Simulation of the future evolution track of “production–living–ecological” space in a coastal city based on multimodel coupling and wetland protection scenarios

Yitong Yin , Rongjin Yang , Zechen Song , Yuying Zhang , Yanrong Lu , Le Zhang , Meiying Sun , Xiuhong Li

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) : 100237

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (3) :100237 DOI: 10.1016/j.geosus.2024.09.004
Research Article
review-article

Simulation of the future evolution track of “production–living–ecological” space in a coastal city based on multimodel coupling and wetland protection scenarios

Author information +
History +
PDF

Abstract

Coastal cities hold a special position in the fields of production, living, and ecological research because of their unique wetland resource advantages. However, with global urbanization and rapid economic development, conflicts among production, living and ecological land are prevalent in coastal cities in the process of maintaining sustainable wetland resources and further developing the social economy. By establishing an SD-PLUS-CCD coupling model, this paper analysed the evolution characteristics and driving mechanism of the production–living–ecological space (PLES) and the effects of wetland protection (WLP) on promoting or inhibiting the coordinated development of the PLES in Dongying city during 2005–2060. The results show that (1) from 2005 to 2020, the increase in urban population resulted in a significant transfer of arable land and a reduction of 914 km2 in production space (PS); (2) from 2020 to 2060, under the WLP scenario, the conversion of wetland ecological space will reduce the PS and living space (LS) by 193.92 km2 and 107.14 km2, respectively, and increase the ecological space (ES) by 327.52 km2; and (3) wetland protection has an inhibitory effect on the coordinated development of PLES in the study area, and the total proportion of noncoordinated areas of PE and living–ecological space will continue to increase during the simulation period. This paper provides a solid theoretical support for the sustainable management and protection of wetlands in coastal cities and possible PLES conflict patterns and provides a scientific basis for future territorial spatial planning and policy balance analysis.

Keywords

Wetland protection / “Production–living–ecological” space / Coupling model / Driving mechanism / Coordinated and sustainable development

Cite this article

Download citation ▾
Yitong Yin, Rongjin Yang, Zechen Song, Yuying Zhang, Yanrong Lu, Le Zhang, Meiying Sun, Xiuhong Li. Simulation of the future evolution track of “production–living–ecological” space in a coastal city based on multimodel coupling and wetland protection scenarios. Geography and Sustainability, 2025, 6(3): 100237 DOI:10.1016/j.geosus.2024.09.004

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Yitong Yin: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Methodology, Formal analysis, Data curation, Conceptualization. Rongjin Yang: Writing – review & editing, Software, Resources, Project administration, Investigation. Zechen Song: Writing – review & editing, Visualization, Validation, Formal analysis. Yuying Zhang: Writing – review & editing, Visualization, Validation, Formal analysis. Yanrong Lu: Writing – review & editing, Visualization, Validation, Formal analysis. Le Zhang: Writing – review & editing, Visualization, Validation, Formal analysis. Meiying Sun: Writing – review & editing, Visualization, Formal analysis. Xiuhong Li: Writing – review & editing, Project administration, Funding acquisition.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the Joint Research program for Ecological Conservation and High-quality Development of the Yellow River Basin (Grant No. 2022-YRUC-01-0103), Watershed Non-point Source Pollution Prevention and Control Technology and Application Demonstration Project (Grant No. 2021YFC3201505), the National Key Research and Development Project (Grant No. 2016YFC0502106), the Natural Science Foundation of China (Grant No. 41476161), the Special Project of National Natural Science Foundation of China (Grant No. 42442035), and the Fundamental Research Funds for the Central Universities.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.09.004.

References

[1]

Aguilera-Huertas, J, Parras-Alcántara, L, González-Rosado, M, Lozano-García, B., 2024. Intercropping in rainfed Mediterranean olive groves contributes to improving soil quality and soil organic carbon storage. Agric. Ecosyst. Environ., 361, 108826.

[2]

Athukorala, D, YujiMurayama, , Bandara, C. M., Lokupitiya, E, Hewawasam, T, Gunatilake, J, Karunaratne, S., 2024. Effects of urban land change on ecosystem service values in the Bolgoda Wetland, Sri Lanka. Sust. Cities Soc., 101, 105050.

[3]

Bakun, A., 2022. Vertical ambush corridors: intriguing multi-mechanism ecological structures embedded in the kinetic fluid architectures of ocean living resource production systems. Fish Fish., 24(1), 3-20.

[4]

Del Ponte, A, Masiliūnas, A, Lim, N., 2023. Information about historical emissions drives the division of climate change mitigation costs. Nat. Commun., 14(1), 1408.

