Complex adaptive systems science in the era of global sustainability crisis

Li An , B.L. Turner , Jianguo Liu , Volker Grimm , Qi Zhang , Zhangyang Wang , Ruihong Huang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100250

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100250 DOI: 10.1016/j.geosus.2024.09.011
Review Article
review-article

Complex adaptive systems science in the era of global sustainability crisis

Author information +
History +
PDF

Abstract

A significant number and range of challenges besetting sustainability can be traced to the actions and interactions of multiple autonomous agents (people mostly) and the entities they create (e.g., institutions, policies, social network) in the corresponding social-environmental systems (SES). To address these challenges, we need to understand decisions made and actions taken by agents, the outcomes of their actions, including the feedbacks on the corresponding agents and environment. The science of complex adaptive systems—complex adaptive systems (CAS) science—has a significant potential to handle such challenges. We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science, the generic features of CAS, and the key advances and challenges in modeling CAS. Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’ behaviors, detect SES structures, and formulate SES mechanisms.

Keywords

Social-environmental systems / Complex adaptive systems / Sustainability science / Agent-based models / Artificial intelligence / Data science

Cite this article

Download citation ▾
Li An, B.L. Turner, Jianguo Liu, Volker Grimm, Qi Zhang, Zhangyang Wang, Ruihong Huang. Complex adaptive systems science in the era of global sustainability crisis. Geography and Sustainability, 2025, 6(1): 100250 DOI:10.1016/j.geosus.2024.09.011

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Li An: Methodology, Investigation, Funding acquisition, Data curation, Conceptualization. B.L. Turner: Writing – review & editing, Conceptualization. Jianguo Liu: Writing – review & editing, Conceptualization. Volker Grimm: Writing – review & editing, Conceptualization. Qi Zhang: Writing – review & editing, Data curation. Zhangyang Wang: Conceptualization. Ruihong Huang: Data curation.

Declaration of competing interests

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Acknowledgements

The National Science Foundation funded this research under the Dynamics of Coupled Natural and Human Systems program (Grants No. DEB-1212183 and BCS-1826839). This research also received financial and research support from San Diego State University and Auburn University.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.09.011.

References

[1]

Abar, S, Theodoropoulos, G. K., Lemarinier, P, O'Hare, G. M. P., 2017. Agent Based Modelling and Simulation tools: a review of the state-of-art software. Comput. Sci. Rev., 24 , pp. 13-33. doi: 10.1016/j.cosrev.2017.03.001.

[2]

An, L., 2012. Modeling human decisions in coupled human and natural systems: review of agent-based models. Ecol. Model., 229, 25-36.

[3]

An, L., 2022. Complexity. In: Rey, S., Franklin, R. (Eds.), Handbook of Spatial Analysis in the Social Sciences. Edward Elgar Publishing.

[4]

An, L, Grimm, V, Bai, Y, Sullivan, A, Turner, B. L., Malleson, N, Heppenstall, A, Vincenot, C, Robinson, D, Ye, X, Liu, J, Lindkvist, E, Tang, W., 2023. Modeling agent decision and behavior in the light of data science and artificial intelligence. Environ. Modell. Softw., 166 . doi: 10.1016/j.envsoft.2023.105713.

[5]

An, L, Grimm, V, Sullivan, A, Turner, B. L. I., Malleson, N, Heppenstall, A, Vincenot, C, Robinson, D, Ye, X, Liu, J, Lindkvist, E, Tang, W., 2021. Challenges, tasks, and opportunities in modeling agent-based complex systems. Ecol. Model., 457 , p. 109685. doi: 10.1016/j.ecolmodel.2021.109685.

[6]

An, L, Mak, J, Yang, S, Lewison, R, Stow, D, Chen, H. L., Xu, W, Shi, L, Tsai, Y. H., 2020. Cascading impacts of payments for ecosystem services in complex human-environment systems. JASSS 23(1), 5.

[7]

An, L., Grimm, V., Turner II, B.L., 2020b. Editorial: meeting grand challenges in agentbased models. JASSS 23 (1), 13. doi: 10.18564/jasss.4012.

[8]

An, L, Linderman, M, Qi, J, Shortridge, A, Liu, J., 2005. Exploring complexity in a human-environment system: an agent-based spatial model for multidisciplinary and multiscale integration. Ann. Assoc. Am. Geogr., 95(1), 54-79.

