Changing of the coordination of socioeconomic development and the environment as sustainable development progresses

Dongliang Dang , Xiaobing Li , Xin Lyu , Shiliang Liu , Huashun Dou , Mengyuan Li , Kai Wang , Wanyu Cao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100245

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100245 DOI: 10.1016/j.geosus.2024.09.009
Research Article
review-article

Changing of the coordination of socioeconomic development and the environment as sustainable development progresses

Author information +
History +
PDF

Abstract

The relationship between socioeconomic development and the environment is intimately linked with the level of regional sustainable development. Clarifying the evolution pattern of this relationship during the sustainable development progress is crucial for achieving all of the Sustainable Development Goals (SDGs), but less research has focused on this problem. Here, we have utilized statistical and remote sensing data from 290 municipal units in China to analyze the evolution of the coupling coordination degree (CCD) between socioeconomic development and the environment along a progression of sustainable development measured by the SDG Index. The results show that the hotspot areas of CCD are concentrated in coastal regions, gradually decreasing as they move inland. Additionally, as sustainable development progresses, both socioeconomic and environment levels exhibit a nonlinear rise. The coupling coordination between the two demonstrates a pattern of initial increasing, then decreasing, and finally increasing again, which may be related to changes in industrial structure. Our study delves deeply into the patterns of evolution in the relationship between socioeconomic and environments, exploring the challenges and opportunities faced by regions at different stages of sustainable development. The findings can deepen our understanding of sustainable development and provide policy suggestions and theoretical support for achieving SDGs.

Keywords

Sustainable Development Goals / Coupling coordination degree / Social-ecological system

Cite this article

Download citation ▾
Dongliang Dang, Xiaobing Li, Xin Lyu, Shiliang Liu, Huashun Dou, Mengyuan Li, Kai Wang, Wanyu Cao. Changing of the coordination of socioeconomic development and the environment as sustainable development progresses. Geography and Sustainability, 2025, 6(3): 100245 DOI:10.1016/j.geosus.2024.09.009

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Dongliang Dang: Writing – original draft, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Xiaobing Li: Writing – review & editing, Funding acquisition, Conceptualization. Xin Lyu: Writing – review & editing. Shiliang Liu: Writing – review & editing. Huashun Dou: Writing – review & editing. Mengyuan Li: Writing – review & editing, Methodology. Kai Wang: Writing – review & editing, Methodology, Conceptualization. Wanyu Cao: Methodology.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant No. 42271291), China Postdoctoral Science Foundation (Certificate No. 2024M750219), and the Project Supported by State Key Laboratory of Earth Surface Processes and Resource Ecology (Grant No. 2022-ZD-02). We are grateful to Dr. Xutong Wu and Dr. Jiping Chen for their valuable comments on the manuscript. We gratefully acknowledgment for the data support from “Loess Plateau Sub-center, National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://loess.geodata.cn)”.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.09.009.

References

[1]

Antonakakis, N, Chatziantoniou, I, Filis, G., 2017. Energy consumption, CO2 emissions, and economic growth: an ethical dilemma. Renew. Sustain. Energy Rev., 68, 808-824.

[2]

Barrington-Leigh, C, Baumgartner, J, Carter, E, Robinson, B. E., Tao, S, Zhang, Y., 2019. An evaluation of air quality, home heating and well-being under Beijing's programme to eliminate household coal use. Nat. Energy 4(5), 416-423.

[3]

Biggs, R, Peterson, G. D., Rocha, J. C., 2018. The Regime Shifts Database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc., 23(3), 9.

[4]

Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T., Ferrier, S., 2013. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl. Acad. Sci. U.S.A., 110(23), 9374-9379.

[5]

Bryan, B. A., Gao, L, Ye, Y, Sun, X, Connor, J. D., Crossman, N. D., Stafford-Smith, M, Wu, J, He, C, Yu, D, Liu, Z, Li, A, Huang, Q, Ren, H, Deng, X, Zheng, H, Niu, J, Han, G, Hou, X., 2018. China's response to a national land-system sustainability emergency. Nature 559(7713), 193-204.

