Global meta-analysis reveals different grazing management strategies change greenhouse gas emissions and global warming potential in grasslands

Lingfan Wan , Guohua Liu , Xukun Su

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100251

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100251 DOI: 10.1016/j.geosus.2024.09.012
Research Article
review-article

Global meta-analysis reveals different grazing management strategies change greenhouse gas emissions and global warming potential in grasslands

Author information +
History +
PDF

Abstract

Grazing management significantly influences greenhouse gas (GHG) emissions and the global warming potential (GWP) in grasslands. Yet, a limited understanding of the impact of grazing and grazing exclusion on GHG emissions and GWP in grasslands hinders progress towards grassland ecosystem sustainability and GHG mitigation. We conducted a global meta-analysis of 75 published studies to investigate the effects of grazing and grazing exclusion on methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O), and GWP. Our results revealed that grazing and grazing exclusion significantly increased the CO2 and CH4 emissions, respectively. The responses of GHG emissions and GWP to grazing were regulated by grazing intensity and elevation. We also found that light grazing significantly decreased GWP but heavy grazing increased GWP. Reducing grazing intensity was a simple and effective method through stocking rate adjustment, which promised a large GHG mitigation potential. Our results demonstrated that GHG emissions increased with elevation under grassland grazing, implying that irrational grazing in high-elevation grasslands promoted GHG emissions. In comparison with grazing, only long-term grazing exclusion reduced the GWP, and CH4 emissions enhanced with grazing exclusion duration. However, long-term grazing exclusion may shift economic demand and grazing burden to other areas. Overall, we suggested that regulating the grazing intensity, rather than grazing exclusion, was an effective way to reduce GHG emissions. Our study contributed to the enhancement of sustainable grazing management practices for GHG balance and GWP in global grasslands, and offered a global picture for understanding the changes in GHG emissions and GWP under different grazing management regimes.

Keywords

Grazing management / Global grasslands / Greenhouse gases (GHG) emissions / Global warming potential (GWP) / Meta-analysis

Cite this article

Download citation ▾
Lingfan Wan, Guohua Liu, Xukun Su. Global meta-analysis reveals different grazing management strategies change greenhouse gas emissions and global warming potential in grasslands. Geography and Sustainability, 2025, 6(3): 100251 DOI:10.1016/j.geosus.2024.09.012

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Lingfan Wan: Writing – original draft, Methodology, Formal analysis, Data curation, Conceptualization. Guohua Liu: Writing – review & editing, Visualization, Validation, Supervision. Xukun Su: Writing – review & editing, Visualization, Supervision.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank all the people who helped us to complete the study. This study was supported by National Natural Science Foundation of China (Grant No. 72394401).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.09.012.

References

[1]

Bai, Y. F., Cotrufo, M. F., 2022. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 377(6606), 603-608.

[2]

Bardgett, R. D., Bullock, J. M., Lavorel, S, Manning, P, Schaffner, U, Ostle, N, Chomel, M, Durigan, G, Fry, E. L., Johnson, D, Lavallee, J. M., Le Provost, G, Luo, S, Png, K, Sankaran, M, Hou, X. Y., Zhou, H. K., Ma, L, Ren, W. B., Li, X. L., Ding, Y, Li, Y. H., Shi, H. X., 2021. Combatting global grassland degradation. Nat. Rev. Earth Environ., 2(10), 720-735.

[3]

Bardgett, R. D., Wardle, D. A., Yeates, G. W., 1998. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol. Biochem., 30(14), 1867-1878.

[4]

Baronti, S, Ungaro, F, Maienza, A, Ugolini, F, Lagomarsino, A, Agnelli, A. E., Calzolari, C, Pisseri, F, Robbiati, G, Vaccari, F. P., 2022. Rotational pasture management to increase the sustainability of mountain livestock farms in the Alpine region. Reg. Environ. Change 22(2), 50.

[5]

Busman, N. A., Maie, N, Ishak, C. F., Sulaiman, M. F., Melling, L., 2021. Effect of compaction on soil CO2 and CH4 fluxes from tropical peatland in Sarawak, Malaysia. Environ. Dev. Sustain., 23(8), 11646-11659.

[6]

Cardoso, A. D., Brito, L. D., Janusckiewicz, E. R., Morgado, E. D., Barbero, R. P., Koscheck, J. F. W., Reis, R. A., Ruggieri, A. C., 2017. Impact of grazing intensity and seasons on greenhouse gas emissions in tropical grassland. Ecosystems 20(4), 845-859.