[9]

An, L, Zvoleff, A, Liu, J, Axinn, W., 2014. Agent based modeling in coupled human and natural systems (CHANS): lessons from a comparative analysis. Ann. Assoc. Am. Geogr., 104(4), 723-745.

[10]

Anderies, J. M, Mathias, J-.D, Janssen, M. A., 2019. Knowledge infrastructure and safe operating spaces in social–ecological systems. Proc. Natl. Acad. Sci. U.S.A., 116 (12) , p. 5277. doi: 10.1073/pnas.1802885115.

[11]

Axelrod, R., 1997. The Complexity of Cooperation: Agent-based Models of Competition and Collaboration. Princeton University Press

[12]

Axelrod, R, Cohen, M. D., 1999. Harnessing Complexity: Organizational Implications of a Scientific Frontier. The Free Press

[13]

An, L., Manson, S., Jankowski, P., Wang, S., Turner II, B.L., 2017. (NSF proposal) ABM’17: the usefulness, uselessness, and impending tasks of agent-based models in social, human-environment, and life Sciences. https://www.nsf.gov/awardsearch/showAward?AWD_ID = 1638446&HistoricalAwards = false.

[14]

SDSN Association, 2019. Sustainable Development Solutions Network. http://www.unsdsn.org.

[15]

Bahdanau, D., Cho, K., Bengio, Y., 2015. Neural Machine Translation by Jointly Learning to Align and Translate. https://doi.org/10.48550/arXiv.1409.0473.

[16]

Bankes, S., Lempert, R., Popper, S., 2002. Making computational social science effective: epistemology, methodology, and technology. Soc. Sci. Comput. Rev. 20 (4), 377–388. doi: 10.1177/089443902237317.

[17]

Bettencourt, L. M. A., Kaur, J., 2011. Evolution and structure of sustainability science. Proc. Natl. Acad. Sci. U.S.A., 108 (49) , pp. 19540-19545. doi: 10.1073/pnas.1102712108.

[18]

Bhatta, S, Siwakoti, M, Shrestha, B. 2021. Invasive alien plants in the protected areas of Nepal: diversity, impacts and management. M. Siwakoti, T.N. Mandal, S.K. Rai, S.K. Rai, T.P. Gautam, H.P. Aryal (Eds.), Integrating Biological Resources For Prosperity, Nepal Biological Society, and Department of Plant Resources, pp.100-115.

[19]

Blossey, B, Gorchov, D. L., 2017. Introduction to the Special Issue: ungulates and invasive species: quantifying impacts and understanding interactions. AoB Plants, 9 (6) , p. plx063. doi: 10.1093/aobpla/plx063.

[20]

Boyd, R, Gintis, H, Bowles, S, Richerson, P. J., 2003. The evolution of altruistic punishment. Proc. Natl. Acad. Sci. U.S.A., 100 (6) , pp. 3531-3535. doi: 10.1073/pnas.0630443100.

[21]

Brown, D. G., Robinson, D. T., 2006. Effects of heterogeneity in residential preferences on an agent-based model of urban sprawl. Ecol. Soc., 11(1), 46.

[22]

Bürgi, M, Östlund, L, Mladenoff, D. J., 2017. Legacy effects of human land use: ecosystems as time-lagged systems. Ecosystems, 20 (1) , pp. 94-103. doi: 10.1007/s10021-016-0051-6.

[23]

Cartwright, N.D., 2019. Nature, the Artful Modeler: Lectures on Laws, Science, How Nature Arranges the World and How We Can Arrange It Better. The Paul Carus Lectures. Open Court.

[24]

Chaplain, M., Anderson, A., 2004. Mathematical modelling of tumour-induced angiogenesis: network growth and structure. In: Kirsch, M., Black, P. (Eds.), Angiogenesis in Brain Tumors. Kluwer Academic Publishers, pp. 51–75. doi: 10.1007/978-1-4419-8871-3_3.

[25]

Chattoe-Brown, E., 2020. Talking prose all these years: agent-based modeling as process-oriented analysis. Can. Rev. Sociol., 57 (2) , pp. 286-304. doi: 10.1111/cars.12282.

