Integrating natural disasters into protected area designing for global primate conservation under climate change

Li Yang , Weiying Xu , Tao Chen , Yuxuan Fan , Pengfei Fan

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100242

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100242 DOI: 10.1016/j.geosus.2024.09.006
Research Article
review-article

Integrating natural disasters into protected area designing for global primate conservation under climate change

Author information +
History +
PDF

Abstract

Disaster risk reduction, an essential function of protected areas (PAs), has been generally overlooked in PA design. Using primates as a model, we designed a disaster risk index (DRI) to measure the disaster sensitivity of primate species. High-conservation-need (HCN) areas were identified by both their richness and number of threatened primate species. We also constructed high-disaster-risk (HDR) areas and climate-sensitive (CS) areas based on a disaster risk assessment and temperature change under climate change. We overlaid HCN and HDR areas to obtain HDR-HCN areas. We defined species conservation targets as the percent of each species’ range that should be effectively conserved using “Zonation”. Landslides had the highest DRI (1.43 ± 0.88), but have been overlooked in previous studies. PA coverage in HDR-HCN (30 %) areas was similar to that in HCN areas (28 %), indicating that current PA design fails to account for disaster risk reduction. About 50 % of the HDR-HCN areas overlapped with CS areas. Presently, 43 % of primate species meet their conservation targets. Fifty-seven of primate species would meet their conservation targets and 67 % of primates could benefit from PA expansion if HDR-HCN areas are fully incorporated into PAs. Increasing PA coverage in HDR-HCN areas is essential to achieving both primate conservation and disaster risk reduction. The study calls for integrating disaster risk reduction into PA design guidelines, particularly in regions like the western Amazon, and recommends flexible conservation approaches in other areas.

Keywords

Natural disasters / Landslides / Conservation target / Primate conservation

Cite this article

Download citation ▾
Li Yang, Weiying Xu, Tao Chen, Yuxuan Fan, Pengfei Fan. Integrating natural disasters into protected area designing for global primate conservation under climate change. Geography and Sustainability, 2025, 6(3): 100242 DOI:10.1016/j.geosus.2024.09.006

登录浏览全文

4963

注册一个新账户 忘记密码

Data and materials availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary materials. We also uploaded the disaster maps to figshare (doi: 10.6084/m9.figshare.27312066).

CRediT authorship contribution statement

Li Yang: Writing – review & editing, Writing – original draft, Visualization, Methodology, Formal analysis, Data curation, Conceptualization. Weiying Xu: Writing – original draft, Formal analysis, Data curation, Conceptualization. Tao Chen: Writing – original draft, Visualization, Formal analysis. Yuxuan Fan: Writing – review & editing, Writing – original draft, Visualization, Formal analysis. Pengfei Fan: Writing – review & editing, Writing – original draft, Funding acquisition, Data curation, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Y. J. Zhou for her help in figure design. This research was supported by the Ministry of Science and Technology of China (Grant No. 2022YFF1301500), the National Natural Science Foundation of China (Grants No. 32000352, 32171485, and 32371741), the Natural Science Foundation of Guangdong Province (Grant No. 2021A1515010968), and Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 23lgzy002).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.09.006.

References

[1]

Akasaka, T, Mori, T, Ishiyama, N, Takekawa, Y, Kawamoto, T, Inoue, M, Mitsuhashi, H, Kawaguchi, Y, Ichiyanagi, H, Onikura, N, Miyake, Y, Katano, I, Akasaka, M, Nakamura, F., 2022. Reconciling biodiversity conservation and flood risk reduction: the new strategy for freshwater protected areas. Divers. Distrib., 28 (6) , pp. 1191-1201. doi: 10.1111/ddi.13517.

[2]

Allan, J. R., Possingham, H. P., Atkinson, S. C., Waldron, A, Marco, M. D., Butchart, S. H. M., Adams, V. M., Kissling, W. D., Worsdell, T, Sandbrook, C, Gibbon, G, Kumar, K, Mehta, P, Maron, M, Williams, B. A., Jones, K. R., Wintle, B. A., Reside, A. E., Watson, J. E. M., 2022. The minimum land area requiring conservation attention to safeguard biodiversity. Science, 376 (2022), pp. 1094-1101. doi: 10.1126/science.abl9127.

