Long-term stability in protected-areas? A vision from American/New World amphibians

Leticia M. Ochoa-Ochoa , Julián A. Velasco

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) : 673 -683.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) :673 -683. DOI: 10.1016/j.geosus.2024.09.003
Research Article
research-article

Long-term stability in protected-areas? A vision from American/New World amphibians

Author information +
History +
PDF

Abstract

Protected areas (PA) have proven to be one of the best ways to conserve biodiversity against environmental changes. Amphibians are considered the most threatened group, with habitat loss due to deforestation identified as their major threat. Here, we assessed for each PA of the American continent: 1) amphibian’s occurrence (Global Biodiversity Information Facility (GBIF) vs. International Union for Conservation of Nature (IUCN) data); 2) temperature velocity and estimated the climate residence time, and using the latest models of the land future use; 3) we estimated the changes of natural vs. modified cover in three future scenarios. Amphibian occurrence showed differences between databases, while GBIF data shows that 52 % of the amphibian species occurring in the continent are in PA, based on IUCN data, 85 % are protected. Results from climate change show a low pace of climate velocity during the last century that is maintained in the green scenario (SSP126). However, change in temperature increases in rate in the rest of the scenarios, with scenario SSP58 showing the highest velocity of temperature change. Future estimates of residence times in PA show that lower levels as emission scenarios tend to be higher. These results are worrisome since climate lag, specifically temperature increase over the PA will probably affect amphibian communities as shown in previous studies. Changes in climate patterns have a direct—mostly negative—impact on amphibians’ ability to disperse and reproduce. The results of land use change were unexpected, since the categories showed minimal changes. However, the data on urbanization changes do not seem to be reflecting the trends of other databases, which may be causing artifacts in the comparisons in the future models of land use. Further research will be necessary to evaluate the extent of similarities and differences in future projections of land use including urbanization and human population between different databases.

Keywords

Climate lag / Conservation / Future land use models / Governance / Temperature tendency

Cite this article

Download citation ▾
Leticia M. Ochoa-Ochoa, Julián A. Velasco. Long-term stability in protected-areas? A vision from American/New World amphibians. Geography and Sustainability, 2024, 5(4): 673-683 DOI:10.1016/j.geosus.2024.09.003

登录浏览全文

4963

注册一个新账户 忘记密码

Code availability

All the R functions used were fully described in the main text and are available in https://github.com/juvelas/Gobernanza.

CRediT authorship contribution statement

Leticia M. Ochoa-Ochoa: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing. Julián A. Velasco: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing.

Declaration of competing interests

The authors declare that there are no known competing financial interests or personal relationships that influenced the work reported in this paper.

Acknowledgements

This project was supported partially by DGAPA/PAPIIT UNAM grant 220321 to LMOO. JAV received support from a DGAPA/PAPIIT UNAM grant (IA206523). We thank Brett Butler for English proofing the manuscript and Zoe Barrera for helping with the design of the graphical abstract.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.09.003.

References

[1]

Alves-Ferreira, G., Talora, D.C., Solé, M., Cervantes-Lopez, M.J., Heming, N.M., 2022. Unraveling global impacts of climate change on amphibians distributions: a life-history and biogeographic-based approach. Front. Ecol. Evol. 10, 987237. doi: 10.3389/fevo.2022.987237.

[2]

Alford, R.A., 2011. Bleak future for amphibians. Nature 480, 461-462. doi: 10.1038/news041011-12.

[3]

Alford, R.A., Bradfield, K.S., Richards, S.J., 2007. Ecology: global warming and amphibian losses. Nature 447, 3-6. doi: 10.1038/nature05940.

[4]

Amaya-Espinel, J.D., Hostetler, M.E., 2019. The value of small forest fragments and urban tree canopy for Neotropical migrant birds during winter and migration seasons in Latin American countries: a systematic review. Landsc. Urban. Plan. 190, 103592. doi: 10.1016/j.landurbplan.2019.103592.

[5]

Anderson, E., Mammides, C., 2020. The role of protected areas in mitigating human impact in the world’s last wilderness areas. Ambio 49, 434-441. doi: 10.1007/s13280-019-01213-x.