[6]

Cai, B, Liang, S, Zhou, J, Wang, J, Cao, L, Qu, S, Xu, M, Yang, Z., 2018. China high resolution emission database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic data. Resour. Conserv. Recycl., 129, 232-239.

[7]

Chen, Y, Zhao, L., 2019. Exploring the relation between the industrial structure and the eco-environment based on an integrated approach: a case study of Beijing, China. Ecol. Indic., 103, 83-93.

[8]

Cheng, J, Zhang, X, Gao, Q., 2023. Analysis of the spatio-temporal changes and driving factors of the marine economic–ecological–social coupling coordination: a case study of 11 coastal regions in China. Ecol. Indic., 153, 110392.

[9]

Damania, R, Russ, J, Wheeler, D, Barra, A. F., 2018. The road to growth: measuring the tradeoffs between economic growth and ecological destruction. World Dev., 101, 351-376.

[10]

Dang, D, Li, X, Li, S, Li, X, Lyu, X, Dou, H, Li, M, Liu, S, Wang, K., 2023. Socioeconomic outcomes of ecological restoration projects and parallel policies: a case-study of the agro-pastoral ecotone in northern China. Land Degrad. Dev., 34(3), 763-776.

[11]

Dinda, S., 2004. Environmental Kuznets curve hypothesis: a survey. Ecol. Econ., 49(4), 431-455.

[12]

Dong, L, Yuan, X, Li, M, Ratti, C, Liu, Y., 2021. A gridded establishment dataset as a proxy for economic activity in China. Sci. Data 8(1), 5.

[13]

Fan, Y, Fang, C., 2020. Circular economy development in China-current situation, evaluation and policy implications. Environ. Impact. Assess. Rev., 84, 106441.

[14]

Felipe-Lucia, M. R., Soliveres, S, Penone, C, Fischer, M, Ammer, C, Boch, S, Boeddinghaus, R. S., Bonkowski, M, Buscot, F, Fiore-Donno, A. M., Franki, K, Goldmann, K, Gossner, M. M., Hoelzel, N, Jochum, M, Kandeler, E, Klaus, V. H., Kleinebecker, T, Leimer, S, Manning, P, Oelmann, Y, Saiz, H, Schall, P, Schloter, M, Schoening, I, Schrumpf, M, Solly, E. F., Stempfhuber, B, Weisser, W. W., Wilcke, W, Wubet, T, Allan, E., 2020. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. U.S.A., 117(45), 28140-28149.

[15]

Ferraro, P, Hanauer, M., 2014. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure. Proc. Natl. Acad. Sci. U.S.A., 111(11), 4332-4337.

[16]

Fu, B, Stafford-Smith, M, Wang, Y, Wu, B, Yu, X, Lv, N, Ojima, D. S., Lv, Y, Fu, C, Liu, Y, Niu, S, Zhang, Y, Zeng, H, Liu, Y, Liu, Y, Feng, X, Zhang, L, Wei, Y, Xu, Z, Li, F, Cui, X, Diop, S, Chen, X., 2021. The Global-DEP conceptual framework—research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain., 48, 17-28.

[17]

Ge, Y, Hu, S, Song, Y, Zheng, H, Liu, Y, Ye, X, Ma, T, Liu, M, Zhou, C., 2023. Sustainable poverty reduction models for the coordinated development of the social economy and environment in China. Sci. Bull., 68(19), 2236-2246.

[18]

Hammer, M. S., van Donkelaar, A, Li, C, Lyapustin, A, Sayer, A. M., Hsu, N. C., Levy, R. C., Garay, M. J., Kalashnikova, O. V., Kahn, R. A., Brauer, M, Apte, J. S., Henze, D. K., Zhang, L, Zhang, Q, Ford, B, Pierce, J. R., Martin, R. V., 2020. Global estimates and long-term trends of fine particulate matter concentrations (1998–2018). Environ. Sci. Technol., 54(13), 7879-7890.