[3]

Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G, Cornforth, W. A., Pettorelli, N., 2013. Assessing exposure to extreme climatic events for terrestrial mammals. Conserv. Lett., 6 (3) , pp. 145-153. doi: 10.1111/j.1755-263X.2012.00306.x.

[4]

Barrett, C. B., Travis, A. J., Dasgupta, P., 2011. On biodiversity conservation and poverty traps. Proc. Natl. Acad. Sci. U.S.A., 108 (34) , pp. 13907-13912. doi: 10.1073/pnas.1011521108.

[5]

Beierkuhnlein, C., 2021. Nature-based solutions must be realized - not just proclaimed - in face of climatic extremes. Erdkunde, 75 (3) , pp. 225-244. doi: 10.3112/erdkunde.2021.03.06.

[6]

Berns, K, Haertel, A. J., 2024. Excess prenatal loss and respiratory illnesses of infant macaques living outdoors and exposed to wildfire smoke. Am. J. Primatol., 86 (5) , p. e23605. doi: 10.1002/ajp.23605.

[7]

Bivand, R., 2023. classInt: choose Univariate Class Intervals. R package version 0.4-8. Retrieved from https://CRAN.R-project.org/package = classInt

[8]

Bland, L. M., Collen, B, Orme, C. D. L., Bielby, J., 2015. Predicting the conservation status of data-deficient species. Conserv. Biol., 29 (1) , pp. 250-259. doi: 10.1111/cobi.12372.

[9]

Burby, R. J., Deyle, R. E., Godschalk, D. R., Olshansky, R. B., 2000. Creating hazard resilient communities through land-use planning. Nat. Hazards Rev., 1 (2) , pp. 99-106. doi: 10.1061/(asce)1527-6988(2000)1:2(99).

[10]

Buyck, C, Murti, R., 2014. Safe Havens: Protected Areas for Disaster Risk Reduction and Climate Change Adaptation. IUCN, Gland, Switzerland

[11]

Carwardine, J, Wilson, K. A., Ceballos, G, Ehrlich, P. R., Naidoo, R, Iwamura, T, Hajkowicz, S. A., Possingham, H. P., 2008. Possingham. Cost-effective priorities for global mammal conservation. Proc. Natl. Acad. Sci. U.S.A., 105 (32) , pp. 11446-11450. doi: 10.1073/pnas.0707157105.

[12]

Ceballos, G, Ehrlich, P. R., 2006. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl. Acad. Sci. U.S.A., 103 (51) , pp. 19374-19379. doi: 10.1073/pnas.0609334103.

[13]

Chan, B. P. L., Lo, Y. F. P., Hong, X. J., Mak, C. F., Ma, Z. Y., 2020. First use of artificial canopy bridge by the world's most critically endangered primate the Hainan gibbon Nomascus hainanus. Sci. Rep., 10 (1) , p. 15176. doi: 10.1038/s41598-020-72641-z.

[14]

Core Writing Team IPCC, 2023. Summary for policymakers. In: Lee, H., Romero, J. (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel On Climate Change. IPCC, Geneva, pp. 1–34.

[15]

Crozier, M. J., 2010. Deciphering the effect of climate change on landslide activity: a review. Geomorphology, 124 (3–4) , pp. 260-267. doi: 10.1016/j.geomorph.2010.04.009.

[16]

Emberson, R., Kirschbaum, D., Stanley, T., 2020. New global characterisation of landslide exposure. Nat. Hazards Earth Syst. Sci. 20 (12), 3413–3424. doi: 10.5194/nhess-20-3413-2020.

[17]

Enari, H, Enari, H. S., Sekiguchi, T, Tanaka, M, Suzuki, S., 2024. Differences in spatial niche of terrestrial mammals when facing extreme snowfall: the case in east Asian forests. Front. Zool., 21 (1) , p. 3. doi: 10.1186/s12983-024-00522-6.