[6]

Baste, I.A., Watson, R.T., 2022. Tackling the climate, biodiversity and pollution emergencies by making peace with nature 50 years after the Stockholm Conference. Glob. Environ. Change 73, 102466. doi: 10.1016/j.gloenvcha.2022.102466.

[7]

Becker, C.G., Loyola, R.D., Haddad, C.F.B., Zamudio, K.R., 2010a. Integrating species life-history traits and patterns of deforestation in amphibian conservation planning. Divers. Distrib. 16, 10-19. doi: 10.1111/j.1472-4642.2009.00625.x.

[8]

Becker, C.G., Fonseca, C.R., Haddad, C.F.B., Prado, P.I., 2010b. Habitat split as a cause of local population declines of amphibians with aquatic larvae: contributed paper. Conserv. Biol. 24, 287-294. doi: 10.1111/j.1523-1739.2009.01324.x.

[9]

Bingham, H.C., Juffe Bignoli, D., Lewis, E., MacSharry, B., Burgess, N.D., Visconti, P., Deguignet, M., Misrachi, M., Walpole, M., Stewart, J.L., Brooks, T.M., Kingston, N., 2019. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737-743. doi: 10.1038/s41559-019-0869-3.

[10]

Borrini-Feyerabend, G., Dudley, N., Jaeger, T., Lassen, B., Pathak Broome, N., Phillips, A., Sandwith, T., 2013. Governance of Protected Areas: From Understanding to Action. Best Practice Protected Area Guideline Series No, 20. IUCN, Gland.

[11]

Bosch, J., Fernández-Beaskoetxea, S., Garner, T.W., Carrascal, L.M., 2018. Long-term monitoring of an amphibian community after a climate change-and infectious disease-driven species extirpation. Glob. Change Biol. 24 (6), 2622-2632. doi: 10.1111/gcb.14092.

[12]

Boyero, L., López-Rojo, N., Bosch, J., Alonso, A., Correa-Araneda, F., Pérez, J., 2020. Microplastics impair amphibian survival, body condition and function. Chemosphere 244, 125500. doi: 10.1016/j.chemosphere.2019.125500.

[13]

Brenner, L., 2020. La gestión participativa de Áreas Naturales Protegidas mexicanas. Rev. Mex. Sociol. 82 (2), 343-373. doi: 10.22201/iis.01882503p.2020.2.58147.

[14]

Bucciarelli, G.M., Clark, M.A., Delaney, K.S., Riley, S.P., Shaffer, H.B., Fisher, R.N., Honeycutt, R.L., Kats, L.B., 2020. Amphibian responses in the aftermath of extreme climate events. Sci. Rep. 10 (1), 3409. doi: 10.1038/s41598-020-60122-2.

[15]

Carlson, K.M., Gerber, J.S., Mueller, N.D., Herrero, M., MacDonald, G.K., Brauman, K.A., Havlik, P., O’Connell, C.S., Johnson, J.A., Saatchi, S., West, P.C., 2017. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7 (1), 63-68. doi: 10.1038/nclimate3158.

[16]

Camarena-Hérnandez, A., Ochoa-Ochoa, L. M., Yáñez-Arenas, C., 2023. Quantifying the effects of Anthropocene activities on Mexican endemic amphibians. Anim. Conserv. 27, 449-460. doi: 10.1111/acv.12918.

[17]

Capinha, C., Marcolin, F., Reino, L., 2020. Human-induced globalization of insular herpetofaunas. Glob. Ecol. Biogeogr. 29, 1328-1349. doi: 10.1111/geb.13109.

[18]

Cayuela, H., Arsovski, D., Bonnaire, E., Duguet, R., Joly, P., Besnard, A., 2016. The impact of severe drought on survival, fecundity, and population persistence in an endangered amphibian. Ecosphere 7 (2), e01246. doi: 10.1002/ecs2.1246.

[19]

Carrero, G.C., Walker, R.T., Simmons, C.S., Fearnside, P.M., 2022. Land grabbing in the Brazilian Amazon: stealing public land with government approval. Land Use Policy 120, 106133. doi: 10.1016/j.landusepol.2022.106133.