[26]

Clark, W. C., Harley, A. G., 2020. Sustainability science: toward a synthesis. Annu. Rev. Environ. Resour., 45, 331-386.

[27]

Coleman, J. S., 1990. Foundations of Social Theory. Harvard University Press, Cambridge

[28]

Conte, R, Paolucci, M., 2014. On agent-based modeling and computational social science. Front. Psychol., 5 , p. 668. doi: 10.3389/fpsyg.2014.00668.

[29]

Costanza, R, McGlade, J, Lovins, H, Kubiszewski, I., 2014. An overarching goal for the UN Sustainable Development Goals. Solut.: Sustain. Desir. Future 5(4), 13-16.

[30]

Board on Sustainable Development, National Research Council, 1999. Our Common Journey: A Transition Toward Sustainability. National Academies Press, Washington, D.C.

[31]

Cranmer, M., Sanchez-Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K., Spergel, D., Ho, S., 2020. Discovering symbolic models from deep learning with inductive biases. arXiv:2006.11287 [Cs.LG] . https://arxiv.org/abs/2006.11287.

[32]

CSLI., 2020. Scientific research and big data. Stanford Encyclopedia of Philosophy. Stanford University The Metaphysics Research Lab, Center for the Study of Language and Information (CSLI).

[33]

Cumming, G. S., 2008. Complexity Theory for a Sustainable Future. Columbia University Press, New York

[34]

Davis, C, Nikolić, I, Dijkema, G. P. J., 2009. Integration of life cycle assessment into agent-based modeling. J. Ind. Ecol., 13 (2) , pp. 306-325. doi: 10.1111/j.1530-9290.2009.00122.x.

[35]

DeAngelis, D. L., Grimm, V., 2014. Individual-based models in ecology after four decades. F1000Prime Rep., 6, 39.

[36]

Di Tosto, G, Paolucci, M, Conte, R., 2007. Altruism among simple and smart vampires. Int. J. Coop. Inf. Syst., 16(1), 51-66.

[37]

Dou, Y, Deadman, P, Robinson, D, Almeida, O, Rivero, S, Vogt, N, Pinedo-Vasquez, M., 2017. Impacts of cash transfer programs on rural livelihoods: a case study in the Brazilian Amazon estuary. Hum. Ecol., 45 (5) , pp. 697-710. doi: 10.1007/s10745-017-9934-1.

[38]

Dou, Y, Yao, G, Herzberger, A, da Silva, R. F. B., Song, Q, Hovis, C, Batistella, M, Moran, E, Wu, W, Liu, J., 2020. Land-use changes in distant places: implementation of a telecoupled agent-based model. JASSS, 23 (1) , p. 11. doi: 10.18564/jasss.4211.

[39]

Elsawah, S, Filatova, T, Jakeman, A. J., Kettner, A. J., Zellner, M. L., Athanasiadis, I. N., Hamilton, S. H., Axtell, R. L., Brown, D. G., Gilligan, J. M., Janssen, M. A., Robinson, D. T., Rozenberg, J, Ullah, I. I. T., Lade, S. J., 2020. Eight grand challenges in socio-environmental systems modeling. Socio-Environ. Syst. Model., 2 , p. 16226. doi: 10.18174/sesmo.2020a16226.

[40]

Epstein, J. M., 1999. Agent-based computational models and generative social science. Complexity 4(5), 41-60.

[41]

Epstein, J. M., 2014. Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science. Princeton University Press

[42]

Flach, P. A., Kakas, A. C., 2014. Abduction and Induction: Essays on Their Relation and Integration. Springer, Dordrecht

[43]

Folmer, E. O., van der Geest, M, Jansen, E, Olff, H, Michael Anderson, T, Piersma, T, van Gils, J. A., 2012. Seagrass–sediment feedback: an exploration using a non-recursive structural equation model. Ecosystems, 15 (8) , pp. 1380-1393. doi: 10.1007/s10021-012-9591-6.

[44]

Gil, Y, Selman, B., 2019. A 20-year community roadmap for artificial intelligence research in the US. arXiv.Org

[45]

Gimblett, H. R., 2002. Integrating Geographic Information Systems and Agent-Based Modeling Techniques for Simulating Social and Ecological Processes. Oxford University Press

[46]

Grimm, V., 2023. Ecology needs to overcome siloed modelling. Trend. Ecol. Evol., 38 (12) , pp. 1122-1124. doi: 10.1016/j.tree.2023.09.011.

