Integrated outcomes of large-scale ecological restoration projects on biodiversity–eco-environment–society in China

Yi Wang , Changning Liu , Biying Liu , Tien Ming Lee

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100243

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100243 DOI: 10.1016/j.geosus.2024.09.007
Research Article
review-article

Integrated outcomes of large-scale ecological restoration projects on biodiversity–eco-environment–society in China

Author information +
History +
PDF

Abstract

China has executed large-scale ecological restoration projects (ERPs) to meet the goals of environmental protection and economic development. Yet, the integrated outcomes of these projects on the biodiversity–eco-environment–society dimensions remain unclear, but when available could be insightful for adaptation and adjustments, particularly in this United Nations Decade on Ecosystem Restoration (2021–2030). Based on multi-source data, we identified the categories and quantities of large-scale ERP implementation in the county-level. By comparing the time-series multiple factors of implemented vs unimplemented counties, we quantify the contributions and compare the relative effects of up to six different ERPs. Combining random forest, spatial autocorrelation, and network analysis, we explore the key factors that affect the contributions of ERPs. Here, we show that the triple dimensions in the low ERP group (regions implementing 0–2 projects) produced better outcomes than the high ERP group (regions implementing 3–5 projects) in relatively developed regions, while the high ERP group has more gains than the low ERP group in relatively less-developed regions. Notably, regional characteristics and different social assets mediate the ERP contributions, while human capital and financial capital have important roles. Overall, the ERPs generated positive contributions and could increase the network stability of multi-dimensions in relatively less-developed regions, but it may lead to imbalances in some factors (i.e., mammal species conservation, and human capital). To continue to minimize the negative effects from past, and to improve the returns of ERP policy and investments, more timely and adaptive management of ERPs are needed, especially in relatively less-developed regions.

Keywords

Restoration programs / Biodiversity conservation / Poverty alleviation / Environmental protection / Nature-based solutions / Adaptive management

Cite this article

Download citation ▾
Yi Wang, Changning Liu, Biying Liu, Tien Ming Lee. Integrated outcomes of large-scale ecological restoration projects on biodiversity–eco-environment–society in China. Geography and Sustainability, 2025, 6(3): 100243 DOI:10.1016/j.geosus.2024.09.007

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yi Wang: Writing – original draft, Visualization, Methodology, Data curation, Conceptualization. Changning Liu: Writing – review & editing, Methodology, Data curation. Biying Liu: Writing – review & editing, Methodology. Tien Ming Lee: Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the National Overseas High-level Talent Program China (Grants No. 41180953 and 41180944) and Guangdong Provincial Special Research Grant for the Creation of National Parks (Grant No. 2021GJGY034).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.09.007.

References

[1]

Ahammad, R, Hossain, M. K., Sobhan, I, Hasan, R, Biswas, S. R., Mukul, S. A., 2023. Social-ecological and institutional factors affecting forest and landscape restoration in the Chittagong Hill Tracts of Bangladesh. Land Use Policy 125, 106478.

[2]

Alexandratos, N., 2005. Countries with rapid population growth and resource constraints: issues of food, agriculture, and development. Popul. Dev. Rev., 31(2), 237-258.

[3]

Aubrecht, C, Özceylan, D., 2013. Identification of heat risk patterns in the US National Capital Region by integrating heat stress and related vulnerability. Environ. Int., 56, 65-77.

[4]

Bardgett, R. D., Bullock, J. M., Lavorel, S, Manning, P, Schaffner, U, Ostle, N, Chomel, M, Durigan, G, L Fry, E, Johnson, D., 2021. Combatting global grassland degradation. Nat. Rev. Earth Environ., 2(10), 720-735.

[5]

Benayas, J. M. R., Newton, A. C., Diaz, A, Bullock, J. M., 2009. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325(5944), 1121-1124.

[6]

Cai, D, Ge, Q, Wang, X, Liu, B, Goudie, A. S., Hu, S., 2020. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett., 15(11), 114046.

[7]

Cao, Y, Xie, Z, Woodgate, W, Ma, X, Cleverly, J, Pang, Y, Qin, F, Huete, A., 2022. Ecohydrological decoupling of water storage and vegetation attributed to China's large-scale ecological restoration programs. J. Hydrol., 615, 128651.

[8]

Chen, C, Park, T, Wang, X, Piao, S, Xu, B, Chaturvedi, R. K., Fuchs, R, Brovkin, V, Ciais, P, Fensholt, R., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2(2), 122-129.

[9]

Chen, T, Wang, Y, Peng, L., 2024. Exploring social-ecological system resilience in South China Karst: quantification, interaction and policy implication. Geogr. Sustain., 5(2), 289-301.