[20]

Chase, J.M., Blowes, S.A., Knight, T.M., Gerstner, K., May, F., 2020. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238-243. doi: 10.1038/s41586-020-2531-2.

[21]

Chen, G., Li, X., Liu, X., Chen, Y., Liang, X., Leng, J., Xu, X., Liao, W., Qiu, Y., Wu, Q., Huang, K., 2020. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11 (1), 537. doi: 10.1038/s41467-020-14386-x.

[22]

Chen, M., Vernon, C.R., Graham, N.T., Hejazi, M., Huang, M., Cheng, Y., Calvin, K., 2020. Global land use for 2015-2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320. doi: 10.1038/s41597-020-00669-x.

[23]

Chen, S., Huang, Q., Muttarak, R., Fang, J., Liu, T., He, C., Liu, Z., Zhu, L., 2022. Updating global urbanization projections under the Shared Socioeconomic Pathways. Sci. Data 9 (1), 137. doi: 10.1038/s41597-022-01209-5.

[24]

Chen, M., Vernon, C.R., Huang, M., Calvin, K.V., Kraucunas, I.P., 2019. Calibration and analysis of the uncertainty in downscaling global land use and land cover projections from GCAM using Demeter (v1.0.0). Geosci. Model Dev. 12, 1753-1764. doi: 10.5194/gmd-12-1753-2019.

[25]

Collins, J.P., 2010. Amphibian decline and extinction: what we know and what we need to learn. Dis. Aquat. Organ. 92, 93-99. doi: 10.3354/dao02307.

[26]

Copernicus Climate Change Service (C3S), 2024. European State of the Climate 2024. Copernicus Climate Change Service.

[27]

da Silva Medina, G., Pokorny, B., Campbell, B., 2022. Forest governance in the Amazon: favoring the emergence of local management systems. World Dev. 149, 105696. doi: 10.1016/j.worlddev.2021.105696.

[28]

Delabre, I., Rodriguez, L.O., Smallwood, J.M., Scharlemann, J.P., Alcamo, J., Antonarakis, A.S., Rowhani, P., Hazell, R.J., Aksnes, D.L., Balvanera, P., Lundquist, C.J., Gresham, C., Alexander, A.E., Stenseth, N.C., 2021. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 7 (12), eabc8259. doi: 10.1126/sciadv.abc8259.

[29]

Doherty, T.S., Balouch, S., Bell, K., Burns, T.J., Feldman, A., Fist, C., Garvey, T.F., Jessop, T.S., Meiri, S., Driscoll, D.A., 2020. Reptile responses to anthropogenic habitat modification: a global meta-analysis. Glob. Ecol. Biogeogr. 29, 1265-1279. doi: 10.1111/geb.13091.

[30]

Dulvy, N.K., Pacoureau, N., Rigby, C.L., Pollom, R.A., Jabado, R.W., Ebert, D.A., Finucci, B., Pollock, C.M., Jessica, C., Derrick, D.H., Herman, K.B., Sherman, C.S., VanderWright, W.J., Lawson, J.M., Walls, R.H.L., Carlson, J.K., Charvet, P., Bineesh, K.K., Fernando, D., Ralph, G.M., Hilton-Taylor, J.H.C., Fordham, S.V., Simpfendorfer, C.A., 2021. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31 (21), 4773-4787.

[31]

Duncanson, L., Liang, M., Leitold, V., Armston, J., Krishna Moorthy, S.M., Dubayah, R., Costedoat, S., Enquist, B.J., Fatoyinbo, L., Goetz, S.J., Gonzalez-Roglich, M., Merow, C., Roehrdanz, P.R., Tabor, K., Zvoleff, A., 2023. The effectiveness of global protected areas for climate change mitigation. Nat. Commun. 14, 2908. doi: 10.1038/s41467-023-38073-9.

[32]

Ficetola, G.F., Maiorano, L., 2016. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683-693. doi: 10.1007/s00442-016-3610-9.

[33]

Fischer, J., Lindenmayer, D.B., 2007. Landscape modification and habitat fragmentation: a synthesis. Glob. Ecol. Biogeogr. 16, 265-280. doi: 10.1111/j.1466-8238.2006.00287.x.

