Increased corn cultivation exacerbated crop residue burning in Northeast China in the 21st century

Yiqun Shang , Yanyan Pei , Ping Fu , Chuantao Ren , Zhichao Li , Jianfeng Ren , Xinqi Zheng , Yuanyuan Di , Yan Zhou , Jinwei Dong

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100244

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100244 DOI: 10.1016/j.geosus.2024.09.008
Research Article
review-article

Increased corn cultivation exacerbated crop residue burning in Northeast China in the 21st century

Author information +
History +
PDF

Abstract

China’s endeavors to mitigate recurrent crop residue burning (CRB) and improve air quality have yielded positive results owing to recent pollution prevention policies. Nonetheless, persistent challenges remain, particularly in the Northeast China (NEC), where low temperature complicates crop residue management. Here, we examined the effects of cropping pattern adjustment on variations of CRB patterns in NEC during 2001–2021, utilizing the Moderate-resolution Imaging Spectroradiometer (MODIS) burned area dataset, the Visible Infrared Imaging Radiometer Suite (VIIRS) active fire dataset, and the high-accuracy crop planting area maps. Our results revealed an overall upward trend of 805.96 km2/yr in NEC CRB from 2001 to 2021. The corn CRB area accounted for more than 50% of the total CRB area in each CRB-intensive year (2013–2021), and the increasing corn CRB generally aligns with the growing corn cultivation fields. A seasonal shift in CRB was found around 2017, with intensive CRB activities transitioning from both autumn and spring to primarily spring, particularly in the Songnen Plain and Sanjiang Plain. The changing trend of PM2.5 concentration aligned spatially with the shift. Moreover, the CRBs in spring of 2020 and 2021 were more severe than the major burning seasons in previous years, likely due to the disruptions during COVID-19 lockdowns. In certain years, the explanatory power of spring CRB on PM2.5 concentration was comparable to that of other natural factors, such as precipitation. This study underscores the critical need for sustained and region-specific strategies to tackle the challenges posed by CRBs.

Keywords

Crop residue burning / Northeast China / Burned area / Active fire / Cropping pattern adjustment

Cite this article

Download citation ▾
Yiqun Shang, Yanyan Pei, Ping Fu, Chuantao Ren, Zhichao Li, Jianfeng Ren, Xinqi Zheng, Yuanyuan Di, Yan Zhou, Jinwei Dong. Increased corn cultivation exacerbated crop residue burning in Northeast China in the 21st century. Geography and Sustainability, 2025, 6(3): 100244 DOI:10.1016/j.geosus.2024.09.008

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yiqun Shang: Writing – original draft, Software, Methodology, Investigation, Formal analysis, Data curation. Yanyan Pei: Formal analysis, Conceptualization. Ping Fu: Writing – review & editing, Validation, Supervision, Methodology, Formal analysis, Data curation. Chuantao Ren: Resources, Methodology. Zhichao Li: Supervision, Software, Investigation. Jianfeng Ren: Writing – review & editing, Visualization, Supervision, Investigation, Formal analysis. Xinqi Zheng: Writing – review & editing, Software, Resources. Yuanyuan Di: Writing – review & editing, Software, Resources. Yan Zhou: Methodology, Data curation, Conceptualization. Jinwei Dong: Writing – review & editing, Supervision, Methodology, Investigation, Formal analysis, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study is supported by the National Key Research and Development Program of China (Grant No. 2023YFD1500200), the funding project of Northeast Geological S&T Innovation Center of China Geological Survey (Grant No. QCJJ2022–9), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA28060100), the Youth Interdisciplinary Team Project of the Chinese Academy of Sciences (JCTD-2021–04), the Informatization Plan of the Chinese Academy of Sciences (Grant No. CAS-WX2021PY-0109), the National Natural Science Foundation of China (Grants No. 41971078, 42271375, 72221002, 42001378).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.09.008.

References

[1]

Amani, M, Ghorbanian, A, Ahmadi, S. A., Kakooei, M, Moghimi, A, Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S, Ghahremanloo, M, Parsian, S, Wu, Q, Brisco, B., 2020. Google Earth engine cloud computing platform for remote sensing big data applications: a comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 13, 5326-5350.

[2]

Andela, N, Morton, D. C., Giglio, L, Chen, Y, van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S, Kloster, S, Bachelet, D, Forrest, M, Lasslop, G, Li, F, Mangeon, S, Melton, J. R., Yue, C, Randerson, J. T., 2017. A human-driven decline in global burned area. Science 356(6345), 1356-1361.