[47]

Grimm, V, Railsback, S. F., 2012. Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology. Philos. Trans. R. Soc. B: Biol. Sci., 367(1586), 298-310.

[48]

Grimm, V, Railsback, S. F., Vincenot, C, Berger, U, Gallagher, C, DeAngelis, D, Edmonds, B, Ge, J, Giske, J, Groeneveld, J, Johnston, A. S. A., Miles, A, Nabe-Nielson, J, Polhill, J. G., Radchuk, V, M-Rohwader, S, Stillman, R. A., Theile, J, Ayllon, D., 2020. The ODD protocol for describing agent-based and other simulation models: a second update to improve clarity, replication, and structural realism. JASSS, 23 (2) , p. 7. doi: 10.18564/jasss.4259.

[49]

Grimm, V, Revilla, E, Berger, U, Jeltsch, F, Mooij, W. M., Railsback, S. F, Thulke, H-.H, Weiner, J, Wiegand, T, DeAngelis, D. L., 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750), 987-991.

[50]

Harley, A. G., Clark, W. C., 2020. Sustainability science: a collaborative community for researchers and teachers. https://www.sustainabilityscience.org/

[51]

Hartig, F, Calabrese, J. M., Reineking, B, Wiegand, T, Huth, A., 2011. Statistical inference for stochastic simulation models—theory and application. Ecol. Lett., 14(8), 816-827.

[52]

Holland, J. H., 1992. Complex adaptive systems. Daedalus 121(1), 17-30.

[53]

Hornberg, J. J., Bruggeman, F. J., Westerhoff, H. V., Lankelma, J., 2006. Cancer: a systems biology disease. Biosystems, 83 (2–3) , pp. 81-90. doi: 10.1016/j.biosystems.2005.05.014.

[54]

Ioan, S., Emilia, P., Adina, C., 2021. Agent-based modeling and simulation in the research of environmental sustainability. A bibliography. Present Environ. Sustain. Dev. 15 (1). doi: 10.15551/pesd2021151015 , pesd2021151015.

[55]

Janssen, M. A., Baggio, J. A., 2017. Using agent-based models to compare behavioral theories on experimental data: application for irrigation games. J. Environ. Psychol., 52 , pp. 194-203. doi: 10.1016/j.jenvp.2016.04.018.

[56]

Janssen, M. A., Hill, K. 2016. An agent-based model of resource distribution on hunter-gatherer foraging strategies: clumped habitats favor lower mobility, but result in higher foraging returns. J.A. Barceló, F.D. Castillo (Eds.), Simulating Prehistoric and Ancient Worlds, Springer, Cham, pp.159-174.

[57]

Janssen, M. A., Ostrom, E., 2006. Empirically based, agent-based models. Ecol. Soc., 11(2), 37.

[58]

Kapsar, K. E., Hovis, C. L., Bicudo da Silva, R. F., Buchholtz, E. K., Carlson, A. K., Dou, Y, Du, Y, Furumo, P. R., Li, Y, Torres, A, Yang, D, Wan, H. Y., Zaehringer, J. G., Liu, J., 2019. Telecoupling research: the first five years. Sustainability, 11 (4) . doi: 10.3390/su11041033.

[59]

Kates, R. W., 2011. What kind of a science is sustainability science?. Proc. Natl. Acad. Sci. U.S.A., 108 (49) , pp. 19449-19450. doi: 10.1073/pnas.1116097108.

[60]

Kates, R. W., Clark, W. C., Corell, R, Hall, J. M., Jaeger, C. C., Lowe, I, McCarthy, J. J., Schellnhuber, H. J., Bolin, B, Dickson, N. M., Faucheux, S, Gallopin, G. C., Grübler, A, Huntley, B, Jäger, J, Jodha, N. S., Kasperson, R. E., Mabogunje, A, Matson, P, Mooney, H, Moore III, B, O'Riordan, T, Svedin, U., 2001. Sustainability science. Science, 292 (2001), pp. 641-642. doi: 10.1126/science.1059386.

[61]

Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 [Cs.LG].