[19]

Han, D, Yu, D, Qiu, J., 2023. Assessing coupling interactions in a safe and just operating space for regional sustainability. Nat. Commun., 14(1), 1369.

[20]

Hughes, A. C., Wang, S., 2023. Realizing ecological civilization. Ambio 52(12), 1879-1881.

[21]

Jiang, Q, Li, Z, Qu, S, Cui, Y, Zhang, H, Xu, Z., 2022. High-resolution map of China's sustainability. Resour. Conserv. Recycl., 178, 106092.

[22]

Li, W, Yi, P, Zhang, D, Zhou, Y., 2020. Assessment of coordinated development between social economy and ecological environment: case study of resource-based cities in Northeastern China. Sust. Cities Soc., 59, 102208.

[23]

Liu, J, Mooney, H, Hull, V, Davis, S. J., Gaskell, J, Hertel, T, Lubchenco, J, Seto, K. C., Gleick, P, Kremen, C, Li, S., 2015. Systems integration for global sustainability. Science 347(6225), 1258832.

[24]

Liu, Y, Huang, B, Guo, H, Liu, J., 2023. A big data approach to assess progress towards sustainable development goals for cities of varying sizes. Commun. Earth Environ., 4(1), 66.

[25]

Liu, Z, Deng, Z, He, G, Wang, H, Zhang, X, Lin, J, Qi, Y, Liang, X., 2022. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ., 3(2), 141-155.

[26]

Lu, Y, Zhang, Y, Cao, X, Wang, C, Wang, Y, Zhang, M, Ferrier, R. C., Jenkins, A, Yuan, J, Bailey, M. J., Chen, D, Tian, H, Li, H, von Weizsäcker, E. U., Zhang, Z., 2019. Forty years of reform and opening up: China’s progress toward a sustainable path. Sci. Adv., 5(8), eaau9413.

[27]

Lusseau, D, Mancini, F., 2019. Income-based variation in Sustainable Development Goal interaction networks. Nat. Sustain., 2(3), 242-247.

[28]

Ma, B, Zhang, Y, Huang, Y, Wen, Y., 2020. Socioeconomic and ecological direct and spillover effects of China's giant panda nature reserves. Forest Policy Econ., 121, 102313.

[29]

Ma, T, Sun, S, Fu, G, Hall, J. W., Ni, Y, He, L, Yi, J, Zhao, N, Du, Y, Pei, T, Cheng, W, Song, C, Fang, C, Zhou, C., 2020. Pollution exacerbates China's water scarcity and its regional inequality. Nat. Commun., 11(1), 650.

[30]

McDuffie, E. E., Martin, R. V., Spadaro, J. V., Burnett, R, Smith, S. J., O'Rourke, P, Hammer, M. S., van Donkelaar, A, Bindle, L, Shah, V, Jaeglé, L, Luo, G, Yu, F, Adeniran, J. A., Lin, J, Brauer, M., 2021. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun., 12(1), 3594.

[31]

Ni, R, Wang, F, Yu, J., 2022. Spatiotemporal changes in sustainable development and its driving force in the Yangtze River Delta region, China. J. Clean. Prod., 379, 134751.

[32]

Pan, Y, Zhu, J, Zhang, Y, Li, Z, Wu, J., 2022. Poverty eradication and ecological resource security in development of the Tibetan Plateau. Resour. Conserv. Recycl., 186, 106552.

[33]

Pradhan, P, Costa, L, Rybski, D, Lucht, W, Kropp, J. P., 2017. A systematic study of sustainable development goal (SDG) interactions. Earth. Future 5(11), 1169-1179.

