Deforestation

Cite this article

Download citation ▾
P.M. Post, Y. Dou, A. Nelson. Effect of food value-chain connections on land-use change. Geography and Sustainability, 2025, 6(1): 100247 DOI:10.1016/j.geosus.2024.10.003

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

Data collected in this study, have been made publicly accessible at https://doi.org/10.17026/dans-zce-669a.

CRediT authorship contribution statement

P.M. Post: Writing – original draft, Visualization, Methodology, Formal analysis, Data curation, Conceptualization. Y. Dou: Writing – review & editing, Supervision, Methodology, Investigation, Funding acquisition, Conceptualization. A. Nelson: Writing – review & editing, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research is made possible thanks to the funding of the 4TU.HTSF DeSIRE program of the four universities of technology in the Netherlands. We thank Grietha de Jonge, information specialist at ITC, University of Twente, for her guidance in making the search string for the systematic literature review.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.10.003.

References

[1]

ATLA, S.ti, 2022.ATLA, S.ti, Scientific, Software, Development, Gmb, H [ATLA, S.ti 22 Windows]. https://atlasti.com.

[2]

Bakker, M. M., Alam, S. J., van Dijk, J, Rounsevell, M. D. A., 2015. Land-use change arising from rural land exchange: an agent-based simulation model. Landsc. Ecol., 30 (2) , pp. 273-286. doi: 10.1007/s10980-014-0116-x/.

[3]

Baston, D., 2022. Fast Extraction from Raster Datasets using Polygons [R package exactextractr version 0.9.1]. Compreh. R Arch. Netw. (CRAN)

[4]

Bellemare, M. F., Lim, S., 2018. In all shapes and colors: varieties of contract farming. Appl. Econ. Perspect. Policy, 40 (3) , pp. 379-401. doi: 10.1093/AEPP/PPY019.

[5]

Blackman, A, Rivera, J., 2011. Producer-level benefits of sustainability certification. Conserv. Biol., 25 (6) , pp. 1176-1185. doi: 10.1111/j.1523-1739.2011.01774.x.

[6]

Blackman, A, Naranjo, M. A., 2012. Does eco-certification have environmental benefits? Organic coffee in Costa Rica. Ecol. Econ., 83 , pp. 58-66. doi: 10.1016/j.ecolecon.2012.08.001.

[7]

Brown, D. G., Verburg, P. H., Pontius, R. G., Lange, M. D., 2013. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain., 5 (5) , pp. 452-457. doi: 10.1016/J.COSUST.2013.07.012.

[8]

Bui, T. N., Nguyen, A. H., Le, T. T. H., Nguyen, V. P., Le, T. T. H., Tran, T. T. H., Nguyen, N. M., Le, T. K. O., Nguyen, T. K. O., Nguyen, T. T. T., Dao, H. V., Doan, T. N. T., Vu, T. H. N., Bui, V. H., Hoa, H. C., Lebailly, P., 2021. Can a short food supply chain create sustainable benefits for small farmers in developing countries? An exploratory study of Vietnam. Sustainability, 13 (5) , p. 2443. doi: 10.3390/su13052443.

[9]

Byerlee, D., 2013. African Food Systems to 2030: toward Inclusive Business Models. Center on Food Security and the Environment. Stanford Symposium Series on Global Food Policy and Food Security in the 21st Century.

[10]

Campbell, B. M., Beare, D. J., Bennett, E. M., Hall-Spencer, J. M., Ingram, J. S. I., Jaramillo, F, Ortiz, R, Ramankutty, N, Sayer, J. A., Shindell, D., 2017. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc., 22 (4) , p. 8. doi: 10.5751/ES-09595-220408.

[11]

Castellanos-Navarrete, A, de Castro, F, Pacheco, P., 2021. 81 , pp. 294-304. doi: 10.1016/J.JRURSTUD.2020.10.047.

[12]

Cramb, R, Manivong, V, Newby, J. C., Sothorn, K, Sibat, P. S., 2017. Alternatives to land grabbing: exploring conditions for smallholder inclusion in agricultural commodity chains in Southeast Asia. J. Peasant Stud., 44 (4) , pp. 813-841. doi: 10.1080/03066150.2016.1242482.