[3]

Babu, S, Rathore, S. S., Singh, R, Kumar, S, Singh, V. K., Yadav, S. K., Yadav, V, Raj, R, Yadav, D, Shekhawat, K, Wani, O. A., 2022. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: a review. Bioresour. Technol., 360, 127566.

[4]

Cao, G, Zhang, X, Wang, D, Guan, F., 2005. Inventory of atmospheric pollutants discharged from biomass burning in China continent. China Environ. Sci., 25(4), 389-393.

[5]

Chen, F, Jiang, Y, Yin, X., 2021. Adjustment of China’s farming system regionalization scheme. J. China Agric. Resour. Reg. Plan., 42(3), 1-6.

[6]

Chen, J, Gong, Y, Wang, S, Guan, B, Balkovic, J, Kraxner, F., 2019. To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China. Sci. Total Environ., 662, 141-150.

[7]

Cheng, Y, Cao, X. B., Liu, J. M., Yu, Q. Q., Zhong, Y. J., Geng, G. N., Zhang, Q, He, K. B., 2022. New open burning policy reshaped the aerosol characteristics of agricultural fire episodes in Northeast China. Sci. Total Environ., 810, 152272.

[8]

Cui, S, Song, Z, Zhang, L, Shen, Z, Hough, R, Zhang, Z, An, L, Fu, Q, Zhao, Y, Jia, Z., 2020. Spatial and temporal variations of open straw burning based on fire spots in northeast China from 2013 to 2017. Atmos. Environ., 244, 117962.

[9]

d'Andrimont, R, Verhegghen, A, Lemoine, G, Kempeneers, P, Meroni, M, van der Velde, M., 2021. From parcel to continental scale–a first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sens. Environ., 266, 112708.

[10]

Deshpande, M. V., Kumar, N, Pillai, D, Krishna, V. V., Jain, M., 2023. Greenhouse gas emissions from agricultural residue burning have increased by 75 % since 2011 across India. Sci. Total Environ., 904, 166944.

[11]

Feng, X, Merow, C, Liu, Z, Park, D. S., Roehrdanz, P. R., Maitner, B, Newman, E. A., Boyle, B. L., Lien, A, Burger, J. R., Pires, M. M., Brando, P. M., Bush, M. B., McMichael, C. N. H., Neves, D. M., Nikolopoulos, E, Saleska, S. R., Hannah, L, Breshears, D. D., Evans, T. P., Soto, J. R., Ernst, K. C., Enquist, B. J., 2021. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597(7877), 516-521.

[12]

Feng, Y, Ning, M, Lei, Y, Sun, Y, Liu, W, Wang, J., 2019. Defending blue sky in China: effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017. J. Environ. Manage., 252, 109603.

[13]

Fu, J, Song, S, Guo, L, Chen, W, Wang, P, Duanmu, L, Shang, Y, Shi, B, He, L., 2022. Interprovincial joint prevention and control of open straw burning in Northeast China: implications for atmospheric environment management. Remote Sens., 14(11), 2528.

[14]

Fu, Y, Gao, H, Liao, H, Tian, X., 2021. Spatiotemporal variations and uncertainty in crop residue burning emissions over North China Plain: implication for atmospheric CO2 simulation. Remote Sens., 13(19), 3880.

[15]

Fu, Y, Li, R, Wang, X, Bergeron, Y, Valeria, O, Chavardes, R. D., Wang, Y, Hu, J., 2020. Fire detection and fire radiative power in forests and low-biomass lands in Northeast Asia: MODIS versus VIIRS fire products. Remote Sens., 12(8), 2870.

[16]

Gao, J, Liu, Y., 2011. Climate warming and land use change in Heilongjiang Province, Northeast China. Appl. Geogr., 31(2), 476-482.

[17]

Gelaro, R, McCarty, W, Suarez, M. J., Todling, R, Molod, A, Takacs, L, Randles, C. A., Darmenov, A, Bosilovich, M. G., Reichle, R, Wargan, K, Coy, L, Cullather, R, Draper, C, Akella, S, Buchard, V, Conaty, A, da Silva, A. M., Gu, W, G-Kim, K, Koster, R, Lucchesi, R, Merkova, D, Nielsen, J. E., Partyka, G, Pawson, S, Putman, W, Rienecker, M, Schubert, S. D., Sienkiewicz, M, Zhao, B., 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim., 30(14), 5419-5454.

[18]

Giglio, L, Boschetti, L, Roy, D. P., Humber, M. L., Justice, C. O., 2018. The collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ., 217, 72-85.

[19]

Giglio, L, Schroeder, W, Justice, C. O., 2016. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ., 178, 31-41.