[34]

Salzman, J, Bennett, G, Carroll, N, Goldstein, A, Jenkins, M., 2018. The global status and trends of payments for ecosystem services. Nat. Sustain., 1(3), 136-144.

[35]

Shao, S, Tian, Z, Fan, M., 2018. Do the rich have stronger willingness to pay for environmental protection? New evidence from a survey in China. World Dev., 105, 83-94.

[36]

Sherrouse, B. C., Semmens, D. J., Ancona, Z. H., Brunner, N. M., 2017. Analyzing land-use change scenarios for trade-offs among cultural ecosystem services in the Southern Rocky Mountains. Ecosyst. Serv., 26, 431-444.

[37]

Shi, T, Yang, S, Zhang, W, Zhou, Q., 2020. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment —empirical evidence from tropical and subtropical regions of China. J. Clean. Prod., 244, 118739.

[38]

Steffen, W, Richardson, K, Rockström, J, Cornell, S. E., Fetzer, I, Bennett, E. M., Biggs, R, Carpenter, S. R., de Vries, W, de Wit, C. A., Folke, C, Gerten, D, Heinke, J, Mace, G. M., Persson, L. M., Ramanathan, V, Reyers, B, Sörlin, S., 2015. Planetary boundaries: guiding human development on a changing planet. Science 347(6223), 1259855.

[39]

Thacker, S, Adshead, D, Fay, M, Hallegatte, S, Harvey, M, Meller, H, O'Regan, N, Rozenberg, J, Watkins, G, Hall, J. W., 2019. Infrastructure for sustainable development. Nat. Sustain., 2(4), 324-331.

[40]

Ulucak, , Özcan, B, Gedikli, A., 2020. Financial globalization and environmental degradation nexus: evidence from emerging economies. Resour. Policy 67, 101698.

[41]

United Nations, 2015. Transforming our world: the 2030 agenda for sustainable development. United Nations.

[42]

Vince, G., 2011. An epoch debate. Science 334(6052), 32-37.

[43]

Wang, Z, Bao, Y, Wen, Z, Tan, Q., 2016. Analysis of relationship between Beijing's environment and development based on Environmental Kuznets Curve. Ecol. Indic., 67, 474-483.

[44]

Wang, H, Lu, X, Deng, Y, Sun, Y, Nielsen, C. P., Liu, Y, Zhu, G, Bu, M, Bi, J, McElroy, M. B., 2019. China's CO2 peak before 2030 implied from characteristics and growth of cities. Nat. Sustain., 2(8), 748-754.

[45]

Warchold, A, Pradhan, P, Kropp, J. P., 2021. Variations in sustainable development goal interactions: population, regional, and income disaggregation. Sustain. Dev., 29(2), 285-299.

[46]

Wei, J, Li, Z, Lyapustin, A, Sun, L, Peng, Y, Xue, W, Su, T, Cribb, M., 2021. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sens. Environ., 252, 112136.

[47]

Wood, S. L. R., Jones, S. K., Johnson, J. A., Brauman, K. A., Chaplin-Kramer, R, Fremier, A, Girvetz, E, Gordon, L. J., Kappel, C. V., Mandle, L, Mulligan, M, O’Farrell, P, Smith, W. K., Willemen, L, Zhang, W, DeClerck, F. A., 2018. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv., 29, 70-82.

[48]

Wu, J, Wu, G, Zheng, T, Zhang, X, Zhou, K., 2020. Value capture mechanisms, transaction costs, and heritage conservation: a case study of Sanjiangyuan National Park, China. Land Use Policy 90, 104246.

[49]

Wu, X, Fu, B, Wang, S, Liu, Y, Yao, Y, Li, Y, Xu, Z, Liu, J., 2023. Three main dimensions reflected by national SDG performance. Innovation 4(6), 100507.

[50]

Wu, X, Fu, B, Wang, S, Song, S, Li, Y, Xu, Z, Wei, Y, Liu, J., 2022. Decoupling of SDGs followed by re-coupling as sustainable development progresses. Nat. Sustain., 5(5), 452-459.