[13]

Debonne, N, van Vliet, J, Metternicht, G, Verburg, P., 2021. Agency shifts in agricultural land governance and their implications for land degradation neutrality. Glob. Environ. Change, 66 , Article 102221. doi: 10.1016/J.GLOENVCHA.2020.102221.

[14]

Defries, R. S., Rudel, T, Uriarte, M, Hansen, M., 2010. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci., 3 (3) , pp. 178-181. doi: 10.1038/ngeo756.

[15]

Dou, Y, Millington, J. D. A., Bicudo Da Silva, R. F., McCord, P, Viña, A, Song, Q, Yu, Q, Wu, W, Batistella, M, Moran, E, Liu, J., 2019. Land-use changes across distant places: design of a telecoupled agent-based model. J. Land Use Sci., 14 (3) , pp. 191-209. doi: 10.1080/1747423X.2019.1687769.

[16]

Dou, Y., Yao, G., Herzberger, A., Felipe Bicudo Da Silva, R., Song, Q., Hovis, C., Batistella, M., Moran, E., Wu, W., Liu, J., 2020a. Land-use changes in distant places: implementation of a telecoupled agent-based model. JASSS 23 (1), 11. doi: 10.18564/jasss.4211.

[17]

Dou, Y., da Silva, R.F.B., McCord, P., Zaehringer, J.G., Yang, H., Furumo, P.R., Zhang, J., Pizarro, J.C., Liu, J., 2020b. Understanding how smallholders integrated into pericoupled and telecoupled systems. Sustainability 12 (4), 1596. doi: 10.3390/SU12041596.

[18]

Eakin, H., DeFries, R., Kerr, S., Lambin, E.F., Liu, J., Marcotullio, P.J., Messerli, P., Reenberg, A., Rueda, X., Swaffield, S.R., Wicke, B., Zimmerer, K., 2014. Significance of telecoupling for exploration of land-use change. In: Seto, K., Reenberg, A. (Eds.), Rethinking Global Land Use in an Urban Era. The MIT Press, Cambridge, pp.141–162.

[19]

Ericksen, P. J., 2008. Conceptualizing food systems for global environmental change research. Glob. Environ. Change, 18 (1) , pp. 234-245. doi: 10.1016/j.gloenvcha.2007.09.002.

[20]

Fernandez, M, Goodall, K, Olson, M, Méndez, V. E., 2012. Agroecology and alternative agri-food movements in the United States: toward a sustainable agri-food system. Agroecol. Sustain. Food Syst., 37 (1) , pp. 115-126. doi: 10.1080/10440046.2012.735633.

[21]

Foley, J. A., DeFries, R, Asner, G. P., Barford, C, Bonan, G, Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T, Howard, E. A., Kucharik, C. J., Monfreda, C, Patz, J. A., Prentice, I. C., Ramankutty, N, Snyder, P. K., 2005. Global consequences of land use. Science, 309 (2005), pp. 570-574. doi: 10.1126/science.1111772.

[22]

Follmann, A, Willkomm, M, Nduru, G, Owuor, G, Dannenberg, P., 2021. Continuity under change: towards a spatiotemporal understanding of market-oriented urban and peri-urban agriculture-Insights from Kenya. Appl. Geogr., 135 , Article 102528. doi: 10.1016/j.apgeog.2021.102528.

[23]

Forssell, S, Lankoski, L., 2015. The sustainability promise of alternative food networks: an examination through “alternative” characteristics. Agric. Hum. Value., 32 (1) , pp. 63-75. doi: 10.1007/s10460-014-9516-4.

[24]

Gereffi, G., Humphrey, J., Sturgeon, T., 2006. The governance of global value chains. Rev. Int. Polit. Econ. 12 (1), 78–104. doi: 10.1080/09692290500049805

[25]

Gereffi, G, Lee, J., 2012. Why the world suddenly cares about global supply chains. J. Supply Chain Manag., 48 (3) , pp. 24-32. doi: 10.1111/J.1745-493X.2012.03271.X.

[26]

Golgeci, I., Makhmadshoev, D., Demirbag, M., 2021. Global value chains and the environmental sustainability of emerging market firms: a systematic review of literature and research agenda. Int. Bus. Rev. 30 (5), 101857. doi: 10.1016/J.IBUSREV.2021.101857.