[20]

Gocic, M, Trajkovic, S., 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Glob. Planet. Change 100, 172-182.

[21]

Goswami, S. B., Mondal, R, Mandi, S. K., 2019. Crop residue management options in rice-rice system: a review. Arch. Agron. Soil Sci., 66(9), 1218-1234.

[22]

Guan, D, Su, X, Zhang, Q, Peters, G. P., Liu, Z, Lei, Y, He, K., 2014. The socioeconomic drivers of China's primary PM2.5 emissions. Environ. Res. Lett., 9(2), 024010.

[23]

Guo, J, Zhao, J, Xu, Y, Chu, Z, Mu, J, Zhao, Q. 2015. Effects of adjusting cropping systems on utilization efficiency of climatic resources in Northeast China under future climate scenarios. Phys. Chem. Earth., 87–88, pp.87-96.

[24]

Huang, L, Zhu, Y, Wang, Q, Zhu, A, Liu, Z, Wang, Y, Allen, D. T., Li, L., 2021. Assessment of the effects of straw burning bans in China: emissions, air quality, and health impacts. Sci. Total Environ., 789, 147935.

[25]

Irfan, M, Riaz, M, Arif, M. S., Shahzad, S. M., Saleem, F, Van den Berg, L, Abbas, F., 2014. Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan. Atmos. Environ., 84, 189-197.

[26]

Jensen, D, Reager, J. T., Zajic, B, Rousseau, N, Rodell, M, Hinkley, E., 2018. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett., 13(1), 014021.

[27]

Jiang, Y, Wang, X, Huo, M, Chen, F, He, X., 2023. Changes of cropping structure lead diversity decline in China during 1985–2015. J. Environ. Manage., 346, 119051.

[28]

Jin, H, Zhong, R, Liu, M, Ye, C, Chen, X., 2022. Spatiotemporal distribution characteristics of PM2.5 concentration in China from 2000 to 2018 and its impact on population. J. Environ. Manage., 323, 116273.

[29]

Jones, M. W., Abatzoglou, J. T., Veraverbeke, S, Andela, N, Lasslop, G, Forkel, M, Smith, A. J. P., Burton, C, Betts, R. A., van der Werf, G. R., Sitch, S, Canadell, J. G., Santin, C, Kolden, C, Doerr, S. H., Le Quere, C., 2022. Global and regional trends and drivers of fire under climate change. Rev. Geophys., 60(3), e2020RG000726.

[30]

Kapoor, R, Ghosh, P, Kumar, M, Sengupta, S, Gupta, A, Kumar, S. S., Vijay, V, Kumar, V, Vijay, V. K., Pant, D., 2020. Valorization of agricultural waste for biogas based circular economy in India: a research outlook. Bioresour. Technol., 204, 123036.

[31]

Ke, H, Gong, S, He, J, Zhou, C, Zhang, L, Zhou, Y., 2019. Spatial and temporal distribution of open bio-mass burning in China from 2013 to 2017. Atmospheric Environ., 210, 156-165.

[32]

Kelley, D, Bistinas, I, Whitley, R, Burton, C, Marthews, T. R., Dong, N., 2019. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Chang., 9(9), 690-696.

[33]

Li, P, Xiao, C, Feng, Z, Li, W, Zhang, X., 2020. Occurrence frequencies and regional variations in Visible Infrared Imaging Radiometer Suite (VIIRS) global active fires. Glob. Change Biol., 26(5), 2970-2987.

[34]

Lin, M, Begho, T., 2022. Crop residue burning in South Asia: a review of the scale, effect, and solutions with a focus on reducing reactive nitrogen losses. J. Environ. Manage., 314, 115104.

[35]

Liu, J, Ding, W., 2023. Spatial and temporal distribution of PM2.5 and O3 in north China from 2011 to 2020: patterns and influence mechanisms. Atmospheric Pollut. Res., 14(11), 101906.

[36]

Liu, J, Hull, V, Godfray, H. C. J., Tilman, D, Gleick, P, Hoff, H, Pahl-Wostl, C, Xu, Z, Chung, M. G., Sun, J, Li, S., 2018. Nexus approaches to global sustainable development. Nat. Sustain., 1(9), 466-476.

[37]

Liu, M, Yao, H, Matsui, H., 2022. Marked rebound of agricultural fire emissions in Asia after the outbreak of COVID-19. Environ. Res. Lett., 17(11), 114059.

[38]

Lv, Z, Wei, W, Cheng, S, Han, X, Wang, X., 2020. Meteorological characteristics within boundary layer and its influence on PM2.5 pollution in six cities of North China based on WRF-Chem. Atmos. Environ., 228, 117417.