[51]

Wunder, S, Brouwer, R, Engel, S, Ezzine-de-Blas, D, Muradian, R, Pascual, U, Pinto, R., 2018. From principles to practice in paying for nature's services. Nat. Sustain., 1(3), 145-150.

[52]

Xiao, H, Bao, S, Ren, J, Xu, Z., 2023. Transboundary impacts on SDG progress across Chinese cities: a spatial econometric analysis. Sust. Cities Soc., 92, 104496.

[53]

Xiao, Y, Tian, K, Huang, H, Wang, J, Zhou, T., 2021. Coupling and coordination of socioeconomic and ecological environment in Wenchuan earthquake disaster areas: case study of severely affected counties in southwestern China. Sust. Cities Soc., 71, 102958.

[54]

Xiao, Y, Wang, R, Wang, F, Huang, H, Wang, J., 2022. Investigation on spatial and temporal variation of coupling coordination between socioeconomic and ecological environment: a case study of the Loess Plateau, China. Ecol. Indic., 136, 108667.

[55]

Xu, S, Zheng, S, Huang, Z, Song, L, Long, Y, Zhan, X, Jiang, L, Wang, Y, Shu, Y, Zheng, C., 2022. Assessing progress towards sustainable development in Shenzhen 2005–2019. J. Clean. Prod., 349, 131496.

[56]

Xu, Z, Chau, S. N., Chen, X, Zhang, J, Li, Y, Dietz, T, Wang, J, Winkler, J. A., Fan, F, Huang, B, Li, S, Wu, S, Herzberger, A, Tang, Y, Hong, D, Li, Y, Liu, J., 2020. Assessing progress towards sustainable development over space and time. Nature 577(7788), 74-78.

[57]

Xu, Z, Peng, J, Qiu, S, Liu, Y, Dong, J, Zhang, H., 2022. Responses of spatial relationships between ecosystem services and the Sustainable Development Goals to urbanization. Sci. Total Environ., 850, 12.

[58]

Yu, L, Lu, W, Choguill, C, Li, M., 2023. Liangshan Bank, A hybrid model of payment for ecosystem services governance in rural development: the case of Baofu, China. Habitat Int., 138, 102879.

[59]

Zhang, H, Geng, C, Wei, J., 2022. Coordinated development between green finance and environmental performance in China: the spatial-temporal difference and driving factors. J. Clean. Prod., 346, 131150.

[60]

Zhang, L, Yu, H, Hao, C, Wang, H., 2021. Practice model and path of ecosystem product value realization. Res. Environ. Sci., 34(6), 1407.

[61]

Zhao, J, Xiao, Y, Zhang, Y, Shao, Y, Ma, T, Kou, X, Zhang, Y, Sang, W, Axmacher, J. C., 2023. Socioeconomic development shows positive links to the conservation efficiency of China's protected area network. Glob. Change Biol., 29, 3433-3448.

[62]

Zhao, Y, Wang, S, Zhou, C., 2016. Understanding the relation between urbanization and the eco-environment in China's Yangtze River Delta using an improved EKC model and coupling analysis. Sci. Total Environ., 571, 862-875.

[63]

Zheng, H, Robinson, B. E., Liang, Y. C., Polasky, S, Ma, D. C., Wang, F. C., Ruckelshaus, M, Ouyang, Z. Y., Daily, G. C., 2013. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proc. Natl. Acad. Sci. U.S.A., 110(41), 16681-16686.

[64]

Zheng, H, Wu, T, Ouyang, Z, Polasky, S, Ruckelshaus, M, Wang, L, Xiao, Y, Gao, X, Li, C, Daily, G. C., 2023. Gross ecosystem product (GEP): quantifying nature for environmental and economic policy innovation. Ambio 52, 1952-1967.

PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

/