[27]

Gonçalves, H. M., Lourenço, T. F., Silva, G. M., 2016. Green buying behavior and the theory of consumption values: a fuzzy-set approach. J. Bus. Res., 69 (4) , pp. 1484-1491. doi: 10.1016/J.JBUSRES.2015.10.129.

[28]

Grogan, P, Lalnunmawia, F, Tripathi, S. K., 2012. Shifting cultivation in steeply sloped regions: a review of management options and research priorities for Mizoram state, Northeast India. Agrofor. Syst., 84 (2) , pp. 163-177. doi: 10.1007/s10457-011-9469-1.

[29]

Havlík, P., Valin, H., Mosnier, A., Frank, S., Lauri, P., Leclère, D., Palazzo, A., Batka, M., Boere, E., Brouwer, A., Deppermann, A., Ermolieva, T., Forsell, N., di Fulvio, F., Obersteiner, M., Herrero, M., Schmid, E., Schneider, U., Hasegawa, T., 2018. GLOBIOM documentation. Laxenburg, Austria. https://iiasa.github.io/GLOBIOM_FABLE/GLOBIOM_Documentation_20180604.pdf (accessed 4 March 2023).

[30]

Hernández, V, Pedersen, T., 2017. Global value chain configuration: a review and research agenda. BRQ- Bus. Res. Q., 20 (2) , pp. 137-150. doi: 10.1016/J.BRQ.2016.11.001.

[31]

Hernandez-Aguilera, J. N., Gómez, M. I., Rodewald, A. D., Rueda, X, Anunu, C, Bennett, R, van Es, H. M., 2018. Quality as a driver of sustainable agricultural value chains: the case of the relationship coffee model. Bus. Strateg. Environ., 27 (2) , pp. 179-198. doi: 10.1002/bse.2009.

[32]

Hersperger, A. M., Gennaio, M. P., Verburg, P. H., Bürgi, M., 2010. Linking land change with driving forces and actors: four conceptual models. Ecol. Soc., 15(4), 1.

[33]

Hijmans, R.J., Bivand, R., Pebesma, E., Sumner, M.D., 2023. terra: spatial Data Analysis (version 1.7-55). https://CRAN.R-project.org/package = terra (accessed 8 December 2023).

[34]

Hu, Y, Zheng, J, Kong, X, Sun, J, Li, Y., 2019. Carbon footprint and economic efficiency of urban agriculture in Beijing—a comparative case study of conventional and home-delivery agriculture. J. Clean. Prod., 234 , pp. 615-625. doi: 10.1016/j.jclepro.2019.06.122.

[35]

Ingram, J., 2011. A food systems approach to researching food security and its interactions with global environmental change. Food Secur., 3 (4) , pp. 417-431. doi: 10.1007/s12571-011-0149-9.

[36]

IPBES, 2019. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn, Germany.

[37]

Iwamura, T, Lambin, E. F., Silvius, K. M., Luzar, J. B., Fragoso, J. M. V., 2014. Agent-based modeling of hunting and subsistence agriculture on indigenous lands: understanding interactions between social and ecological systems. Environ. Modell. Softw., 58 , pp. 109-127. doi: 10.1016/J.ENVSOFT.2014.03.008.

[38]

Jayathilake, H. M., Prescott, G. W., Carrasco, L. R., Rao, M, Symes, W. S., 2021. Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio, 50 (1) , pp. 215-228. doi: 10.1007/s13280-020-01325-9.

[39]

Keys, E., 2005. Exploring market-based development: market intermediaries and farmers in Calakmul, Mexico. Geogr. Rev., 95 (1) , pp. 24-46. doi: 10.1111/j.1931-0846.2005.tb00190.x.

[40]

Khan, S. N., Mohsin, M., 2017. The power of emotional value: exploring the effects of values on green product consumer choice behavior. J. Clean. Prod., 150 , pp. 65-74. doi: 10.1016/J.JCLEPRO.2017.02.187.

[41]

Kinnunen, P, Guillaume, J. H. A., Taka, M, D'Odorico, P, Siebert, S, Puma, M. J., Jalava, M, Kummu, M., 2020. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food, 1 (4) , pp. 229-237. doi: 10.1038/s43016-020-0060-7.