[7]

Chen, Y, Han, M, Qin, W, Hou, Y, Zhang, Z, Zhu, B., 2024. Effects of whole-soil warming on CH4 and N2O fluxes in an alpine grassland. Glob. Change Biol., 30(1), e17033.

[8]

Conant, R. T., Cerri, C. E. P., Osborne, B. B., Paustian, K., 2017. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl., 27(2), 662-668.

[9]

Conant, R. T., Paustian, K, Elliott, E. T., 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl., 11(2), 343-355.

[10]

Cordier, J. M., Aguilar, R, Lescano, J. N., Leynaud, G. C., Bonino, A, Miloch, D, Loyola, R, Nori, J., 2021. A global assessment of amphibian and reptile responses to land-use changes. Biol. Conserv., 253, 108863.

[11]

Curry, C. L., 2009. The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6(11), 2355-2367.

[12]

da Rocha, A. E. Q., Santos, E. A., Owensby, C., 2023. Partitioning evapotranspiration and carbon flux in ungrazed and grazed tallgrass prairie. Agric. Ecosyst. Environ., 343, 108285.

[13]

Deng, L, Shangguan, Z, Bell, S. M., Soromotin, A. V., Peng, C, An, S, Wu, X, Xu, X, Wang, K, Li, J, Tang, Z, Yan, W, Zhang, F, Li, J, Wu, J, Kuzyakov, Y., 2023. Carbon in Chinese grasslands: meta-analysis and theory of grazing effects. Carbon Res., 2(1), 19.

[14]

Dong, S, Shang, Z, Gao, J, Boone, R. B., 2020. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ., 287, 106684.

[15]

Du, C. J., Wu, X, Wang, F. F., Wang, R, Zheng, X. H., , Y. H., Fu, B. J., 2023. Light grazing reduces gaseous nitrogen emissions from temperate grassland soils during freeze-thaw cycles: an intact core incubation study. Soil Biol. Biochem., 186, 109166.

[16]

Egger, M, Smith, G. D., Schneider, M, Minder, C., 1997. Bias in meta-analysis detected by a simple, graphical test. BMJ-Brit. Med. J., 315(7109), 629-634.

[17]

Feng, Z. H., Wang, L. Q., Wan, X. M., Yang, J, Peng, Q, Liang, T, Wang, Y. Z., Zhong, B. Q., Rinklebe, J., 2022. Responses of soil greenhouse gas emissions to land use conversion and reversion–a global meta-analysis. Glob. Change Biol., 28(22), 6665-6678.

[18]

Fick, S. E., Hijmans, R. J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37(12), 4302-4315.

[19]

Guan, Y. L., Liu, J. G., Cui, W. H., Chen, D. L., Zhang, J. K., Lu, H. W., Maeda, E. E., Zeng, Z. Z., Beck, H. E., 2024. Elevation regulates the response of climate heterogeneity to climate change. Geophys. Res. Lett., 51(12), e2024GL109483.

[20]

Guo, N, Wang, A. D., Degen, A. A., Deng, B, Shang, Z. H., Ding, L. M., Long, R. J., 2018. Grazing exclusion increases soil CO2 emission during the growing season in alpine meadows on the Tibetan Plateau. Atmos. Environ., 174, 92-98.

[21]

He, T, Ding, W, Cheng, X, Cai, Y, Zhang, Y, Xia, H, Wang, X, Zhang, J, Zhang, K, Zhang, Q., 2024. Meta-analysis shows the impacts of ecological restoration on greenhouse gas emissions. Nat. Commun., 15(1), 2668.

[22]

He, Z. J., Cao, H. X., Qi, C, Hu, Q. Y., Liang, J. P., Li, Z. J., 2024. Straw management in paddy fields can reduce greenhouse gas emissions: a global meta-analysis. Field Crop. Res., 306, 109218.

[23]

Hedges, L. V., Gurevitch, J, Curtis, P. S., 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80(4), 1150-1156.

[24]

Hengl, T, de Jesus, J. M., Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M, Blagotic, A, Shangguan, W, Wright, M. N., Geng, X. Y., Bauer-Marschallinger, B, Guevara, M. A., Vargas, R, MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E, Wheeler, I, Mantel, S, Kempen, B., 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12(2), e0169748.

[25]

Hirota, M, Tang, Y. H., Hu, Q. W., Kato, T, Hirata, S, Mo, W. H., Cao, G. M., Mariko, S., 2005. The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai-Tibetan Plateau. Atmos. Environ., 39(29), 5255-5259.