[18]

Estrada, A, Garber, P. A., Rylands, A. B., Roos, C, Fernandez-Duque, E, Fiore, A. D, Nekaris, KA-.I, Nijman, V, Heymann, E. W., Lambert, J. E., Rovero, F, Barelli, C, Setchell, J. M., Gillespie, T. R., Mittermeier, R. A., Arregoitia, L. V., de Guinea, M, Gouveia, S, Dobrovolski, R, Shanee, S, Shanee, N, Boyle, S. A., Fuentes, A, MacKinnon, K. C., Amato, K. R., Meyer, A. L. S., Wich, S, Sussman, R. W., Pan, R, Kone, I, Li, B. G., 2017. Impending extinction crisis of the world's primates: why primates matter. Sci. Adv., 3 (1) , Article e1600946. doi: 10.1126/sciadv.1600946.

[19]

Feng, X, Merow, C, Liu, Z. H., Park, D. S., Roehrdanz, P. R., Maitner, B, Newman, E. A., Boyle, B. L., Lien, A, Burger, J. R., Pires, M. M., Brando, P. M., Bush, M. B., McMichael, C. N. H., Neves, D. M., Nikolopoulos, E. I., Saleska, S. R., Hannah, L, Breshears, D. D., Evans, T. P., Soto, J. R., Ernst, K. C., Enquist, B. J., 2021. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature, 597 (2021), pp. 516-521. doi: 10.1038/s41586-021-03876-7.

[20]

Garcia, R. A., Cabeza, M, Rahbek, C, Araújo, M. B., 2014. Multiple dimensions of climate change and their implications for biodiversity. Science, 344 (2014), Article 1247579. doi: 10.1126/science.1247579.

[21]

Godt, J. W., Wood, N. J., Pennaz, A, Dacey, C. M., Mirus, B. B., Schaefer, L. N., Slaughter, S. L., 2022. National strategy for landslide loss reduction: U.S. Geological Survey Open-File Report 2022–1075. U.S. Geological Survey, Reston . doi: 10.3133/ofr20221075.

[22]

Goettsch, B, Durán, A. P., Gaston, K. J., 2019. Global gap analysis of cactus species and priority sites for their conservation. Conserv. Biol., 33 (2) , pp. 369-376. doi: 10.1111/cobi.13196.

[23]

Grima, N, Edwards, D, Edwards, F, Petley, D, Fisher, B., 2020. Landslides in the Andes: forests can provide cost-effective landslide regulation services. Sci. Total Environ., 745 , Article 141128. doi: 10.1016/j.scitotenv.2020.141128.

[24]

Hanson, J.O., Schuster, R., Morrell, N., Strimas-Mackey, M., Edwards, B.P.M., Watts, M.E., Arcese, P., Bennett, J., Possingham, H.P., 2024. prioritizr: Systematic Conservation Prioritization in R. R package version 8.0.3.5. https://CRAN.R-project.org/package = prioritizr

[25]

He, X.Y., Ziegler, A.D., Elsen, P.R., Feng, Y., Baker, J.C.A., Liang, S.J., Holden, J., Spracklen, D.V., Zeng, Z.Z., 2023. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth 6 (3), 303–315. doi: 10.1016/j.oneear.2023.02.005.

[26]

Hickisch, R, Hodgetts, T, Johnson, P. J., Sillero-Zubiri, C, Tockner, K, Macdonald, D. W., 2019. Effects of publication bias on conservation planning. Conserv. Biol., 33 (5) , pp. 1151-1163. doi: 10.1111/cobi.13326.

[27]

Hijmans, R. J., 2022. terra: Spatial Data Analysis. R package version 1.6-41. https://CRAN.R-project.org/package=terra

[28]

Huangfu, W. C., Qiu, H. J., Cui, P, Yang, D. D., Liu, Y, Tang, B. Z., Liu, Z. J., Ullah, M., 2024. Quick and automatic detection of co-seismic landslides with multi-feature deep learning model. Sci. China-Earth Sci., 67 (7) , pp. 2311-2325. doi: 10.1007/s11430-023-1306-8.