[42]

Klein Goldewijk, K, Beusen, A, Doelman, J, Stehfest, E., 2017. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth Syst. Sci. Data, 9 (2) , pp. 927-953. doi: 10.5194/essd-9-927-2017.

[43]

Kneafsey, M, Venn, L, Schmutz, U, Balázs, B, Trenchard, L, Eyden-Wood, T, Bos, E, Sutton, G, Blackett, M., 2013. Short food supply chains and local food systems in the EU: a state of play of their socio-economic characteristics. European Commission . doi: 10.2791/88784.

[44]

Kremmydas, D, Athanasiadis, I. N., Rozakis, S., 2018. A review of Agent Based Modeling for agricultural policy evaluation. Agric. Syst., 164 , pp. 95-106. doi: 10.1016/J.AGSY.2018.03.010.

[45]

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A, Bruce, J. W., Coomes, O. T., Dirzo, R, Fischer, G, Folke, C, George, P. S., Homewood, K, Imbernon, J, Leemans, R, Li, X, Moran, E. F., Mortimore, M, Ramakrishnan, P. S., Richards, J. F., Skånes, H, Steffen, W, Stone, G. D., Svedin, U, Veldkamp, T. A., Vogel, C, Xu, J., 2001. The causes of land-use and land-cover change: moving beyond the myths. Glob. Environ. Change, 11 (4) , pp. 261-269. doi: 10.1016/S0959-3780(01)00007-3.

[46]

Lamine, C., 2015. Sustainability and resilience in agrifood systems: reconnecting agriculture, food and the environment. Sociol. Rural., 55 (1) , pp. 41-61. doi: 10.1111/soru.12061.

[47]

Lee, J., Gereffi, G., Beauvais, J., 2012. Global value chains and agrifood standards: challenges and possibilities for smallholders in developing countries. Proc. Natl. Acad. Sci. U.S.A. 109 (31), 12326–12331. doi: 10.1073/PNAS.0913714108.

[48]

Leguizamón, A., 2016. Disappearing nature? Agribusiness, biotechnology and distance in Argentine soybean production. J. Peasant Stud., 43 (2) , pp. 313-330. doi: 10.1080/03066150.2016.1140647.

[49]

Lin, H. L., 2016. The resilient landscape: Fijian village gardens in the age of commercial agriculture. Taiwan J. Anthropol., 14(1), 113-148.

[50]

Liu, J, Hull, V, Batistella, M, de Fries, R, Dietz, T, Fu, F, Hertel, T. W., Cesar Izaurralde, R, Lambin, E. F., Li, S, Martinelli, L. A., McConnell, W. J., Moran, E. F., Naylor, R, Ouyang, Z, Polenske, K. R., Reenberg, A, Rocha, G. M., Simmons, C. S., Verburg, P. H., Vitousek, P. M., Zhang, F, Zhu, C., 2013. Framing sustainability in a telecoupled world. Ecol. Soc., 18 (2) , p. 26. doi: 10.5751/ES-05873-180226.

[51]

Liu, J., 2017. Integration across a metacoupled world. Ecol. Soc., 22 (4) , p. 29. doi: 10.5751/ES-09830-220429.

[52]

Longo, S, York, R., 2008. Agricultural exports and the environment: a cross-national study of fertilizer and pesticide consumption. Rural Sociol., 73 (1) , pp. 82-104. doi: 10.1526/003601108783575853.

[53]

Magliocca, N., McConnell, V., Walls, M., 2015. Exploring sprawl: results from an economic agent-based model of land and housing markets. Ecol. Econ. 113, 114–125. doi: 10.1016/J.ECOLECON.2015.02.020.

[54]

Malek, Ž, Douw, B, Van Vliet, J, Van Der Zanden, E. H., Verburg, P. H., 2019. Local land-use decision-making in a global context. Environ. Res. Lett., 14 (8) , Article 083006. doi: 10.1088/1748-9326/AB309E.

[55]

Malek, Ž, Verburg, P. H., 2020. Mapping global patterns of land use decision-making. Glob. Environ. Change, 65 , Article 102170. doi: 10.1016/J.GLOENVCHA.2020.102170.

[56]

Manning, N., Li, Y., Liu, J., 2023. Broader applicability of the metacoupling framework than Tobler’s first law of geography for global sustainability: a systematic review. Geogr. Sustain. 4 (1), 6–18. doi: 10.1016/j.geosus.2022.11.003.