[34]

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Stuart Chapin, F., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Colin Prentice, I., Ramankutty, N., Snyder, P.K., 2005. Global consequences of land use. Science 309 (5734), 570-574. doi: 10.1126/science.1111772.

[35]

Frost, D.R., 2023. Amphibian species of the world: an online reference, Version 6.2.

[36]

[ WWW, Document. American Museum of Natural History, New York, USA ( accessed 13 December 2023). doi: 10.5531/db.vz.0001.]

[37]

García, A., Ortega-Huerta, M.M.A., Martinez-Meyer, E., García, A., Ortega-Huerta, M.M.A., Martínez-Meyer, E., Garcia, A., Ortega-Huerta, M.M.A., Martinez-Meyer, E., García, A., Ortega-Huerta, M.M.A., Martínez-Meyer, E., 2014. Potential distributional changes and conservation priorities of endemic amphibians in western Mexico as a result of climate change. Environ. Conserv. 41, 1-12. doi: 10.1017/S0376892913000349.

[38]

García Molinos, J., Burrows, M.T., Poloczanska, E.S., 2017. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1332. doi: 10.1038/s41598-017-01309-y.

[39]

García Molinos, J., Schoeman, D.S., Brown, C.J., Burrows, M.T., 2019. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195-2202. doi: 10.1111/2041-210X.13295.

[40]

García-Jiménez, M.A., Cundapí-Pérez, C., 2023. La Pera: Área Natural Protegida que atesora alta biodiversidad en Chiapas, México. Desde El Herbario CICY 15, 63-68. https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/2923/1/2023-03-23-AGarcia-La-Pera-Area-Natural-Protegida-atesora-alta-biodiversidad-en-Chiapas.pdf.

[41]

Garner, T.W., Rowcliffe, J.M., Fisher, M.C., 2011. Climate change, chytridiomycosis or condition: an experimental test of amphibian survival. Glob. Change Biol. 17 (2), 667-675. doi: 10.1111/j.1365-2486.2010.02272.x.

[42]

Graham, N.T., Hejazi, M.I., Chen, M., Davies, E.G.R., Edmonds, J.A., Kim, S.H., Turner, S.W.D., Li, X., Vernon, C.R., Calvin, K., Miralles-Wilhelm, F., Clarke, L., Kyle, P., Link, R., Patel, P., Snyder, A.C., Wise, M.A., 2020. Humans drive future water scarcity changes across all Shared Socioeconomic Pathways. Environ. Res. Lett. 15, 014007. doi: 10.1088/1748-9326/ab639b.

[43]

Gustafsson, M.T., Schilling-Vacaflor, A., 2022. Indigenous peoples and multiscalar environmental governance: the opening and closure of participatory spaces. Glob. Environ. Polit. 22, 70-91. doi: 10.1162/glep_a_00642.

[44]

He, Y., Liao, Z., Chen, X., Chen, Y., 2023. Climatic debts for global amphibians: who, where and why? Biol. Conserv. 279, 109929. doi: 10.1016/j.biocon.2023.109929.

[45]

Harris, I., Osborn, T.J., Jones, P., Lister, D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109. doi: 10.1038/s41597-020-0453-3.

[46]

IUCN, 2022. The IUCN Red List of Threatened Species. Amphibians Spatial Database (accessed 13 October 2023).

[47]

Kearney, B., Hilborn, R., 2022. Solutions to world-wide fisheries problems are mostly local or regional. ICES J. Mar. Sci. 79 (4), 997-1004. doi: 10.1093/icesjms/fsac033.

[48]

Kim, S.H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., Kyle, P., Patel, P., Wise, M., Davies, E., 2016. Balancing global water availability and use at basin scale in an integrated assessment model. Clim. Change 136, 217-231. doi: 10.1007/s10584-016-1604-6.

[49]

Koleff, P., Soberón, J., Arita, H.T., Dávila, P., Flores-Villela, O.A., Halffter, G., Lira- Noriega, A., Moreno, C.E., Moreno, E., Munguía, M., Murguía, M., Navarro- Sigüenza, A.G., Téllez, O., Ochoa-Ochoa, L.M., Peterson, T.A., Rodríguez, P., Soberón, J., Halffter, G., Llorente-Bousquets, J., 2008. Patrones de diversidad espacial en grupos selectos de especies. In: Capital Natural de México, I. Conocimiento de La Biodiversidad México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City, pp. 323-364. doi: 10.1046/j.1523-1739.2003.01638.x.