[26]

Hu, Y. G., Chang, X. F., Lin, X. W., Wang, Y. F., Wang, S. P., Duan, J. C., Zhang, Z. H., Yang, X. X., Luo, C. Y., Xu, G. P., Zhao, X. Q., 2010. Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan Plateau. Soil Biol. Biochem., 42(6), 944-952.

[27]

Klumpp, K, Fontaine, S, Attard, E, Le Roux, X, Gleixner, G, Soussana, J. F., 2009. Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. J. Ecol., 97(5), 876-885.

[28]

Klumpp, K, Soussana, J. F., Falcimagne, R., 2007. Effects of past and current disturbance on carbon cycling in grassland mesocosms. Agric. Ecosyst. Environ., 121(1–2), 59-73.

[29]

Luo, C. Y., Wang, S. P., Zhang, L. R., Wilkes, A, Zhao, L, Zhao, X. Q., Xu, S. X., Xu, B., 2020. CO2, CH4 and N2O fluxes in an alpine meadow on the Tibetan Plateau as affected by N-addition and grazing exclusion. Nutr. Cycl. Agroecosyst., 117(1), 29-42.

[30]

Ma, Z. L., Shrestha, B. M., Bork, E. W., Chang, S. X., Carlyle, C. N., Döbert, T. F., Sobrinho, L. S., Boyce, M. S., 2021. Soil greenhouse gas emissions and grazing management in northern temperate grasslands. Sci. Total Environ., 796, 148975.

[31]

Malhi, Y, Girardin, C. A. J., Goldsmith, G. R., Doughty, C. E., Salinas, N, Metcalfe, D. B., Huasco, W. H., Silva-Espejo, J. E., del Aguilla-Pasquell, J, Amézquita, F. F., Aragao, L, Guerrieri, R, Ishida, F. Y., Bahar, N. H. A., Farfan-Rios, W, Phillips, O. L., Meir, P, Silman, M., 2017. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol., 214(3), 1019-1032.

[32]

McSherry, M. E., Ritchie, M. E., 2013. Effects of grazing on grassland soil carbon: a global review. Glob. Change Biol., 19(5), 1347-1357.

[33]

Owensby, C. E., Ham, J. M., Auen, L. M., 2006. Fluxes of CO2 from grazed and ungrazed tallgrass prairie. Rangel. Ecol. Manage., 59(2), 111-127.

[34]

Peng, Y. F., Wang, G. Q., Li, F, Zhou, G. Y., Yang, G. B., Fang, K, Liu, L, Qin, S. Q., Zhang, D. Y., Yang, Y. H., 2018. Soil temperature dynamics modulate N2O flux response to multiple nitrogen additions in an Alpine Steppe. J. Geophys. Res. Biogeosci., 123(10), 3308-3319.

[35]

Quiroga, A, Fernández, R, Noellemeyer, E., 2009. Grazing effect on soil properties in conventional and no-till systems. Soil Tillage Res., 105(1), 164-170.

[36]

Robinson, T. P., Wint, G. R. W., Conchedda, G, Van Boeckel, T. P., Ercoli, V, Palamara, E, Cinardi, G, D'Aietti, L, Hay, S. I., Gilbert, M., 2014. Mapping the global distribution of livestock. PLoS One 9(5), e96084.

[37]

Rojas-Downing, M. M., Nejadhashemi, A. P., Harrigan, T, Woznicki, S. A., 2017. Climate change and livestock: impacts, adaptation, and mitigation. Clim. Risk Manage., 16, 145-163.

[38]

Saggar, S, Luo, J, Giltrap, D. L., Maddena, M., 2009. Nitrous oxide emissions from temperate grasslands: processes, measurements, modeling and mitigation. A.I. Sheldon, E.P. Barnhart (Eds.), Nitrous Oxide Emissions Research Progress, Nova Science Publishers, Hauppauge

[39]

Savadogo, P, Sawadogo, L, Tiveau, D., 2007. Effects of grazing intensity and prescribed fire on soil physical and hydrological properties and pasture yield in the savanna woodlands of Burkina Faso. Agric. Ecosyst. Environ., 118(1–4), 80-92.

[40]

Scheiner, S. M., Reybenayas, J. M., 1994. Global patterns of plant diversity. Evol. Ecol., 8(4), 331-347.

[41]

Schönbach, P, Wolf, B, Dickhöfer, U, Wiesmeier, M, Chen, W. W., Wan, H. W., Gierus, M, Butterbach-Bahl, K, Kögel-Knabner, I, Susenbeth, A, Zheng, X. H., Taube, F., 2012. Grazing effects on the greenhouse gas balance of a temperate steppe ecosystem. Nutr. Cycl. Agroecosyst., 93(3), 357-371.