[57]

Medici, M., Canavari, M., Castellini, A., 2021. Exploring the economic, social, and environmental dimensions of community-supported agriculture in Italy. J. Clean. Prod. 316, 128233. doi: 10.1016/j.jclepro.2021.128233.

[58]

Meyfroidt, P, Roy Chowdhury, R, de Bremond, A, Ellis, E. C., Erb, K. H., Filatova, T, Garrett, R. D., Grove, J. M., Heinimann, A, Kuemmerle, T, Kull, C. A., Lambin, E. F., Landon, Y, le Polain de Waroux, Y, Messerli, P, Müller, D, Nielsen, J, Peterson, G. D., Rodriguez García, V, Schlüter, M, Turner, B. L., Verburg, P. H., 2018. Middle-range theories of land system change. Glob. Environ. Change, 53 , pp. 52-67. doi: 10.1016/j.gloenvcha.2018.08.006.

[59]

Meyfroidt, P, De Bremond, A, Ryan, C. M., Archer, E, Aspinall, R, Chhabra, A, Camara, G, Corbera, E, Defries, R, Iaz, S. D., Dong, J, Ellis, E. C., Erb, K. H., Fisher, J. A., Garrett, R. D., Golubiewski, N. E., Grau, H. R., Grove, J. M., Haberl, H, Heinimann, A, Hostert, P, Jobbágy, E. G., Kerr, S, Kuemmerle, T, Lambin, E. F., Lavorel, S, Lele, S, Mertz, O, Messerli, P, Metternicht, G, Munroe, D. K., 2020. Ten facts about land systems for sustainability. Proc. Natl. Acad. Sci. U.S.A., 119 (7) . doi: 10.1073/pnas.2109217118.

[60]

Mialhe, F., Becu, N., Gunnell, Y., 2012. An agent-based model for analyzing land use dynamics in response to farmer behaviour and environmental change in the Pampanga delta (Philippines). Agric. Ecosyst. Environ. 161, 55–69. doi: 10.1016/j.agee.2012.07.016.

[61]

Milford, A. B., Lien, G, Reed, M., 2021. Different sales channels for different farmers: local and mainstream marketing of organic fruits and vegetables in Norway. J. Rural Stud., 88 , pp. 279-288. doi: 10.1016/j.jrurstud.2021.08.018.

[62]

Moher, D, Shamseer, L, Clarke, M, Ghersi, D, Liberati, A, Petticrew, M, Shekelle, P, Stewart, L. A., Estarli, M, Barrera, E. S. A., Martínez-Rodríguez, R, Baladia, E, Agüero, S. D., Camacho, S, Buhring, K, Herrero-López, A, Gil-González, D. M., Altman, D. G., Booth, A, A-Chan, W, Chang, S, Clifford, T, Dickersin, K, Egger, M, Gøtzsche, P. C., Grimshaw, J. M., Groves, T, Helfand, M., 2016. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev. Esp. Nutr. Hum. Diet., 20 (2) , pp. 148-160. doi: 10.1186/2046-4053-4-1.

[63]

Murray-Rust, D, Brown, C, van Vliet, J, Alam, S. J., Robinson, D. T., Verburg, P. H., Rounsevell, M., 2014. Combining agent functional types, capitals and services to model land use dynamics. Environ. Modell. Softw., 59 , pp. 187-201. doi: 10.1016/j.envsoft.2014.05.019.

[64]

Muscat, A, de Olde, E. M., de Boer, I. J. M., Ripoll-Bosch, R., 2020. The battle for biomass: a systematic review of food-feed-fuel competition. Glob. Food Secur., 25 , Article 100330. doi: 10.1016/j.gfs.2019.100330.

[65]

Newsome, L., 2020. Beyond ‘get big or get out’: female farmers’ responses to the cost-price squeeze of Australian agriculture. J. Rural Stud., 79 , pp. 57-64. doi: 10.1016/j.jrurstud.2020.08.040.

[66]

Newton, P., Agrawal, A., Wollenberg, L., 2013. Enhancing the sustainability of commodity supply chains in tropical forest and agricultural landscapes. Glob. Environ. Change 23 (6), 1761–1772. doi: 10.1016/j.gloenvcha.2013.08.004.