[50]

Li, Y., Cohen, J.M., Rohr, J.R., 2013. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8, 145-161. doi: 10.1111/1749-4877.12001.

[51]

Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B., Ackerly, D.D., 2009. The velocity of climate change. Nature 462, 1052-1055. doi: 10.1038/nature08649.

[52]

Loyola, R.D., Becker, C.G., Kubota, U., Haddad, C.F.B., Fonseca, C.R., Lewinsohn, T.M., 2008. Hung out to dry: choice of priority ecoregions for conserving threatened neotropical anurans depends on life-history traits. PLoS One 3, 10-13. doi: 10.1371/journal.pone.0002120.

[53]

Luedtke, J.A., Chanson, J., Neam, K., Hobin, L., Maciel, A.O., Catenazzi, A., Borzée, A., Hamidy, A., Aowphol, A., Jean, A., Sosa-Bartuano, Á., Fong G, A., de Silva, A., Fouquet, A., Angulo, A., Kidov, A.A., Muñoz Saravia, A., Diesmos, A.C., Tominaga, A., Shrestha, B., Gratwicke, B., Tjaturadi, B., Martínez Rivera, C.C., Vásquez Almazán, C.R., Señaris, C., Chandramouli, S.R., Strüssmann, C., Cortez Fernández, C.F., Azat, C., Hoskin, C.J., Hilton-Taylor, C., Whyte, D.L., Gower, D.J., Olson, D.H., Cisneros-Heredia, D.F., Santana, D.J., Nagombi, E., Najafi-Majd, E., Quah, E.S.H., Bolaños, F., Xie, F., Brusquetti, F., Álvarez, F.S., Andreone, F., Glaw, F., Castañeda, F.E., Kraus, F., Parra-Olea, G., Chaves, G., Medina-Rangel, G.F., González-Durán, G., Ortega-Andrade, H.M., Machado, I.F., Das, I., Dias, I.R., Urbina-Cardona, J.N., Crnobrnja-Isailovi ć, J., Yang, J.H., Jianping, J., Wangyal, J.T., Rowley, J.J.L., Measey, J., Vasudevan, K., Chan, K.O., Gururaja, K.V., Ovaska, K., Warr, L.C., Canseco-Márquez, L., Toledo, L.F., Díaz, L.M., Khan, M.M.H., Meegaskumbura, M., Acevedo, M.E., Napoli, M.F., Ponce, M.A., Vaira, M., Lampo, M., Yánez-Muñoz, M.H., Scherz, M.D., Rödel, M.O., Matsui, M., Fildor, M., Kusrini, M.D., Ahmed, M.F., Rais, M., Kouamé, N.G.G., García, N., Gonwouo, N.L., Burrowes, P.A., Imbun, P.Y., Wagner, P., Kok, P.J.R., Joglar, R.L., Auguste, R.J., Brandão, R.A., Ibáñez, R., von May, R., Hedges, S.B., Biju, S.D., Ganesh, S.R., Wren, S., Das, S., Flechas, S.V., Ashpole, S.L., Robleto-Hernández, S.J., Loader, S.P., Incháustegui, S.J., Garg, S., Phimmachak, S., Richards, S.J., Slimani, T., Osborne-Naikatini, T., Abreu-Jardim, T.P.F., Condez, T.H., De Carvalho, T.R., Cutajar, T.P., Pierson, T.W., Nguyen, T.Q., Kaya, U., Yuan, Z., Long, B., Langhammer, P., Stuart, S.N., 2023. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 622, 308-314. doi: 10.1038/s41586-023-06578-4.

[54]

Lundsgaard, N.U., Hird, C., Doody, K.A., Franklin, C.E., Cramp, R.L., 2023. Carryover effects from environmental change in early life: an overlooked driver of the amphibian extinction crisis? Glob. Change Biol. 29 (14), 3857-3868. doi: 10.1111/gcb.16726.