[10]

Cheng, Y, Tjaden, N. B., Jaeschke, A, Thomas, S. M., Beierkuhnlein, C., 2021. Using centroids of spatial units in ecological niche modelling: effects on model performance in the context of environmental data grain size. Glob. Ecol. Biogeogr., 30(3), 611-621.

[11]

Chuai, X, Lu, Y, Xie, F, Yang, F, Zhao, R, Pang, B., 2021. A new approach to evaluate regional inequity determined by PM2.5 emissions and concentrations. J. Environ. Manage., 277, 111335.

[12]

Cimatti, M, Chaplin-Kramer, R, Di Marco, M., 2023. The role of high-biodiversity regions in preserving Nature's Contributions to People. Nat. Sustain., 6(11), 1385-1393.

[13]

Cinner, J. E., 2011. Social-ecological traps in reef fisheries. Glob. Environ. Change 21(3), 835-839.

[14]

Cinner, J. E., Huchery, C, MacNeil, M. A., Graham, N. A. J., McClanahan, T. R., Maina, J, Maire, E, Kittinger, J. N., Hicks, C. C., Mora, C, Allison, E. H., D'Agata, S, Hoey, A, Feary, D. A., Crowder, L, Williams, I. D., Kulbicki, M, Vigliola, L, Wantiez, L, Edgar, G, Stuart-Smith, R. D., Sandin, S. A., Green, A. L., Hardt, M. J., Beger, M, Friedlander, A, Campbell, S. J., Holmes, K. E., Wilson, S. K., Brokovich, E, Brooks, A. J., Cruz-Motta, J. J., Booth, D. J., Chabanet, P, Gough, C, Tupper, M, Ferse, S. C. A., Sumaila, U. R., Mouillot, D., 2016. Bright spots among the world's coral reefs. Nature 535(7612), 416-419.

[15]

Cong, S, Nock, D, Qiu, Y. L., Xing, B., 2022. Unveiling hidden energy poverty using the energy equity gap. Nat. Commun., 13(1), 2456.

[16]

Dang, D, Li, X, Li, S, Li, X, Lyu, X, Dou, H, Li, M, Liu, S, Xuan, X, Wang, K., 2023. Changing rural livelihood activities may reduce the effectiveness of ecological restoration projects. Land Degrad. Dev., 34(2), 362-376.

[17]

Dang, X, Gao, S, Tao, R, Liu, G, Xia, Z, Fan, L, Bi, W., 2020. Do environmental conservation programs contribute to sustainable livelihoods? Evidence from China’s grain-for-green program in northern Shaanxi province. Sci. Total Environ., 719, 137436.

[18]

Debortoli, N. S., Clark, D. G., Ford, J. D., Sayles, J. S., Diaconescu, E. P., 2019. An integrative climate change vulnerability index for Arctic aviation and marine transportation. Nat. Commun., 10(1), 2596.

[19]

Estoque, R. C., Ooba, M, Seposo, X. T., Togawa, T, Hijioka, Y, Takahashi, K, Nakamura, S., 2020. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat. Commun., 11(1), 1581.

[20]

Feng, W, Li, S, Li, C., 2016. A study on the failure of human capital and social capital in economic recovery of the ecological migrants: a survey of the ecological migrants in southern shaanxi. Popul. Econ., 1, 98-107.

[21]

Fu, B, Liu, Y, Meadows, M. E., 2023. Ecological restoration for sustainable development in China. Nat. Sci. Rev., 10, nwad033.

[22]

Funderburg, R, Laurian, L., 2015. Bolstering environmental (in)justice claims with a quasi-experimental research design. Land Use Policy 49, 511-526.

[23]

Gann, G. D., McDonald, T, Walder, B, Aronson, J, Nelson, C. R., Jonson, J, Hallett, J. G., Eisenberg, C, Guariguata, M. R., Liu, J., 2019. International principles and standards for the practice of ecological restoration. Restor. Ecol., 27(S1), S1-S46.

[24]

Ge, Y, Hu, S, Song, Y, Zheng, H, Liu, Y, Ye, X, Ma, T, Liu, M, Zhou, C., 2023. Sustainable poverty reduction models for the coordinated development of the social economy and environment in China. Sci. Bull., 68(19), 2236-2246.

[25]

Grantham, H, Duncan, A, Evans, T, Jones, K, Beyer, H, Schuster, R, Walston, J, Ray, J, Robinson, J, Callow, M., 2020. Anthropogenic modification of forests means only 40 % of remaining forests have high ecosystem integrity. Nat. Commun., 11(1), 5978.