[39]

Munoz-Sabater, J, Dutra, E, Agusti-Panareda, A, Albergel, C, Arduini, G, Balsamo, G, Boussetta, S, Choulga, M, Harrigan, S, Hersbach, H, Martens, B, Miralles, D. G., Piles, M, Rodriguez-Fernandez, N. J., Zsoter, E, Buontempo, C, J-Thepaut, N., 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13(9), 4349-4383.

[40]

Peng, Q, Shen, R, Li, X, Ye, T, Dong, J, Fu, Y, Yuan, W., 2023. A twenty-year dataset of high-resolution maize distribution in China. Sci. Data 10(1), 658.

[41]

Ravindra, K, Singh, T, Mor, S., 2019. Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. J. Clean. Prod., 208, 261-273.

[42]

Resco de Dios, V, Yao, Y, Cunill Camprubi, A, Boer, M. M., 2022. Fire activity as measured by burned area reveals weak effects of ENSO in China. Nat. Commun., 13(1), 4316.

[43]

Santiago-De la Rosa, N, Mugica-Alvarez, V, Gonzalez-Cardoso, G, De Vizcaya-Ruiz, A, Uribe-Ramirez, M, Valle-Hernandez, B. L., 2022. Emission factors of polycyclic aromatic hydrocarbons and oxidative potential of fine particles emitted from crop residues burning. Polycycl. Aromat. Compd., 42(8), 5123-5142.

[44]

Schroeder, W, Oliva, P, Giglio, L, Csiszar, I. A., 2014. The new VIIRS 375 m active fire detection data product: a lgorithm description and initial assessment. Remote Sens. Environ., 143, 85-96.

[45]

Shi, Y, Gong, S, Zang, S, Zhao, Y, Wang, W, Lv, Z, Matsunaga, T, Yamaguchi, Y, Bai, Y., 2021. High-resolution and multi-year estimation of emissions from open biomass burning in Northeast China during 2001–2017. J. Clean. Prod., 310, 127496.

[46]

Shyamsundar, P, Springer, N. P., Tallis, H, Polasky, S, Jat, M. L., Sidhu, H. S., Krishnapriya, P. P., Skiba, N, Ginn, W, Ahuja, V, Cummins, J, Datta, I, Dholakia, H. H., 2019. Fields on fire: alternatives to crop residue burning in India. Science 365(6453), 536-538.

[47]

Singha, M, Dong, J, Ge, Q, Metternicht, G, Sarmah, S, Zhang, G, Doughty, R, Lele, S, Biradar, C, Zhou, S, Xiao, X., 2021. Satellite evidence on the trade-offs of the food-water-air quality nexus over the breadbasket of India. Glob. Environ. Change-Human Policy Dimens., 71, 102394.

[48]

Sun, J, Peng, H, Chen, J, Wang, X, Wei, M, Li, W, Yang, L, Zhang, Q, Wang, W, Mellouki, A., 2016. An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. J. Clean. Prod., 112, 2625-2631.

[49]

Sun, P, Xu, B, Wang, J., 2022. Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline. Appl. Energy 324, 119709.

[50]

Venkatramanan, V, Shah, S, Rai, A. K., Prasad, R., 2021. Nexus between crop residue burning, bioeconomy and Sustainable Development Goals over North-Western India. Front. Energy Res., 8, 614212.

[51]

Wang, J-F, X-Li, H, Christakos, G, Y-Liao, L, Zhang, T, Gu, X, X-Zheng, Y., 2010. Geographical detectors-based health risk assessment and its application in the Neural Tube Defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci., 24(1), 107-127.

[52]

Wang, L, Wang, Q, Mao, H, Liu, Q, Weng, G, Wng, Y., 2020. Spatial and temporal variability of open biomass burning in Northeast China from 2003 to 2017. Atmos. Ocean. Sci. Lett., 13(3), 240-247.

[53]

Wang, Q, Wang, L, Li, X, Xin, J, Liu, Z, Sun, Y, Liu, J, Zhang, Y, Du, W, Jin, X, Zhang, T, Liu, S, Liu, Q, Chen, J, Cheng, M, Wang, Y., 2020. Emission characteristics of size distribution, chemical composition and light absorption of particles from field-scale crop residue burning in Northeast China. Sci. Total Environ., 710, 136304.

[54]

Wei, J, Li, Z, Lyapustin, A, Sun, L, Peng, Y, Xue, W, Su, T, Cribb, M., 2021. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sens. Environ., 252, 112136.

