Impact of town planning on direct residential CO2 emissions in rural China

Qiang Zhou , Alberto Gianoli , Yong Liu , Shen Qu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100240

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100240 DOI: 10.1016/j.geosus.2024.08.015
Research Article
review-article

Impact of town planning on direct residential CO2 emissions in rural China

Author information +
History +
PDF

Abstract

China’s commitment to carbon neutrality by 2060 has made decarbonization a key principle for spatial planning (also referred to as urban/city/town planning). Although the mitigation effect of spatial planning in urban areas has been well documented, its significance in rural development has yet to be investigated. This paper addresses this research gap by empirically examining the influence of town planning on rural direct residential CO2 emissions (DRCEs) across 30 provinces in China. Based on various quantitative models, this study not only confirms the significant impact of town planning on rural DRCEs and the moderation effect of plan implementation capacity but also discloses that different dimensions of town planning have disparate roles in rural DRCE reduction. Additionally, regional variations in the mitigation effects of town planning on rural DRCEs were observed. The study also reveals spatial spillover effects, indicating that the influence of town planning on rural DRCEs extends beyond individual areas. Overall, China’s experiences demonstrate that well-managed town planning could play an essential role in low-carbon rural revitalization or, otherwise, it may augment rural DRCEs per capita. Consequently, governments should ascribe great importance to low-carbon town planning and allocate sufficient resources to towns, especially those in the central and western regions, so that they can afford professional planning consultation and adequate staffing in plan implementation. Moreover, governments should cooperate to promote knowledge sharing and transferring of low-carbon planning.

Keywords

Spatial/urban/town planning / Rural carbon neutrality / Low-carbon cities / Climate change / Regional heterogeneity / Spatial spillover effect

Cite this article

Download citation ▾
Qiang Zhou, Alberto Gianoli, Yong Liu, Shen Qu. Impact of town planning on direct residential CO2 emissions in rural China. Geography and Sustainability, 2025, 6(2): 100240 DOI:10.1016/j.geosus.2024.08.015

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Qiang Zhou: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Alberto Gianoli: Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. Yong Liu: Writing – review & editing, Writing – original draft, Resources, Conceptualization. Shen Qu: Writing – review & editing, Writing – original draft, Methodology, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was supported by the National Social Science Fund of China (Grant No. 22BGL193).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.08.015.

References

[1]

Abubakar, I. R., Dano, U. L., 2020. Sustainable urban planning strategies for mitigating climate change in Saudi Arabia. Environ. Dev. Sustain., 22, 5129-5152.

[2]

Ala-Mantile, S, Heinonen, J, Junnila, S., 2014. Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: a multivariate analysis. Ecol. Econ., 104, 129-139.

[3]

Amado, M, Poggi, F, Amado, A. R., 2016. Energy efficient city: a model for urban planning. Sust. Cities Soc., 26, 476-485.

[4]

Audretsch, D. B., Lehmann, E. E., 2005. Does the knowledge spillover theory of entrepreneurship hold for regions?. Res. Policy 34(8), 1191-1202.

[5]

Bai, X. M., Dawson, R. J., Ürge-Vorsatz, D, Delgado, G. C., Salisu Barau, A, Dhakal, S, Dodman, D, Leonardsen, L, Masson-Delmotte, V, Roberts, D. C., Schultz, S., 2018. Six research priorities for cities and climate change. Nature 555, 23-25.

[6]

Baycan, T, Nijkamp, P, Stough, R., 2017. Spatial spillovers revisited: innovation, human capital and local dynamics. Int. J. Urban Reg. Res., 41(6), 962-975.

[7]

Berke, P, Backhurst, M, Day, M, Ericksen, N, Laurian, L, Crawford, J, Dixon, J., 2006. What makes plan implementation successful? An evaluation of local plans and implementation practices in New Zealand. Environ. Plan B-Plan. Des., 33(4), 581-600.

[8]

Boarnet, M. G., 1998. Spillovers and the locational effects of public infrastructure. J. Reg. Sci., 38(3), 381-400.

[9]

Bray, D., 2013. Urban planning goes rural: conceptualising the “new village”. China Perspect 3, 53-62.

[10]

Capello, R., 2009. Spatial spillovers and regional growth: a cognitive approach. Eur. Plan. Stud., 17(5), 639-658.

[11]

Chang, H. Y., Heerink, N, Wu, W, Zhang, J. B., 2022. More use or cleaner use? Income growth and rural household energy-related carbon emissions in central China. Energy Sustain. Dev., 70, 146-159.

[12]

Chen, L. F., Wang, K. F., 2022. The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China's cities: evidence from a quasi-natural experiment. Energy Econ., 110, 106018.