[26]

Hahn, T, Koh, N. S., Elmqvist, T., 2022. No net loss of biodiversity, green growth, and the need to address drivers. One Earth 5(6), 612-614.

[27]

Hansen, M. H., Li, H, Svarverud, R., 2018. Ecological civilization: interpreting the Chinese past, projecting the global future. Glob. Environ. Change 53, 195-203.

[28]

He, W, Di, B, Zeng, Y, Duan, Y, Li, J, Qiu, L, Balikuddembe, J. K., Peng, Q, Zeng, W, Stamatopoulos, C. A., Luo, B, Pan, J., 2023. Reconsidering the eco-economic benefits of Grain for Green Program in Sichuan Province, China. Ecol. Indic., 157, 111225.

[29]

He, J, Shi, X., 2022. Detection of social-ecological drivers and impact thresholds of ecological degradation and ecological restoration in the last three decades. J. Environ. Manage., 318, 115513.

[30]

He, Q, Wang, Y, Qiu, Q, Su, Y, Wang, Y, Wei, H, Li, J., 2023. Joint effects of air PM2.5 and socioeconomic dimensions on posted emotions of urban green space visitors in cities experiencing population urbanization: a pilot study on 50 cities of East China. Sci. Total Environ., 861, 160607.

[31]

Hermans, K, Müller, D, O'Byrne, D, Olsson, L, Stringer, L. C., 2023. Land degradation and migration. Nat. Sustain., 6, 1503-1505.

[32]

Holl, K. D., Luong, J. C., Brancalion, P. H. S., 2022. Overcoming biotic homogenization in ecological restoration. Trends Ecol. Evol., 37(9), 777-788.

[33]

Horton, R. M., de Sherbinin, A, Wrathall, D, Oppenheimer, M., 2021. Assessing human habitability and migration. Science 372(6548), 1279-1283.

[34]

Hou, L, Xia, F, Chen, Q, Huang, J, He, Y, Rose, N, Rozelle, S., 2021. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nat. Commun., 12(1), 4683.

[35]

Hu, X, Ma, C, Huang, P, Guo, X., 2021. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection–a case of Weifang City, China. Ecol. Indic., 125, 107464.

[36]

Hua, F, Bruijnzeel, L. A., Meli, P, Martin, P. A., Zhang, J, Nakagawa, S, Miao, X, Wang, W, McEvoy, C, Peña-Arancibia, J. L., Brancalion, P. H. S., Smith, P, Edwards, D. P., Balmford, A., 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376(6595), 839-844.

[37]

Hua, F, Wang, X, Zheng, X, Fisher, B, Wang, L, Zhu, J, Tang, Y, Yu, D. W., Wilcove, D. S., 2016. Opportunities for biodiversity gains under the world's largest reforestation programme. Nat. Commun., 7(1), 12717.

[38]

Huang, L, Shao, Q, Liu, J., 2012. Forest restoration to achieve both ecological and economic progress, Poyang Lake basin, China. Ecol. Eng., 44, 53-60.

[39]

Huang, Q, Sauer, J. R., Swatantran, A, Dubayah, R., 2016. A centroid model of species distribution with applications to the Carolina wren Thryothorus ludovicianus and house finch Haemorhous mexicanus in the United States. Ecography 39(1), 54-66.

[40]

IUCN, 2022. The IUCN Red List of Threatened Species. Version 2022-2

[41]

Juhel, J-B, Vigliola, L, Mouillot, D, Kulbicki, M, Letessier, T. B., Meeuwig, J. J., Wantiez, L., 2018. Reef accessibility impairs the protection of sharks. J. Appl. Ecol., 55(2), 673-683.

[42]

Konapala, G, Mishra, A. K., Wada, Y, Mann, M. E., 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun., 11(1), 3044.

[43]

Köpke, S, Withanachchi, S. S., Chinthaka Perera, E. N., Withanachchi, C. R., Gamage, D. U., Nissanka, T. S., Warapitiya, C. C., Nissanka, B. M., Ranasinghe, N. N., Senarathna, C. D., Dissanayake, H. R., Pathiranage, R, Schleyer, C, Thiel, A., 2024. Factors driving human–elephant conflict: statistical assessment of vulnerability and implications for wildlife conflict management in Sri Lanka. Biodivers. Conserv., 33, 3075-3101.

[44]

Li, B. V., Wu, S, Hua, F, Mi, X., 2024. The past and future of ecosystem restoration in China. Curr. Biol., 34(9), R379-R387.

[45]

Liu, J, Dou, Y, Chen, H., 2024. Stepwise ecological restoration: a framework for improving restoration outcomes. Geogr. Sustain., 5(2), 160-166.