[29]

Hurtt, G. C., Chini, L, Sahajpal, R, Frolking, S, Bodirsky, B. L., Calvin, K, Doelman, J. C., Fisk, J, Fujimori, S, Klein Goldewijk, K, Hasegawa, T, Havlik, P, Heinimann, A, Humpenöder, F, Jungclaus, J, Kaplan, J. O., Kennedy, J, Krisztin, T, Lawrence, D, Lawrence, P, Ma, L, Mertz, O, Pongratz, J, Popp, A, Poulter, B, Riahi, K, Shevliakova, E, Stehfest, E, Thornton, P, Tubiello, F. N., van Vuuren, D. P., Zhang, X., 2020. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev., 13 (11) , pp. 5425-5464. doi: 10.5194/gmd-13-5425-2020.

[30]

Imron, M. A., Widyastuti, K, Al Bihad, D, Satria, R. A., Prayoga, W, Pradopo, S. T., Suryatmojo, H, Sopha, B. M., Harrison, M. E., Berger, U., 2022. Beyond climatic variation: human disturbances alter the effectiveness of a protected area to reduce fires in a tropical peatland. Front. For. Glob. Change, 5 , Article 788023. doi: 10.3389/ffgc.2022.788023.

[31]

IUC, N., 2022. The IUCN Red List of Threatened Species. https://www.iucnredlist.org

[32]

Joppa, L. N., Pfaff, A., 2009. High and far: biases in the location of protected areas. PLoS One, 4 (12) , p. e8273. doi: 10.1371/journal.pone.0008273.

[33]

Jung, M, Dahal, P. R., Butchart, S. H. M., Donald, P. F., Lamo, X. D., Lesiv, M, Kapos, V, Rondinini, C, Visconti, P., 2020. A global map of terrestrial habitat types. Sci. Data, 7 (1) , p. 256. doi: 10.1038/s41597-020-00599-8.

[34]

Karger, D. N., Conrad, O, Böhner, J, Kawohl, T, Kreft, H, Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., Kessler, M., 2017. Climatologies at high resolution for the earth's land surface areas. Sci. Data, 4 , Article 170122. doi: 10.1038/sdata.2017.122.

[35]

Kelly, L. T., Giljohann, K. M., Duane, A, Aquilué, N, Archibald, S, Batllori, E, Bennett, A. F., Buckland, S. T., Canelles, Q, Clarke, M. F, Fortin, M-.J, Hermoso, V, Herrando, S, Keane, R. E., Lake, F. K., McCarthy, M. A., Morán-Ordóñez, A, Parr, C. L., Pausas, J. G., Penman, T. D., Regos, A, Rumpff, L, Santos, J. L., Smith, A. L., Syphard, A. D., Tingley, M. W., Brotons, L., 2020. Fire and biodiversity in the Anthropocene. Science, 370 (2020), p. eabb0355. doi: 10.1126/science.abb0355.

[36]

Kirschbaum, D, Kapnick, S. B., Stanley, T, Pascale, S., 2020. Changes in extreme precipitation and landslides over high mountain Asia. Geophys. Res. Lett., 47 (4) , Article e2019GL085347. doi: 10.1029/2019 gl085347.

[37]

Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., Neumann, C. J., 2010. The international best track archive for climate stewardship (IBTrACS). Bull. Am. Meteorol. Soc., 91 (3) , pp. 363-376. doi: 10.1175/2009bams2755.1.

[38]

Lappan, S, Sibarani, M, O'Brien, T. G., Nurcahyo, A, Andayani, N, Rustiati, E. L., Surya, R. A., Morino, L., 2020. Long-term effects of forest fire on habitat use by siamangs in Southern Sumatra. Anim. Conserv., 24 (3) , pp. 355-366. doi: 10.1111/acv.12640.

[39]

Li, B. V., Jenkins, C. N., Xu, W. H., 2022. Strategic protection of landslide vulnerable mountains for biodiversity conservation under land-cover and climate change impacts. Proc. Natl. Acad. Sci. U.S.A., 119 (2) , Article e2113416118. doi: 10.1073/pnas.2113416118.