[55]

Wen, X, Chen, W, Chen, B, Yang, C, Tu, G, Cheng, T., 2020. Does the prohibition on open burning of straw mitigate air pollution? An empirical study in Jilin Province of China in the post-harvest season. J. Environ. Manage., 264, 110451.

[56]

Wiedinmyer, C, Kimura, Y, McDonald-Buller, E. C., Emmons, L. K., Buchholz, R. R., Tang, W, Seto, K, Joseph, M. B., Barsanti, K. C., 2023. The Fire Inventory from NCAR version 2.5: an updated global fire emissions model for climate and chemistry applications. Geosci. Model Dev., 16(13), 3873-3891.

[57]

Xu, C, You, C., 2023. Agricultural expansion dominates rapid increases in cropland fires in Asia. Environ. Int., 179, 108189.

[58]

Xu, Y, Huang, Z, Jia, G, Fan, M, Cheng, L, Chen, L, Shao, M, Zheng, J., 2019. Regional discrepancies in spatiotemporal variations and driving forces of open crop residue burning emissions in China. Sci. Total Environ., 671, 536-547.

[59]

Xuan, F, Dong, Y, Li, J, Li, X, Su, W, Huang, X, Huang, J, Xie, Z, Li, Z, Liu, H, Tao, W, Wen, Y, Zhang, Y., 2023. Mapping crop type in Northeast China during 2013–2021 using automatic sampling and tile-based image classification. Int. J. Appl. Earth Obs. Geoinf., 117, 103178.

[60]

Yang, G, Zhao, H, Tong, D. Q., Xiu, A, Zhang, X, Gao, C., 2020. Impacts of post-harvest open biomass burning and burning ban policy on severe haze in the Northeastern China. Sci. Total Environ., 716, 136517.

[61]

Yang, Q, Masek, O, Zhao, L, Nan, H, Yu, S, Yin, J, Li, Z, Cao, X., 2021. Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation. Appl. Energy 282, 116275.

[62]

Yin, S, Guo, M, Wang, X, Yamamoto, H, Ou, W., 2021. Spatiotemporal variation and distribution characteristics of crop residue burning in China from 2001 to 2018. Environ. Pollut., 268, 115849.

[63]

You, N, Dong, J, Huang, J, Du, G, Zhang, G, He, Y, Yang, T, Di, Y, Xiao, X., 2021. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 8(1), 41.

[64]

Yu, M, Yuan, X, He, Q, Yu, Y, Cao, K, Zhang, W., 2019. Temporal-spatial analysis of crop residue burning in China and its impact on aerosol pollution. Environ. Pollut., 245, 616-626.

[65]

Yu, Z, Jin, X, Miao, L, Yang, X., 2021. A historical reconstruction of cropland in China from 1900 to 2016. Earth Syst. Sci. Data 13(7), 3203-3218.

[66]

Yue, S, Wang, C., 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res., 38(6), 1068.

[67]

Zhang, L, Liu, Y, Hao, L., 2016. Contributions of open crop straw burning emissions to PM2.5 concentrations in China. Environ. Res. Lett., 11(1), 014014.

[68]

Zhang, L, Wang, C, Li, X, Zhang, H, Li, W, Jiang, L., 2018. Impacts of agricultural expansion (1910s–2010s) on the water cycle in the Songneng Plain, Northeast China. Remote Sens., 10(7), 1108.

[69]

Zheng, B, Ciais, P, Chevallier, F, Chuvieco, E, Chen, Y, Yang, H., 2021. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv., 7(39), eabh2646.

[70]

Zheng, C, Zhao, C, Zhu, Y, Wang, Y, Shi, X, Wu, X, Chen, T, Wu, F, Qiu, Y., 2017. Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmospheric Chem. Phys., 17(21), 13473-13489.

[71]

Zhong, H, Liu, Z, Wang, J., 2022. Understanding impacts of cropland pattern dynamics on grain production in China: a integrated analysis by fusing statistical data and satellite-observed data. J. Environ. Manage., 313, 114988.

[72]

Zhou, S, Collier, S, Jaffe, D. A., Briggs, N. L., Hee, J, Sedlacek III, A. J., Kleinman, L, Onasch, T. B., Zhang, Q., 2017. Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmospheric Chem. Phys., 17(3), 2477-2493.

[73]

Zhuang, Y, Li, R, Yang, H, Chen, D, Chen, Z, Gao, B, He, B., 2018. Understanding temporal and spatial distribution of crop residue burning in China from 2003 to 2017 using MODIS data. Remote Sens., 10(3), 390.

PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

/