[46]

Liu, Y, Liu, R, Chen, J. M., 2012. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res.: Biogeosci., 117, G04003.

[47]

Loiseau, N, Mouquet, N, Casajus, N, Grenié, M, Guéguen, M, Maitner, B, Mouillot, D, Ostling, A, Renaud, J, Tucker, C, Velez, L, Thuiller, W, Violle, C., 2020. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun., 11(1), 5071.

[48]

Lu, N, Tian, H, Fu, B, Yu, H, Piao, S, Chen, S, Li, Y, Li, X, Wang, M, Li, Z, Zhang, L, Ciais, P, Smith, P., 2022. Biophysical and economic constraints on China's natural climate solutions. Nat. Clim. Chang., 12(9), 847-853.

[49]

Ma, R, , Y, Fu, B, , D, Wu, X, Sun, S, Zhang, Y., 2022. A modified habitat quality model to incorporate the effects of ecological restoration. Environ. Res. Lett., 17(10), 104029.

[50]

Mason, N, Ward, M, Watson, J. E. M., Venter, O, Runting, R. K., 2020. Global opportunities and challenges for transboundary conservation. Nat. Ecol. Evol., 4(5), 694-701.

[51]

Miccolis, A, Peneireiro, F. M., Vieira, D. L. M., Marques, H. R., Hoffmann, M. R. M., 2019. Restoration through agroforestry: options for reconciling livelihoods with conservation in the Cerrado and Caatinga biomes in Brazil. Exp. Agric., 55(S1), 208-225.

[52]

Moran, P. A., 1948. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B-Stat. Methodol., 10(2), 243-251.

[53]

Ouyang, Z, Zheng, H, Xiao, Y, Polasky, S, Liu, J, Xu, W, Wang, Q, Zhang, L, Xiao, Y, Rao, E., 2016. Improvements in ecosystem services from investments in natural capital. Science 352(6292), 1455-1459.

[54]

Peña-Guzmán, C, Ulloa-Sánchez, S, Mora, K, Helena-Bustos, R, Lopez-Barrera, E, Alvarez, J, Rodriguez-Pinzón, M., 2019. Emerging pollutants in the urban water cycle in Latin America: a review of the current literature. J. Environ. Manage., 237, 408-423.

[55]

Qiu, S, Peng, J, Zheng, H, Xu, Z, Meersmans, J., 2022. How can massive ecological restoration programs interplay with social-ecological systems? A review of research in the South China karst region. Sci. Total Environ., 807, 150723.

[56]

Rosenbaum, P. R., Rubin, D. B., 1983. The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41-55.

[57]

Save, H, Bettadpur, S, Tapley, B. D., 2016. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res.: Solid Earth 121(10), 7547-7569.

[58]

Shao, Q, Liu, S, Ning, J, Liu, G, Yang, F, Zhang, X, Niu, L, Huang, H, Fan, J, Liu, J., 2022. Assessment of ecological benefits of key national ecological projects in China in 2000–2019 using remote sensing. Acta Geogr. Sin., 77, 2133-2153.

[59]

Sharp, K., 2003. Measuring destitution: integrating qualitative and quantitative approaches in the analysis of survey data. Institute of Development Studies, Brighton, England

[60]

Shrestha, N, Xu, X, Meng, J, Wang, Z., 2021. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun., 12, 1632.

[61]

Strassburg, B. B. N., Iribarrem, A, Beyer, H. L., Cordeiro, C. L., Crouzeilles, R, Jakovac, C. C., Braga Junqueira, A, Lacerda, E, Latawiec, A. E., Balmford, A, Brooks, T. M., Butchart, S. H. M., Chazdon, R. L, Erb, K-.H, Brancalion, P, Buchanan, G, Cooper, D, Díaz, S, Donald, P. F., Kapos, V, Leclère, D, Miles, L, Obersteiner, M, Plutzar, C, de, M, Scaramuzza, C. A., Scarano, F. R., Visconti, P., 2020. Global priority areas for ecosystem restoration. Nature 586(7831), 724-729.

[62]

Strona, G, Stringer, S. D., Vieilledent, G, Szantoi, Z, Garcia-Ulloa, J, A, SWich, ., 2018. Small room for compromise between oil palm cultivation and primate conservation in Africa. Proc. Natl. Acad. Sci. U.S.A., 115(35), 8811-8816.

[63]

Stuart, E. A., King, G, Imai, K, Ho, D., 2011. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw., 42, 1-28.