[40]

Liu, Y, Qiu, H. J., Kamp, U, Wang, N. L., Wang, J. D., Huang, C, Tang, B. Z., 2024. Higher temperature sensitivity of retrogressive thaw slump activity in the Arctic compared to the Third Pole. Sci. Total Environ., 914 , Article 170007. doi: 10.1016/j.scitotenv.2024.170007.

[41]

Margules, C. R., Pressey, R. L., 2000. Systematic conservation planning. Nature, 405 (2000), pp. 243-253. doi: 10.1038/35012251.

[42]

Meyer, A. L. S., Pie, M. R., 2022. Meyer, M.R. Pie. Climate change estimates surpass rates of climatic niche evolution in primates. Int. J. Primatol., 43 (1) , pp. 40-56. doi: 10.1007/s10764-021-00253-z.

[43]

Morcillo, D. O., Steiner, U. K., Grayson, K. L., Ruiz-Lambides, A. V., Hernández-Pacheco, R., 2020. Hurricane-induced demographic changes in a non-human primate population. R. Soc. Open Sci., 7 (8) , Article 200173. doi: 10.1098/rsos.200173.

[44]

Mu, H. W., Li, X. C., Wen, Y. N., Huang, J. X., Du, P. J., Su, W, Miao, S. X., Geng, M. Q., 2022. global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data, 9 (1) , p. 176. doi: 10.1038/s41597-022-01284-8.

[45]

Mueller, L, Bresch, D., 2014. Murti (Eds.), Safe Havens: Protected Areas for Disaster Risk Reduction and Climate Change Adaptation, IUCN, Gland

[46]

O’Brien, J., 2022. gdalUtilities: wrappers for ‘GDAL’ Utilities Executables. R package version 1.2.3. https://CRAN.R-project.org/package=gdalUtilities

[47]

Olds, A. D., Pitt, K. A., Maxwell, P. S., Babcock, R. C., Rissik, D, Connolly, R. M., 2014. Marine reserves help coastal ecosystems cope with extreme weather. Glob. Change Biol., 20 (10) , pp. 3050-3058. doi: 10.1111/gcb.12606.

[48]

Paton, D, Johnston, D. M., Johal, S. 2013. Human impacts of hazards. P.T. Bobrowsky (Ed.), Encyclopedia of Natural Hazards, Springer Netherlands, Dordrecht, pp.474-478.

[49]

Pavé, R, Kowalewski, M. M., Garber, P. A., Zunino, G. E., Fernandez, V. A., Peker, S. M., 2012. Infant mortality in black-and-gold howlers (Alouatta caraya) living in a flooded forest in northeastern Argentina. Int. J. Primatol., 33 (4) , pp. 937-957. doi: 10.1007/s10764-012-9626-z.

[50]

Pebesma, E., 2018. Simple features for R: standardized support for spatial vector data. R J., 10 (1) , pp. 439-446. doi: 10.32614/RJ-2018-009.

[51]

Pei, Y. Q., Qiu, H. J., Yang, D. D., Liu, Z. J., Ma, S. Y., Li, J. Y., Cao, M. M., Wufuer, W. L., 2023. Increasing landslide activity in the Taxkorgan River basin (eastern Pamirs Plateau, China) driven by climate change. Catena, 223 , Article 106911. doi: 10.1016/j.catena.2023.106911.

[52]

QGIS Development Team, 2022. QGIS Geographic Information System. QGIS Association

[53]

Qiu, H. J., Su, L. L., Tang, B. Z., Yang, D. D., Ullah, M, Zhu, Y. R., Kamp, U., 2024. The effect of location and geometric properties of landslides caused by rainstorms and earthquakes. Earth Surf. Process. Landf., 49 (7) , pp. 2067-2079. doi: 10.1002/esp.5816.

[54]

Core Team, R., 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

[55]

Renaud, F. G., Sudmeier-Rieux, K, Estrella, M., 2013. The Role of Ecosystems in Disaster Risk Reduction. United Nations University Press, New York

[56]

Sales, L, Ribeiro, B. R., Chapman, C. A., Loyola, R., 2020. Multiple dimensions of climate change on the distribution of Amazon primates. Perspect. Ecol. Conserv., 18 (2) , pp. 83-90. doi: 10.1016/j.pecon.2020.03.001.