[55]

Maxwell, S.L., Cazalis, V., Dudley, N., Hoffmann, M., Rodrigues, A.S., Stolton, S., Visconti, P., Woodley, S., Kingston, N., Lewis, E., Maron, M., Strassburg, B.B.N., Wenger, A., Jonas, H.D., Venter, O., Watson, J.E.M., 2020. Areabased conservation in the twenty-first century. Nature 586 (7828), 217-227. doi: 10.1038/s41586-020-2773-z-.

[56]

McGinnis, M.D., Ostrom, E., 2012. Reflections on Vincent Ostrom, public administration, and polycentricity. Pub. Admin. Rev. 72 (1), 15-25. doi: 10.1111/j.1540-6210.2011.02488.x.

[57]

McNicol, I.M., Keane, A., Burgess, N.D., Bowers, S.J., Mitchard, E.T., Ryan, C.M., 2023. Protected areas reduce deforestation and degradation and enhance woody growth across African woodlands. Commun. Earth Environ. 4, 392. doi: 10.1038/s43247-023-01053-4.

[58]

Meza-Parral, Y., Pineda, E., 2015. Amphibian diversity and threatened species in a severely transformed neotropical Region in Mexico. PLoS One 10, 1-14. doi: 10.1371/journal. pone.0121652.

[59]

Monsarrat, S., Jarvie, S., Svenning, J.C., 2019. Anthropocene refugia: integrating history and predictive modelling to assess the space available for biodiversity in a human-dominated world. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20190219. doi: 10.1098/rstb.2019.0219.

[60]

Nascimento, N., West, T.A.P., Börner, J., Ometto, J., 2019. What drives intensification of land use at agricultural frontiers in the Brazilian Amazon? Evidence from a decision game. Forests 10 (6), 464. doi: 10.3390/f10060464.

[61]

Naughton-Treves, L., Holland, M.B., Brandon, K., 2005. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu. Rev. Environ. Resour. 30, 219-252. doi: 10.1146/annurev.energy.30.050504.164507.

[62]

Nelson, A., Chomitz, K.M., 2011. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS One 6 (8), e22722. doi: 10.1371/journal.pone.0022722.

[63]

Niinimäki, K., Peters, G., Dahlbo, H., Perry, P., Rissanen, T., Gwilt, A., 2020. The environmental price of fast fashion. Nat. Rev. Earth Environ. 1 (4), 189-200. doi: 10.1038/s43017-020-0039-9.

[64]

Nori, J., Lemes, P., Urbina-Cardona, N., Baldo, D., Lescano, J., Loyola, R., 2015. Amphibian conservation, land-use changes and protected areas: a global overview. Biol. Conserv. 191, 367-374. doi: 10.1016/j.biocon.2015.07.028.

[65]

Nyaupane, G.P., Poudel, S., York, A., 2022. Governance of protected areas: an institutional analysis of conservation, community livelihood, and tourism outcomes. J. Sustain. Tour. 30 (11), 2686-2705. doi: 10.1080/09669582.2020.1858089.

[66]

Ochoa-Ochoa, L.M., Bezaury-Creel, J.E., Vázquez, L.B., Flores-Villela, O., 2011. Choosing the survivors? A GIS-based triage support tool for micro-endemics: application to data for Mexican amphibians. Biol. Conserv. 144, 2710-2718. doi: 10.1016/j.biocon.2011.07.032.

[67]

Ochoa-Ochoa, L.M., Campbell, J.A., Flores-Villela, O.A., Ochoa-Ochoa, L., Campbell, J.A., Flores-Villela, O.A., Ochoa-Ochoa, L.M., Campbell, J.A., Flores-Villela, O.A., 2014. Patterns of richness and endemism of the Mexican herpetofauna, a matter of spatial scale? Biol. J. Linn. Soc. 111, 305-316. doi: 10.1111/bij.12201.

[68]

Ochoa-Ochoa, L.M., Devillamagallón, R., Castillo-Ramírez, G., Cordero-Marines, L., 2023. Effects of Atlanticists policies and visions: the legacy of colonialism in conservation. Biol. Conserv. 282, 110070. doi: 10.1016/j.biocon.2023.110070.