[42]

Schrama, M, Quist, C. W., de Groot, G. A., Cieraad, E, Ashworth, D, Laros, I, Hansen, L. H., Leff, J, Fierer, N, Bardgett, R. D., 2011. 2023. Cessation of grazing causes biodiversity loss and homogenization of soil food webs. Proc. R. Soc. B-Biol. Sci., 290, 20231345.

[43]

Stevens, J. R., Taylor, A. M., 2009. Hierarchical dependence in meta-analysis. J. Educ. Behav. Stat., 34(1), 46-73.

[44]

Sun, J, Fu, B. J., Zhao, W. W., Liu, S. L., Liu, G. H., Zhou, H. K., Shao, X. Q., Chen, Y. C., Zhang, Y, Deng, Y. F., 2021. Optimizing grazing exclusion practices to achieve Goal 15 of the sustainable development goals in the Tibetan Plateau. Sci. Bull., 66(15), 1493-1496.

[45]

Sun, J, Liang, E. Y., Barrio, I. C., Chen, J, Wang, J. N., Fu, B. J., 2021. Fences undermine biodiversity targets. Science 374(6565), 269.

[46]

Sun, J, Wang, Y, Lee, T. M., Nie, X, Wang, T, Liang, E, Wang, Y, Zhang, L, Wang, J, Piao, S, Chen, F, Fu, B., 2024. Nature-based solutions can help restore degraded grasslands and increase carbon sequestration in the Tibetan Plateau. Commun. Earth Environ., 5(1), 154.

[47]

Sun, J, Wang, Y, Piao, S. L., Liu, M, Han, G. D., Li, J. R., Liang, E. Y., Lee, T. M., Liu, G. H., Wilkes, A, Liu, S. L., Zhao, W. W., Zhou, H. K., Yibeltal, M, Berihun, M. L., Browning, D, Fenta, A. A., Tsunekawa, A, Brown, J, Willms, W, Tsubo, M., 2022. Toward a sustainable grassland ecosystem worldwide comment. Innovation 3(4), 100265.

[48]

Tang, S. M., Wang, K, Xiang, Y. Z., Tian, D. S., Wang, J. S., Liu, Y. S., Cao, B, Guo, D, Niu, S. L., 2019. Heavy grazing reduces grassland soil greenhouse gas fluxes: a global meta-analysis. Sci. Total Environ., 654, 1218-1224.

[49]

Tang, S. M., Ma, L, Wei, X. T., Tian, D. S., Wang, B. J., Li, Z. L., Zhang, Y. J., Shao, X. Q., 2019. Methane emissions in grazing systems in grassland regions of China: a synthesis. Sci. Total Environ., 654, 662-670.

[50]

van der Putten, W. H., Bardgett, R. D., de Ruiter, P. C., Hol, W. H. G., Meyer, K. M., Bezemer, T. M., Bradford, M. A., Christensen, S, Eppinga, M. B., Fukami, T, Hemerik, L, Molofsky, J, Schädler, M, Scherber, C, Strauss, S. Y., Vos, M, Wardle, D. A., 2009. Empirical and theoretical challenges in aboveground-belowground ecology. Oecologia 161(1), 1-14.

[51]

Wan, L. F., Cheng, H, Liu, Y. Q., Shen, Y, Liu, G. H., Su, X. K., 2023. Global meta-analysis reveals differential effects of microplastics on soil ecosystem. Sci. Total Environ., 867, 161403.

[52]

Wan, L., Liu, G., Cheng, H., Yang, S., Shen, Y., Su, X., 2023b. Global warming changes biomass and C:N:P stoichiometry of different components in terrestrial ecosystems. Glob. Change Biol. 29 (24), 7102–7116. doi: 10.1111/gcb.16986.

[53]

Wang, L, Gan, Y. T., Wiesmeier, M, Zhao, G. Q., Zhang, R. Y., Han, G. D., Siddique, K. H. M., Hou, F. J., 2018. Grazing exclusion: an effective approach for naturally restoring degraded grasslands in Northern China. Land Degrad. Dev., 29(12), 4439-4456.

[54]

Wang, T, Teague, W. R., Park, S. C., Bevers, S., 2015. GHG Mitigation potential of different grazing strategies in the United States Southern Great Plains. Sustainability 7(10), 13500-13521.

[55]

Wang, X. D., He, C, Cheng, H. Y., Liu, B. Y., Li, S. S., Wang, Q, Liu, Y, Zhao, X, Zhang, H. L., 2021. Responses of greenhouse gas emissions to residue returning in China's croplands and influential factors: a meta-analysis. J. Environ. Manage., 289, 112486.