[62]

Kniveton, D., Smith, C., Wood, S., 2011. Agent-based model simulations of future changes in migration flows for Burkina Faso. Glob. Environ. Change 21, S34–S40. doi: 10.1016/j.gloenvcha.2011.09.006.

[63]

Lade, S. J., Steffen, W, de Vries, W, Carpenter, S. R., Donges, J. F., Gerten, D, Hoff, H, Newbold, T, Richardson, K, Rockström, J., 2020. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain., 3 (2) , pp. 119-128. doi: 10.1038/s41893-019-0454-4.

[64]

Lindsay, A. R., Sanchirico, J. N., Gilliland, T. E., Ambo-Rappe, R, Taylor, J. E., Krueck, N. C., Mumby, P. J., 2020. Evaluating sustainable development policies in rural coastal economies. Proc. Natl. Acad. Sci. U.S.A., 117 (52) , pp. 33170-33176. doi: 10.1073/pnas.2017835117.

[65]

Liu, J, Dietz, T, Carpenter, S. R., Alberti, M, Folke, C, Moran, E, Pell, A. N., Deadman, P, Kratz, T, Lubchenco, J, Ostrom, E, Ouyang, Z, Provencher, W, Redman, C. L., Schneider, S. H., Taylor, W. W., 2007. Complexity of coupled human and natural systems. Science 317(5844), 1513-1516.

[66]

Liu, J, Dietz, T, Carpenter, S. R., Folke, C, Alberti, M, Redman, C. L., Schneider, S. H., Ostrom, E, Pell, A. N., Lubchenco, J, Taylor, W. W., Ouyang, Z, Deadman, P, Kratz, T, Provencher, W., 2007. Coupled human and natural systems. Ambio 36(8), 639-649.

[67]

Liu, J, Hull, V, Godfray, H. C. J., Tilman, D, Gleick, P, Hoff, H, Pahl-Wostl, C, Xu, Z, Chung, M. G., Sun, J, Li, S., 2018. Nexus approaches to global sustainable development. Nat. Sustain., 1 (9) , pp. 466-476. doi: 10.1038/s41893-018-0135-8.

[68]

Liu, J, Mooney, H, Hull, V, Davis, S. J., Gaskell, J, Hertel, T, Lubchenco, J, Seto, K. C., Gleick, P, Kremen, C, Li, S., 2015. Systems integration for global sustainability. Science, 347 (2015), Article 1258832. doi: 10.1126/science.1258832.

[69]

Lubchenco, J., 1998. Entering the century of the environment: a new social contract for science. Science 279(5350), 491-497.

[70]

Manson, S. M., 2001. Simplifying complexity: a review of complexity theory. Geoforum 32(3), 405-414.

[71]

Manson, S. M. 2002. Calibration, verification, and validation. D.C. Parker, T. Berger, S.M. Manson (Eds.), Meeting the Challenge of Complexity, 2.4, Center for Spatially Integrated Social Science University of California at Santa Barbara, pp.42-47.

[72]

Marvuglia, A, Gutiérrez, T. N., Baustert, P, Benetto, E., 2018. Implementation of agent-based models to support life cycle assessment: a review focusing on agriculture and land use. AIMS Agric. Food, 3 (4) , pp. 535-560. doi: 10.3934/agrfood.2018.4.535.

[73]

Mena, C. F., Walsh, S. J., Frizzelle, B. G., Xiaozheng, Y, Malanson, G. P., 2011. Land use change on household farms in the Ecuadorian Amazon: design and implementation of an agent-based model. Appl. Geogr., 31 (1) , pp. 210-222. doi: 10.1016/j.apgeog.2010.04.005.

[74]

Milner-Gulland, E. J., 2012. Interactions between human behaviour and ecological systems. Philos. Trans. R. Soc. B: Biol. Sci., 367(1586), 270-278.

[75]

Muelder, H, Filatova, T., 2018. One theory—many formalizations: testing different code implementations of the theory of planned behaviour in energy agent-based models. JASSS, 21 (4) , p. 5. doi: 10.18564/jasss.3855.