[5]

Dou, X. Y., Guo, H. D., Zhang, L, Liang, D, Zhu, Q, Liu, X. T., Zhou, H, Lv, Z. R., Liu, Y. M., Gou, Y. T., Wang, Z. L., 2023. Dynamic landscapes and the influence of human activities in the Yellow River Delta wetland region. Sci. Total Environ., 899, 166239.

[6]

Davy, B., 2024. The German Verkehrswert (market value) of land: statutory land valuation, spatial planning, and land policy. Land Use Policy 136, 106975.

[7]

Fu, B. J., Wu, X. T., Wang, S, Zhao, W. W., 2024. Scientific principles for accelerating the Sustainable Development Goals. Geogr. Sustain., 5(2), 157-159.

[8]

Hao, D. C., Li, H. L., 2023. A graph-based edge attention gate medical image segmentation method. IET Image Proc., 17(7), 2142-2157.

[9]

Li, J. S., Sun, W, Li, M. Y., Meng, L. L., 2021. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod., 298, 126803.

[10]

Wen, L, Glasby, T. M., Hughes, M. G., 2022. The race for space: modelling the landward migration of coastal wetlands under sea level rise at regional scale. Sci. Total Environ., 859(P2), 160483.

[11]

Liang, X, Guan, Q. F., Clarke, K. C., Liu, S. S., Wang, B. Y., Yao, Y., 2021. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China. Comput. Environ. Urban Syst., 85, 101569.

[12]

Lin, G, Jiang, D, Yin, Y. T., Fu, J. Y., 2022. A carbon-neutral scenario simulation of an urban land–energy–water coupling system: a case study of Shenzhen, China. J. Clean. Prod., 383, 135534.

[13]

Schuerch, M, Spencer, T, Temmerman, S, Kirwan, M. L., Wolff, C, Lincke, D, McOwen, C. J., Pickering, M. D., Reef, R, Vafeidis, A. T., Hinkel, J, Nicholls, R. J., Brown, S., 2018. Future response of global coastal wetlands to sea-level rise. Nature 561(7722), 231-234.

[14]

Mumtaz, F, Li, J, Liu, Q. H., Arshad, A, Dong, Y. D., Liu, C, Zhao, J, Bashir, B, Gu, C. P., Wang, X. H., Zhang, H., 2023. Spatiotemporal dynamics of land use transitions associated with human activities over Eurasian Steppe: evidence from improved residual analysis. Sci. Total Environ., 905, 166940.

[15]

Owen, J. R., Kemp, D, Lechner, A. M., Ang Li Ern, M, L, Éèbre, Mudd, G. M., Macklin, M. G., Saputra, M. R. U., Witra, T, Bebbington, A., 2024. Increasing mine waste will induce land cover change that result in ecological degradation and human displacement. J. Environ. Manage., 351, 119691.

[16]

Ghimire, P, Pandey, N, Timilsina, Y. P., Bist, B. S., Gopi Sundar, K. S., 2022. Woolly-necked stork (Ciconia episcopus) activity budget in lowland Nepal's farmlands: the influence of wetlands, seasonal crops, and human proximity. Waterbirds 44(4), 415-424.

[17]

Qu, Y. B., Zhan, L. Y., Jiang, G. H., Ma, W. Q., Dong, X. Z., 2021. How to address “Population Decline and Land Expansion (PDLE)” of rural residential areas in the process of Urbanization: a comparative regional analysis of human-land interaction in Shandong Province. Habitat Int., 117, 102441.

[18]

Rogers, K, Zawadzki, A, Mogensen, L. A., Saintilan, N., 2022. Coastal wetland surface elevation change is dynamically related to accommodation space and influenced by sedimentation and sea-level rise over decadal timescales. Front. Mar. Sci., 9, 807588.

[19]

Morgan, G. R., Hodgson, M. E., Wang, C. Z., Schill, S. R., 2022. Unmanned aerial remote sensing of coastal vegetation: a review. Ann. GIS 28(3), 385-399.

[20]

Shi, Q, Gu, C. J., Xiao, C., 2023. Multiple scenarios analysis on land use simulation by coupling socioeconomic and ecological sustainability in Shanghai, China. Sust. Cities Soc., 95, 104578.

[21]

Wang, C, Tang, N., 2018. Spatiotemporal characteristics and evolution of rural production living-ecological space function coupling coordination in Chongqing Municipality. Geogr. Res., 37(6), 1100-1114.

[22]

Wang, A. Y., Liao, X. Y., Tong, Z. J., Du, W. L., Zhang, J. Q., Liu, X. P., Liu, M. S., 2022. Spatial-temporal dynamic evaluation of the ecosystem service value from the perspective of “production-living-ecological” spaces: a case study in Dongliao River basin, China. J. Clean. Prod., 333, 130218.