[67]

Ouzzani, M, Hammady, H, Fedorowicz, Z, Elmagarmid, A., 2016. Rayyan–a web and mobile app for systematic reviews. Syst. Rev., 5 (1) , p. 210. doi: 10.1186/s13643-016-0384-4.

[68]

Pebesma, E., Bivand, R., 2023. Spatial Data Science: With Applications in R. Chapman and Hall/CRC, New York. https://doi.org/10.1201/9780429459016.

[69]

Pépin, A, Morel, K, van der Werf, H. M. G., 2021. Conventionalised vs. agroecological practices on organic vegetable farms: investigating the influence of farm structure in a bifurcation perspective. Agric. Syst., 190 , Article 103129. doi: 10.1016/j.agsy.2021.103129.

[70]

Pesci, S, Brinkley, C., 2021. Can a Farm-to-Table restaurant bring about change in the food system? A case study of Chez Panisse. Food Cult. Soc., 25 (5) , pp. 997-1018. doi: 10.1080/15528014.2021.1948754.

[71]

Plews-Ogan, E, Mariola, M. J., Ananta, A., 2017. Polyculture, autonomy, and community: the pursuit of sustainability in a northern Thai farming village. Int. J. Agric. Sustain., 15 (4) , pp. 418-431. doi: 10.1080/14735903.2017.1335044.

[72]

Post, P.M., Dou, Y., Nelson, A., 2022. Effect of food value-chain connection-type on landuse change: protocol for a systematic review. OSF. https://osf.io/3nsfa (accessed 23 November 2022).

[73]

Princen, T., 1997. The shading and distancing of commerce: when internalization is not enough. Ecol. Econ., 20 (3) , pp. 235-253. doi: 10.1016/S0921-8009(96)00085-7.

[74]

R Core Team, 2022. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[75]

Reis, T. N. P., Meyfroidt, P, zu Ermgassen, E. K. H. J., West, C, Gardner, T, Bager, S, Croft, S, Lathuillière, M. J., Godar, J., 2020. Understanding the stickiness of commodity supply chains is key to improving their sustainability. One Earth, 3 (1) , pp. 100-115. doi: 10.1016/J.ONEEAR.2020.06.012.

[76]

Reis, T. N. P., Ribeiro, V, Garrett, R. D., Kuemmerle, T, Rufin, P, Guidotti, V, Amaral, P. C., Meyfroidt, P., 2023. Explaining the stickiness of supply chain relations in the Brazilian soybean trade. Glob. Environ. Change, 78 , Article 102633. doi: 10.1016/J.GLOENVCHA.2022.102633.

[77]

Ren, Y, Peng, Y, Castro Campos, B, Li, H., 2021. The effect of contract farming on the environmentally sustainable production of rice in China. Sustain. Prod. Consum., 28 , pp. 1381-1395. doi: 10.1016/J.SPC.2021.08.011.

[78]

Schmill, M, Gordon, L. M., Magliocca, N. R., Ellis, E. C., Oates, T., 2014. GLOBE: analytics for assessing global representativeness. 5th International Conference on Computing for Geospatial Research and Application , pp. 4-6. doi: 10.1109/COM.Geo.2014.21.

[79]

Schoolman, E. D., 2019. Do direct market farms use fewer agricultural chemicals? Evidence from the US census of agriculture. Renew. Agric. Food Syst., 34 (5) , pp. 415-429. doi: 10.1017/S1742170517000758.

[80]

Shaw Hughner, R, McDonagh, P, Prothero, A, Shultz II, C. J., Stanton, J., 2007. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav., 6 (2–3) , pp. 94-110. doi: 10.1002/CB.210.

[81]

Shindelar, R., 2015. The ecological sustainability of local food systems. RCC Perspectives, No. 1, Think Global, Eat Local: Exploring Foodways, pp. 19–24. https://www.jstor.org/stable/26241302.

[82]

Sikor, T, Auld, G, Bebbington, A. J., Benjaminsen, T. A., Gentry, B. S., Hunsberger, C, Izac, A. M., Margulis, M. E., Plieninger, T, Schroeder, H, Upton, C., 2013. Global land governance: from territory to flow?. Curr. Opin. Environ. Sustain., 5 (5) , pp. 522-527. doi: 10.1016/J.COSUST.2013.06.006.