[76]

Müller, B, Bohn, F, Dreßler, G, Groeneveld, J, Klassert, C, Martin, R, Schlüter, M, Schulze, J, Weise, H, Schwarz, N., 2013. Describing human decisions in agent-based models – ODD + D, an extension of the ODD protocol. Environ. Model. Softw., 48 , pp. 37-48. doi: 10.1016/j.envsoft.2013.06.003.

[77]

Müller, B., Frank, K., Wissel, C., 2007. Relevance of rest periods in non-equilibrium rangeland systems – a modelling analysis. Agric. Syst. 92 (1), 295–317. doi: 10.1016/j.agsy.2006.03.010.

[78]

National Research Council, 2014. Advancing Land Change Modeling: Opportunities and Research Requirements. The National Academies Press.

[79]

Nguyen, G, Nguyen, B. M., Tran, D, Hluchy, L., 2018. A heuristics approach to mine behavioural data logs in mobile malware detection system. Data Knowl. Eng., 115 , pp. 129-151. doi: 10.1016/j.datak.2018.03.002.

[80]

Nilsson, N., 2009. The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge University Press

[81]

Ostrom, E., 2009. A general framework for analyzing sustainability of social-ecological systems. Science, 325 (2009), pp. 419-422. doi: 10.1016/j.worlddev.2021.105694.

[82]

Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., Deadman, P., 2003. Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann. Assoc. Am. Geogr., 93(2), 314-337.

[83]

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., Deadman, P., 2003. Multi- -agent systems for the simulation of land-use and land-cover change: a review. Ann. Assoc. Am. Geogr. 93 (2), 314–337.

[84]

Polasky, S, Bryant, B, Hawthorne, P, Johnson, J, Keeler, B, Pennington, D., 2015. Inclusive wealth as a metric of sustainable development. Ann. Rev. Environ. Resour., 40 (1) , pp. 445-466. doi: 10.1146/annurev-environ-101813-013253.

[85]

Preiser, R, Biggs, R, De Vos, A, Folke, C., 2018. Social-ecological systems as complex adaptive systems: organizing principles for advancing research methods and approaches. Ecol. Soc., 23(4), 46.

[86]

Rich, B. R., 1995. Clarence Leonard (Kelly) Johnson 1910–1990: A Biographical Memoir. National Academies Press

[87]

Robinson, D. T., Brown, D. G., Parker, D. C., Schreinemachers, P, Janssen, M. A., Huigen, M, Wittmer, H, Gotts, N, Promburom, P, Irwin, E, Berger, T, Gatzweiler, F, Barnaud, C., 2007. Comparison of empirical methods for building agent-based models in land use science. J. Land Use Sci., 2 (1) , p. 1. doi: 10.1080/17474230701201349.

[88]

Roeder, I, Loeffler, M., 2002. A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity. Exp. Hematol., 30 (8) , pp. 853-861. doi: 10.1016/S0301-472X(02)00832-9.

[89]

Rounsevell, M. D. A., Robinson, D. T., Murray-Rust, D., 2012. From actors to agents in socio-ecological systems models. Philos. Trans. R. Soc. B: Biol. Sci., 367 (2012), pp. 259-269. doi: 10.1098/rstb.2011.0187.

[90]

Sauvageau, G, J-Frayret, M., 2015. Waste paper procurement optimization: an agent-based simulation approach. Eur. J. Oper. Res., 242 (3) , pp. 987-998. doi: 10.1016/j.ejor.2014.10.035.

[91]

Scheffer, M, Carpenter, S. R., Lenton, T. M., Bascompte, J, Brock, W, Dakos, V, van de Koppel, J, van de Leemput, I. A., Levin, S. A., van Nes, E. H., Pascual, M, Vandermeer, J., 2012. Anticipating critical transitions. Science, 338 (2012), pp. 344-348. doi: 10.1126/science.1225244.

[92]

Schlüter, M., Brelsford, C., Ferraro, P.J., Orach, K., Qiu, M., Smith, M.D., 2023a. Unraveling complex causal processes that affect sustainability requires more integration between empirical and modeling approaches. Proc. Natl. Acad. Sci. U.S.A. 120 (41), e2215676120. doi: 10.1073/pnas.2215676120.

[93]

Schlüter, M., Hertz, T., García, M.M., Banitz, T., Grimm, V., Johansson, L.-G., Lindkvist, E., Peña, R.M., Radosavljevic, S., Wennberg, K., Ylikoski, P., 2023b. Navigating causal reasoning in sustainability science. Ambio 53, 1618–1631. doi: 10.31235/osf.io/kn49v.