[69]

Ochoa-Ochoa, L.M., Mejía-Domínguez, N.R., Bezaury-Creel, J.E., Ochoa-Ochoa, L.M., Mejía Domínguez, N.R., Bezauri Creel, J., 2017. Priorización para la conservación de los bosques de niebla en México. Ecosistemas 26, 27-37. doi: 10.7818/ECOS.2017.26-2.04.

[70]

Ochoa-Ochoa, L.M., Whittaker, R.J., 2014. Spatial and temporal variation in amphibian metacommunity structure in Chiapas. Mexico. J. Trop. Ecol. 30, 537-549. doi: 10.1017/S0266467414000388.

[71]

Ochoa-Ochoa, L.M., Mejía-Domínguez, N.R., Velasco, J.A., Dimitrov, D., Marske, K.A., 2020. Dimensions of amphibian alpha diversity in the New World. J. Biogeogr. 47 (11), 2293-2302. doi: 10.1111/jbi.13948.

[72]

Ochoa-Ochoa, L.M., Urbina-Cardona, J.N., Vázquez, L.-B.L.B., Flores-Villela, O., Bezaury- Creel, J., 2009. The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians. PLoS One 4 (9), e6878. doi: 10.1371/journal.pone.0006878.

[73]

Pataxó, N., 2011. As Guerreiras na História Pataxó. Museo do Índio, Fundação Nacional do Índio, Río de Janeiro. Brazil.

[74]

Pereira, A.S.A. dos Santos, V.J., Alves, S. do, C., Amaral e Silva, A., da Silva, C.G., Calijuri, M.L., 2022. Contribution of rural settlements to the deforestation dynamics in the Legal Amazon. Land Use Policy 115, 106039. doi: 10.1016/j.landusepol.2022.106039.

[75]

Pla, L., Casanoves, F., Di Rienzo, J., 2012. Quantifying Functional Biodiversity. Springer.

[76]

Pörtner, H.O., Scholes, R.J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W.L., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M.A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Jacob, U., Insarov, G., Kiessling, W., Leadley, P., Leemans, R., Levin, L., Lim, M., Maharaj, S., Managi, S., Marquet, P.A., McElwee, P., Midgley, G., Oberdorff, T., Obura, D., Osman, E., Pandit, R., Pascual, U., Pires, A.P.F., Popp, A., Reyes-García, V., Sankaran, M., Settele, J., Shin, Y.J., Sintayehu, D.W., Smith, P., Steiner, N., Strassburg, B., Sukumar, R., Trisos, C., Val, A.L., Wu, J., Aldrian, E., Parmesan, C., Pichs- Madruga, R., Roberts, D.C., Rogers, A.D., Díaz, S., Fischer, M., Hashimoto, S., Lavorel, S., Wu, N., Ngo, H.T., 2021. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop on Biodiversity and Climate Change. IPBES secretariat, Bonn, Germany doi: 10.5281/zenodo.4659158.

[77]

Pounds, J., Fogden, M., Campbell, J., 1999. Biological response to climate change on a tropical mountain. Nature 398, 611-615. https://doi.org/10.1038/19297.

[78]

Ramírez-Arce, D.G., Ochoa-Ochoa, L.M., Lira-Noriega, A., 2022. Effect of landscape composition and configuration on biodiversity at multiple scales: a case study with amphibians from Sierra Madre del Sur, Oaxaca, Mexico. Landsc. Ecol. 37 (8), 1973-1986. doi: 10.1007/s10980-022-01479-9.

[79]

Ripple, W.J., Wolf, C., Newsome, T.M., Betts, M.G., Ceballos, G., Courchamp, F., Courchamp, F., Hayward, M.W., Valkenburgh, B.V., Wallach, A.D., Worm, B., 2019. Are we eating the world’s megafauna to extinction? Conserv. Lett. 12, e12627. doi: 10.1111/conl.12627 Rollins-Smith, L.A., 2017. Amphibian immunity-stress, disease, and climate change. Dev. Comp. Immunol. 66, 111-119. doi: 10.1016/j.dci.2016.07.002.