[83]

Sutradhar, R, Nuthalapati, C. S. R., Bellemare, M. F., 2019. Whither the pin factory? Modern food supply chains and specialization in India. Agric. Econ., 50 (4) , pp. 395-405. doi: 10.1111/agec.12498.

[84]

Takahashi, R, Todo, Y., 2013. The impact of a shade coffee certification program on forest conservation: a case study from a wild coffee forest in Ethiopia. J. Environ. Manage., 130 , pp. 48-54. doi: 10.1016/j.jenvman.2013.08.025.

[85]

Trienekens, J. H., 2011. Agricultural value chains in developing countries a framework for analysis. Int. Food Agribus. Manag. Rev., 14(2), 51-82.

[86]

United Nations, 2015. Transforming our world: the 2030 Agenda for sustainable development. https://sdgs.un.org/2030agenda (accessed 29 March 2022).

[87]

Valbuena, D, Verburg, P. H., Bregt, A. K., 2008. A method to define a typology for agent-based analysis in regional land-use research. Agric. Ecosyst. Environ., 128 (1–2) , pp. 27-36. doi: 10.1016/J.AGEE.2008.04.015.

[88]

Valencia, V., Wittman, H., Blesh, J., 2019. Structuring markets for resilient farming systems. Agron. Sustain. Dev. 39 (2), 25. doi: 10.1007/s13593-019-0572-4.

[89]

van Asselen, S, Verburg, P. H., 2012. A land system representation for global assessments and land-use modeling. Glob. Change Biol., 18 (10) , pp. 3125-3148. doi: 10.1111/j.1365-2486.2012.02759.x.

[90]

Van Asselen, S, Verburg, P. H., 2013. Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Glob. Change Biol., 19 (12) , pp. 3648-3667. doi: 10.1111/gcb.12331.

[91]

van Vliet, J, Magliocca, N. R., Büchner, B, Cook, E, Rey Benayas, J. M., Ellis, E. C., Heinimann, A, Keys, E, Lee, T. M., Liu, J, Mertz, O, Meyfroidt, P, Moritz, M, Poeplau, C, Robinson, B. E., Seppelt, R, Seto, K. C., Verburg, P. H., 2016. Meta-studies in land use science: current coverage and prospects. Ambio, 45 (1) , pp. 15-28. doi: 10.1007/s13280-015-0699-8.

[92]

Verburg, P. H., Erb, K. H., Mertz, O, Espindola, G., 2013. Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain., 5 (5) , pp. 433-437. doi: 10.1016/J.COSUST.2013.08.001.

[93]

Williams, T. G., Bui, S, Conti, C, Debonne, N, Levers, C, Swart, R, Verburg, P. H., 2023. Synthesising the diversity of European agri-food networks: a meta-study of actors and power-laden interactions. Glob. Environ. Change, 83 , Article 102746. doi: 10.1016/J.GLOENVCHA.2023.102746.

[94]

Winkler, K, Fuchs, R, Rounsevell, M, Herold, M., 2021. Global land use changes are four times greater than previously estimated. Nat. Commun., 12 (1) , p. 2501. doi: 10.1038/s41467-021-22702-2.

[95]

Zhang, Q, Sannigrahi, S, Bilintoh, T. M., Zhang, R, Xiong, B, Tao, S, Bilsborrow, R, Song, C., 2022. Understanding human-environment interrelationships under constrained land-use decisions with a spatially explicit agent-based model. Anthropocene, 38 , Article 100337. doi: 10.1016/J.ANCENE.2022.100337.

[96]

Zhang, X, Yu, X., 2021. Short supply chain participation, and agrochemicals’ use intensity and efficiency: evidence from vegetable farms in China. China Agric. Econ. Rev., 13 (4) , pp. 721-735. doi: 10.1108/CAER-05-2020-0108.

[97]

Zu Ermgassen, E. K. H. J., Godar, J, Lathuillière, M. J., Löfgren, P, Gardner, T, Vasconcelos, A, Meyfroidt, P., 2020. The origin, supply chain, and deforestation risk of Brazil's beef exports. Proc. Natl. Acad. Sci. U.S.A., 117 (50) , pp. 31770-31779. doi: 10.1073/pnas.2003270117.

PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

/