[94]

Schlüter, M, Mcallister, R, Arlinghaus, R, Bunnefeld, N, Eisenack, K, Hölker, F, Milner-Gulland, E, Müller, B, Nicholson, E, Quaas, M, Stoeven, M., 2012. New horizons for managing the environment: a review of coupled social-ecological systems modeling. Nat. Resour. Model., 25 , pp. 219-272. doi: 10.1111/j.1939-7445.2011.00108.x.

[95]

Schmidt, B., 2002. Modelling of human behaviour: the PECS reference model. In: Verbraeck, A., Krug, W. (Eds.), Proceedings 14th European Simulations Symposium. SCS Europe Bvba.

[96]

Schulze, J, Müller, B, Groeneveld, J, Grimm, V., 2017. Agent-based modelling of social-ecological systems: achievements, challenges, and a way forward. JASSS 20(2), 8.

[97]

Shrestha, B. 2016. Invasive alien plant species in Nepal. P.K. Jha, M. Siwakoti, S. Rajbhandary (Eds.), Frontiers of Botany, Central Department of Botany, Tribhuvan University, Kathmandu, pp.269-284.

[98]

Steffen, W, Broadgate, W, Deutsch, L, Gaffney, O, Ludwig, C., 2015. The trajectory of the anthropocene: the great acceleration. Anthr. Rev., 2(1), 81-98.

[99]

Taleb, A, Chaussé, A, Dymitrowska, M, Stafiej, J, Badiali, J. P., 2004. Simulations of corrosion and passivation phenomena: diffusion feedback on the corrosion rate. J. Phys. Chem. B, 108 (3) , pp. 952-958. doi: 10.1021/jp035377g.

[100]

The World Commission on Environment and Development, 1987. Our Common Future. Oxford University Press.

[101]

Turner, B. L. I., 2022. The Anthropocene: 101 Questions and Answers for Understanding Human Impacts on the Global Environment. Agenda Publishing/Columbia University Press

[102]

Turner, B. L. I., Meyfroidt, P, Kuemmerle, T, Müller, D, Chowdhury, R. R., 2020. Framing the search for a theory of land use. J. Land Use Sci., 15 (4) , pp. 489-508. doi: 10.1080/1747423X.2020.1811792.

[103]

United Nations, 2016. The sustainable development agenda.

[104]

Vemuri, V. R., 1978. Modeling of Complex Systems: An Introduction. Academic Press

[105]

Vincenot, C. E., 2018. How new concepts become universal scientific approaches: insights from citation network analysis of agent-based complex systems science. Proc. R. Soc. B: Biol. Sci., 28(1874), 20172360.

[106]

Von Bertalanffy, L., 1950. The theory of open systems in physics and biology. Science 111(2872), 23-29.

[107]

von Bertalanffy, L., 1968. General System Theory: Foundations, Development, Applications. George Braziller

[108]

Weaver, W., 1948. Science and complexity. Am. Scient., 36(4), 536-544.

[109]

Wijermans, N, Scholz, G, Chappin, É, Heppenstall, A, Filatova, T, Polhill, J. G., Semeniuk, C, Stöppler, F., 2023. Agent decision-making: the elephant in the room—enabling the justification of decision model fit in social-ecological models. Environ. Model. Softw., 170 , Article 105850. doi: 10.1016/j.envsoft.2023.105850.

[110]

Wilensky, U, Rand, W., 2007. Making models match: replicating an agent-based model. JASSS 10(4), 2.

[111]

Wolfram, S., 2002. A New Kind of Science. Wolfram Media

[112]

Zhang, H, Vorobeychik, Y, Letchford, J, Lakkaraju, K., 2016. Data-driven agent-based modeling, with application to rooftop solar adoption. Auton. Agents Multi-Agent Syst., 30 (6) , pp. 1023-1049. doi: 10.1007/s10458-016-9326-8.

[113]

Zhang, J, Robinson, D. T., 2021. Replication of an agent-based model using the replication standard. Environ. Modell. Softw., 139 , Article 105016. doi: 10.1016/j.envsoft.2021.105016.

PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

/