[23]

Wang, Y, Wang, Y, Xia, T. T., Li, Y, Li, Z., 2022. Land-use function evolution and eco-environmental effects in the tarim river basin from the perspective of production–living–ecological space. Front. Environ. Sci., 10, 1004274.

[24]

Wang, X. Y., Yang, C, Qiao, H. J., Hu, J. H., 2024. More than two-fifths of the protected land in a global biodiversity hotspot in southwest China is under intense human pressure. Sci. Total Environ., 906, 167283.

[25]

Wei, Y. N., Zhang, Y, Chen, L. F., Chen, H. Y., Zhang, X. Q., Liu, P., 2022. Production–living–ecological space transition and its eco-environmental effects based on an improved area-weighted method: a case study of Gangcheng District, a typical industrial base in China. Front. Environ. Sci., 10, 972786.

[26]

Assefa, W. W., Eneyew, B. G., Wondie, A., 2022. The driving forces of wetland degradation in Bure and Wonberma Woredas, Upper Blue Nile basin, Ethiopia. Environ. Monit. Assess., 194(11), 838.

[27]

Wu, Y. F., Wang, J. B., Gou, A. P., 2024. Research on the evolution characteristics, driving mechanisms and multi-scenario simulation of habitat quality in the Guangdong-Hong Kong-Macao Greater Bay based on multi-model coupling. Sci. Total Environ., 924, 171263.

[28]

Xi, F. R., Wang, R. P., Shi, J. S., Zhang, J. D., Yu, Y, Wang, N, Wang, Z. Y., 2022. Spatiotemporal pattern and conflict identification of production–living–ecological space in the Yellow River basin. Land 11(5), 744.

[29]

Yan, S. Q., Zhu, B, Huang, Y, Zhu, J, Kang, H. Q., Lu, C. S., Zhu, T., 2020. To what extents do urbanization and air pollution affect fog?. Atmos. Chem. Phys., 20(9), 5559-5572.

[30]

Yang, Y. Y., Bao, W. K., Liu, Y. S., 2020. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic., 117, 106512.

[31]

Yang, X. D., Chen, X. P., Qiao, F. W., Che, L, Pu, L. L., 2022. Layout optimization and multi-scenarios for land use: an empirical study of production-living-ecological space in the Lanzhou-Xining City Cluster, China. Ecol. Indic., 145, 109577.

[32]

Yang, D. R., Yang, Q, Tong, Z. J., Du, W. L., Zhang, J. Q., 2024. Coupling coordination analysis of production, living, and ecological spaces in wetlands: a case study of Xianghai Wetland nature reserve, China. Ecol. Indic., 158, 111578.

[33]

Yin, Y. T., Lin, G, Jiang, D, Fu, J. Y., Dong, D. L., 2021. Multi-scenario simulation of a water-energy coupling system based on system dynamics: a case study of Ningbo City. Energies 14(18), 5854.

[34]

Yin, Y. T., Xi, F. R., 2023. Simulation of the evolution track of future production–living–ecological space under the framework of comprehensive assessment of climate change: a case study of Heilongjiang Province, China. Environ. Technol. Innov., 30, 103129.

[35]

Yu, B. W., Zang, Y. G., Wu, C. S., Zhao, Z. H., 2024. Spatiotemporal dynamics of wetlands and their future multi-scenario simulation in the Yellow River Delta, China. J. Environ. Manage., 353, 120193.

[36]

Zhang, X. B., Wang, Z. Y., Liu, Y, Shi, J, Du, H. C., 2023. Ecological security assessment and territory spatial restoration and management of Inland River basin—based on the perspective of production–living–ecological space. Land 12(8), 1612.

[37]

Zhang, L. L., Hu, B. Q., Zhang, Z, Liang, G. D., 2023. Research on the spatiotemporal evolution and mechanism of ecosystem service value in the mountain-river-sea transition zone based on “production-living-ecological space”—taking the Karst-Beibu Gulf in Southwest Guangxi, China as an example. Ecol. Indic., 148, 109889.

[38]

Zhang, Z, Jiang, W. G., Peng, K. F., Wu, Z. F., Ling, Z. Y., Li, Z., 2023. Assessment of the impact of wetland changes on carbon storage in coastal urban agglomerations from 1990 to 2035 in support of SDG15.1. Sci. Total Environ., 877, 162824.

[39]

Zhu, S. Y., Kong, X. S., Jiang, P., 2020. Identification of the human-land relationship involved in the urbanization of rural settlements in Wuhan city circle, China. J. Rural Stud., 77(C), 75-83.

PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

/