[80]

Rollins-Smith, L.A., Le Sage, E.H., 2023. Heat stress and amphibian immunity in a time of climate change. Philos. Trans. R. Soc. B: Biol. Sci. 378 ( 1882), 20220132. doi: 10.1098/rstb.2022.0132.

[81]

Rosenzweig, M.L., 2003. Reconciliation ecology and the future of species diversity. Oryx 37, 194-205. doi: 10.1017/S0030605303000371.

[82]

Ruiz-Mallén, I., Schunko, C., Corbera, E., Rös, M., Reyes-García, V., 2015. Meanings, drivers, and motivations for community-based conservation in Latin America. Ecol. Soc. 20 (3), 33. http://www.jstor.com/stable/26270245.

[83]

Smith, T.B., Kinnison, M.T., Strauss, S.Y., Fuller, T.L., Carroll, S.P., 2014. Prescriptive evolution to conserve and manage biodiversity. Annu. Rev. Ecol. Evol. Syst. 45, 1-22. doi: 10.1146/annurev-ecolsys-120213-091747.

[84]

Tan, W.C., Herrel, A., Rödder, D., 2023. A global analysis of habitat fragmentation research in reptiles and amphibians: what have we done so far? Biodivers. Conserv. 32, 439-468. doi: 10.1007/s10531-022-02530-6.

[85]

Tilman, D., Clark, M., Williams, D.R., Kimmel, K., Polasky, S., Packer, C., 2017. Future threats to biodiversity and pathways to their prevention. Nature 546, 73-81. doi: 10.1038/nature22900.

[86]

Turner, S.W.D., Hejazi, M., Yonkofski, C., Kim, S.H., Kyle, P., 2019. Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty-first century. Earths Future 7, 123-135. doi: 10.1029/2018EF001105.

[87]

UNEP-WCMC and IUCN, 2018. Protected Planet: The World Database on Protected Areas (WDPA) ( accessed 13 October 2023).

[88]

Urbina-Cardona, J.N., Olivares-Pérez, M., Reynoso, V.H., 2006. Herpetofauna diversity and microenvironment correlates across a pasture-edge-interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz. Mexico. Biol. Conserv. 132, 61-75. doi: 10.1016/j.biocon.2006.03.014.

[89]

Vela-Almeida, D., Gonzalez, A., Gavilán, I., Fenner Sánchez, G.M., Torres, N., Ysunza, V., 2022. The right to decide: a triad of participation in politicizing extractive governance in Latin America. Extr. Ind. Soc. 9, 100875. doi: 10.1016/j.exis.2021.01.010.

[90]

Vitt, L.J., Caldwell, J.P., 2014. Herpetology: An Introductory Biology of Amphibians and Reptiles, Fourth ed.ed. Elsevier Inc., Norman, Oklahoma, US doi: 10.1016/C2010-0-67152-5.

[91]

Walls, S.C., Barichivich, W.J., Brown, M.E., 2013. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate. Biology 2 (1), 399-418. doi: 10.3390/biology2010399.

[92]

Wang, X., Meng, X., Long, Y., 2022. Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Sci. Data 9 (1), 563. doi: 10.1038/s41597-022-01675-x.

[93]

Watson, J., Dudley, N., Hockings, M., 2014. The performance and potential of protected areas. Nature 515, 67-73. https://doi.org/10.1038/nature13947-.

[94]

Wells, K.D., 2007. The Ecology and Behavior of Amphibians. University Chicago Press, Chicago. doi: 10.7208/chicago/9780226893334.001.0001.

[95]

Yan, H.F., Kyne, P.M., Jabado, R.W., Leeney, R.H., Davidson, L.N., Derrick, D.H., Finucci, B., Freckleton, R.P., Fordham, S.V., Dulvy, N.K., 2021. Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction. Sci. Adv. 7 (7), eabb6026. doi: 10.1126/sciadv.abb6026.

[96]

Yoro, K.O., Daramola, M.O., 2020. CO 2 emission sources, greenhouse gasses, and the global warming effect. In: RahimpourM.R., FarsiM., MakaremM.A. ( Advances in Carbon Capture:Eds.), Methods, Technologies and Applications. Elsevier, pp. 3-28. doi: 10.1016/B978-0-12-819657-1.00001-3.

PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

/