[56]

Wei, D, Tao, J, Wang, Z, Zhao, H, Zhao, W, Wang, X., 2024. Elevation-dependent pattern of net CO2 uptake across China. Nat. Commun., 15(1), 2489.

[57]

Wei, D, Xu, R, Wang, Y. H., Wang, Y. S., Liu, Y. W., Yao, T. D., 2012. Responses of CO2, CH4 and N2O fluxes to livestock exclosure in an alpine steppe on the Tibetan Plateau, China. Plant Soil 359(1–2), 45-55.

[58]

Wilson, D, Farrell, C. A., Fallon, D, Moser, G, Müller, C, Renou-Wilson, F., 2016. Multiyear greenhouse gas balances at a rewetted temperate peatland. Glob. Change Biol., 22(12), 4080-4095.

[59]

Xiong, D. P., Shi, P. L., Zhang, X. Z., Zou, C. B., 2016. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China: a meta-analysis. Ecol. Eng., 94, 647-655.

[60]

Yan, L, Zhou, G. S., Zhang, F., 2013. Effects of different grazing intensities on grassland production in China: a meta-analysis. PLoS One 8(12), e81466.

[61]

Yao, T. D., Liu, X. D., Wang, N. L., Shi, Y. F., 2000. Amplitude of climatic changes in Qinghai-Tibetan Plateau. Chin. Sci. Bull., 45(13), 1236-1243.

[62]

Yin, M. Y., Gao, X. P., Kuang, W. N., Tenuta, M., 2023. Soil N2O emissions and functional genes in response to grazing grassland with livestock: a meta-analysis. Geoderma 436, 116538.

[63]

Yu, P. D., Ganjurjav, H, Hu, G. Z., Li, M. J., Wan, Z. Q., Ji, G. X., Gu, R, Gao, Q. Z., 2024. Grazing reduced greenhouse gas fluxes in Inner Mongolia grasslands: a meta-analysis. Ecol. Eng., 199, 107160.

[64]

Zeeman, M. J., Hiller, R, Gilgen, A. K., Michna, P, Plüss, P, Buchmann, N, Eugster, W., 2010. Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agric. For. Meteorol., 150(4), 519-530.

[65]

Zhao, J. X., Li, R. C., Li, X, Tian, L. H., 2017. Environmental controls on soil respiration in alpine meadow along a large altitudinal gradient on the central Tibetan Plateau. Catena 159, 84-92.

[66]

Zhou, G. Y., Luo, Q, Chen, Y. J., Hu, J. Q., He, M, Gao, J, Zhou, L. Y., Liu, H. Y., Zhou, X. H., 2019. Interactive effects of grazing and global change factors on soil and ecosystem respiration in grassland ecosystems: a global synthesis. J. Appl. Ecol., 56(8), 2007-2019.

[67]

Zhou, G. Y., Zhou, X. H., He, Y. H., Shao, J. J., Hu, Z. H., Liu, R. Q., Zhou, H. M., Hosseinibai, S., 2017. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis. Glob. Change Biol., 23(3), 1167-1179.

[68]

Zhou, X. Q., Wang, Y. F., Huang, X. Z., Hao, Y. B., Tian, J. Q., Wang, J. Z., 2008. Effects of grazing by sheep on the structure of methane-oxidizing bacterial community of steppe soil. Soil Biol. Biochem., 40(1), 258-261.

[69]

Zhou, Z. H., Wang, C. K., Luo, Y. Q., 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun., 11(1), 10.

[70]

Zhu, Q, Chen, H, Peng, C, Liu, J, Piao, S, He, J. S., Wang, S, Zhao, X, Zhang, J, Fang, X, Jin, J, Yang, Q. E., Ren, L, Wang, Y., 2023. An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nat. Commun., 14(1), 6406.

[71]

Zou, J. L., Tobin, B, Luo, Y. Q., Osborne, B., 2018. Differential responses of soil CO2 and N2O fluxes to experimental warming. Agric. For. Meteorol., 259, 11-22.

[72]

Zou, J. R., Luo, C. Y., Xu, X. L., Zhao, N, Zhao, L, Zhao, X. Q., 2016. Relationship of plant diversity with litter and soil available nitrogen in an alpine meadow under a 9-year grazing exclusion. Ecol. Res., 31(6), 841-851.

[73]

Zubir, M. A., Bong, C. P. C., Ishak, S. A., Ho, W. S., Hashim, H., 2022. The trends and projections of greenhouse gas emission by the livestock sector in Malaysia. Clean Technol. Environ. Policy 24(1), 363-377.

PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

/