[57]

Shen, X. L., Liu, M. Z., Hanson, J. O., Wang, J. Y., Locke, H, Watson, J. E. M., Ellis, E. C., Li, S, Ma, K. P., 2023. Countries’ differentiated responsibilities to fulfill area-based conservation targets of the Kunming-Montreal Global Biodiversity Framework. One Earth, 6 (5) , pp. 548-559. doi: 10.1016/j.oneear.2023.04.007.

[58]

Stanley, T, Kirschbaum, D. B., 2017. A heuristic approach to global landslide susceptibility mapping. Nat. Hazards, 87 (1) , pp. 145-164. doi: 10.1007/s11069-017-2757-y.

[59]

Tarnaud, L, Simmen, B., 2002. A major increase in the population of brown lemurs on Mayotte since the decline reported in 1987. Oryx, 36 (3) , pp. 297-300. doi: 10.1017/S0030605302000522.

[60]

The IUCN World Parks Congress, 2014. Summary of the International Union for Conservation of Nature (IUCN) World Parks Congress (WPC) 2014: 12–19 November 2014, 2014. Paper presented at the The IUCN World Parks Congress, Sydney, Australia.

[61]

Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A, Sampson, C. C., Yamazaki, D, Hirabayashi, Y, Pappenberger, F, Dutra, E, Ward, P. J., Winsemius, H. C., Salamon, P, Dottori, F, Rudari, R, Kappes, M. S., Simpson, A. L., Hadzilacos, G, Fewtrell, T. J., 2016. The credibility challenge for global fluvial flood risk analysis. Environ. Res. Lett., 11 (9) , Article 094014. doi: 10.1088/1748-9326/11/9/094014.

[62]

Wang, D. L., Zhu, Y. J., Xia, W. C., Zhao, M, Yang, C, Li, D. Y., 2022. Natural recovery and impaction of landslide and debris flow within habitat of Yunnan snub-nosed monkeys in Baimaxueshan Nature Reserve. Pak. J. Zool., 54 (5) , pp. 2039-2046. doi: 10.17582/journal.pjz/20210911030917.

[63]

Watson, J. E. M., Dudley, N, Segan, D. B., Hockings, M., 2014. The performance and potential of protected areas. Nature, 515 (2014), pp. 67-73. doi: 10.1038/nature13947.

[64]

Wei, Y. D., Qiu, H. J., Liu, Z. J., Huangfu, W. C., Zhu, Y. R., Liu, Y, Yang, D. D., Kamp, U., 2024. Refined and dynamic susceptibility assessment of landslides using InSAR and machine learning models. Geosci. Front., 15 (6) , Article 101890. doi: 10.1016/j.gsf.2024.101890.

[65]

Yang, L, Chen, T, Shi, K. C., Zhang, L, Lwin, N, Fan, P. F., 2023. Effects of climate and land-cover change on the conservation status of gibbons. Conserv. Biol., 37 (1) , p. e14045. doi: 10.1111/cobi.14045.

[66]

Zhang, L, Pacifici, M, Li, B. V., Gibson, L., 2020. Drought vulnerability among China's ungulates and mitigation offered by protected areas. Conserv. Sci. Pract., 2 (4) , p. e177. doi: 10.1111/csp2.177.

[67]

Zhang, L. B., Ameca, E. I., Cowlishaw, G, Pettorelli, N, Foden, W, Mace, G. M., 2019. Global assessment of primate vulnerability to extreme climatic events. Nat. Clim. Change, 9 (7) , pp. 554-561. doi: 10.1038/s41558-019-0508-7.

[68]

Zwerts, J. A., Sterck, E. H. M., Verweij, P. A., Maisels, F, van der Waarde, J, Geelen, E. A. M., Tchoumba, G. B., Donfouet Zebaze, H. F., van Kuijk, M., 2024. FSC-certified forest management benefits large mammals compared to non-FSC. Nature, 628 (2024), pp. 563-568. doi: 10.1038/s41586-024-07257-8.

PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

/