[64]

Suding, K, Higgs, E, Palmer, M, Callicott, J. B., Anderson, C. B., Baker, M, Gutrich, J. J., Hondula, K. L., LaFevor, M. C., Larson, B. M., 2015. Committing to ecological restoration. Science 348(6235), 638-640.

[65]

Toledo, R. M., Santos, R. F., Verheyen, K, Perring, M. P., 2018. Ecological restoration efforts in tropical rural landscapes: challenges and policy implications in a highly degraded region. Land Use Policy 75, 486-493.

[66]

Tong, X, Brandt, M, Yue, Y, Horion, S, Wang, K, Keersmaecker, W. D., Tian, F, Schurgers, G, Xiao, X, Luo, Y., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain., 1(1), 44-50.

[67]

Tong, X, Wang, K, Yue, Y, Brandt, M, Liu, B, Zhang, C, Liao, C, Fensholt, R., 2017. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf., 54, 105-113.

[68]

Treacy, P, Jagger, P, Song, C, Zhang, Q, Bilsborrow, R. E., 2018. Impacts of China's Grain for Green Program on migration and household income. Environ. Manage., 62(3), 489-499.

[69]

Turner, B, Devisscher, T, Chabaneix, N, Woroniecki, S, Messier, C, Seddon, N., 2022. The role of nature-based solutions in supporting social-ecological resilience for climate change adaptation. Annu. Rev. Environ. Resour., 47(1), 123-148.

[70]

UNEP 2022. UN recognizes 10 pioneering initiatives that are restoring the natural world. United Nations Environment Programme (UNEP)

[71]

Wang, Z, Fu, B, Wu, X, Li, Y, Wang, S, Lu, N., 2023. Escaping social–ecological traps through ecological restoration and socioeconomic development in China’s Loess Plateau. People Nat., 5(4), 1364-1379.

[72]

Wang, X, Ge, Q, Geng, X, Wang, Z, Gao, L, Bryan, B. A., Chen, S, Su, Y, Cai, D, Ye, J., 2023. Unintended consequences of combating desertification in China. Nat. Commun., 14(1), 1139.

[73]

Wang, C, Yang, Y, Zhang, Y., 2011. Economic development, rural livelihoods, and ecological restoration: evidence from China. Ambio 40(1), 78-87.

[74]

Wei, J, Li, Z, Lyapustin, A, Sun, L, Peng, Y, Xue, W, Su, T, Cribb, M., 2021. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sens. Environ., 252, 112136.

[75]

Xu, K, Shi, B, Pang, J, Yin, C., 2023. The effect of participation in ecological public welfare positions on farmers’ household income composition and the internal mechanism. J. Clean. Prod., 385, 135557.

[76]

Xu, H, Yue, C, Zhang, Y, Liu, D, Piao, S., 2023. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc. Natl. Acad. Sci. U.S.A., 120(41), e2304988120.

[77]

Yang, J, Huang, X., 2021. The 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 13(8), 3907-3925.

[78]

Yang, L, Li, Y, Yu, L, Chen, M, Yu, M, Zhang, Y., 2024. Theory and case of land use transition promoting ecological restoration in karst mountain areas of Southwest China. Ecol. Indic., 158, 111393.

[79]

Zhang, H, Wu, K, Qiu, Y, Chan, G, Wang, S, Zhou, D, Ren, X., 2020. Solar photovoltaic interventions have reduced rural poverty in China. Nat. Commun., 11(1), 1969.

[80]

Zhang, X, Wang, Y, Yuan, X, Yang, Y., 2022. Regional land ecological security evaluation and ecological poverty alleviation practice: a case study of Yangxian County in Shaanxi Province, China. J. Geogr. Sci., 32(4), 682-700.

[81]

Zhang, Y, Zhao, X, Gong, J, Luo, F, Pan, Y., 2024. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ., 910, 168676.

[82]

Zhao, H, Wu, R, Hu, J, Yang, F, Wang, J, Guo, Y, Zhou, J, Wang, Y, Zhang, C, Feng, Z., 2020. The contrasting east–west pattern of vegetation restoration under the large-scale ecological restoration programmes in southwest China. Land Degrad. Dev., 31(13), 1688-1698.

[83]

Zhao, M, Zhang, J, Velicogna, I, Liang, C, Li, Z., 2021. Ecological restoration impact on total terrestrial water storage. Nat. Sustain., 4(1), 56-62.

[84]

Zhao, W, Wu, S, Chen, X, Shen, J, Wei, F, Li, D, Liu, L, Li, S., 2023. How would ecological restoration affect multiple ecosystem service supplies and tradeoffs? A study of mine tailings restoration in China. Ecol. Indic., 153, 110451.

PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

/