[13]

Chen, M. X., Liu, W. D., Lu, D. D., Chen, H, Ye, C., 2018. Progress of China's new-type urbanization construction since 2014: a preliminary assessment. Cities 78, 180-193.

[14]

Cheung, K. Y., Lin, P., 2004. Spillover effects of FDI on innovation in China: evidence from the provincial data. China Econ. Rev., 15(1), 25-44.

[15]

Dandekar, H, Hibbard, M., 2016. Rural issues in urban planning: current trends and reflections. Int. Plan. Stud., 21(3), 225-229.

[16]

Davidson, K, Coenen, L, Gleeson, B., 2019. A decade of C40: research insights and agendas for city networks. Glob. Policy 10(4), 697-708.

[17]

Davoudi, S, Crawford, J, Mehmood, A. 2009. Climate change and spatial planning responses. S. Davoudi, J. Crawford, A. Mehmood (Eds.), Planning for Climate Change, Earthscan, London, pp.7-18.

[18]

Ding, G. Q., Guo, J, Pueppke, S. G., Yi, J. L., Ou, M. H., Ou, W. X., Tao, Y., 2022. The influence of urban form compactness on CO2 emissions and its threshold effect: evidence from cities in China. J. Environ. Manage., 322, 116032.

[19]

Dou, Y, Luo, X, Dong, L, Wu, C, Liang, H, Ren, J., 2016. An empirical study on transit-oriented low-carbon urban land use planning: exploratory spatial data analysis (ESDA) on Shanghai, China. Habitat Int., 53, 379-389.

[20]

Du, Y. Y., Sun, T. S., Peng, J, Fang, K, Liu, Y. X., Yang, Y, Wang, Y. L., 2018. Direct and spillover effects of urbanization on PM2.5 concentrations in China’s top three urban agglomerations. J. Clean. Prod., 190, 72-83.

[21]

Dubois, G, Sovacool, B, Aall, C, Nilsson, M, Barbier, C, Herrmann, A, Bruyère, S, Andersson, C, Skold, B, Nadaud, F, Dorner, F, Moberg, K. R., Ceron, J. P., Fischer, H, Amelung, D, Baltruszewicz, M, Fischer, J, Benevise, F, Louis, V. R., Sauerborn, R., 2019. It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Res. Soc. Sci., 52, 144-158.

[22]

Dumitrescu, E. I., Hurlin, C., 2012. Testing for Granger non-causality in heterogeneous panels. Econ. Model., 29, 1450-1460.

[23]

Fallmann, J, Emeis, S., 2020. How to bring urban and global climate studies together with urban planning and architecture?. Dev. Built Environ., 4, 100023.

[24]

Fan, J, Zhou, L, Zhang, Y, Shao, S, Ma, M., 2021. How does population aging affect household carbon emissions? Evidence from Chinese urban and rural areas. Energy Econ., 100(2), 105356.

[25]

Feng, T, Du, H. B., Lin, Z. G., Zuo, J., 2020. Spatial spillover effects of environmental regulations on air pollution: evidence from urban agglomerations in China. J. Environ. Manage., 272, 110998.

[26]

Füssel, H. M., 2007. Adaptation planning for climate change: concepts, assessment approaches, and key lessons. Sustain. Sci., 2(2), 265-275.

[27]

Gao, X. S., Xu, A. Q., Liu, L, Deng, O. P., Zeng, M, Ling, J, Wei, Y. L., 2017. Understanding rural housing abandonment in China's rapid urbanization. Habitat Int., 67, 13-21.

[28]

Gao, J. L., Cai, Y. Y., Liu, Y. S., Wen, Q, Marcouiller, D. W., Chen, J. L., 2022. Understanding the underutilization of rural housing land in China: a multi-level modeling approach. J. Rural Stud., 89, 73-81.

[29]

Goodfellow, T., 2013. Planning and development regulation amid rapid urban growth: explaining divergent trajectories in Africa. Geoforum 48, 83-93.

[30]

Hu, G, Huang, J, Shi, J, Chen, S., 2023. The formation of the Chinese territorial spatial planning system and international comparison. Trans. Plan. Urban Res., 2(1), 16-36.

[31]

Hurley, J, Lamker, C. W., Taylor, E. J., 2016. Exchange between researchers and practitioners in urban planning: achievable objective or a bridge too far?. Plan. Theory Pract., 17(3), 447-473.

[32]

Hurlimann, A, Moosavi, S, Browne, G. R., 2020. Urban planning policy must do more to integrate climate change adaptation and mitigation actions. Land Policy 101, 105188.

[33]

Islam, S.N., Winkel, J., 2017. Climate change and social inequality. DESA Working Paper 152. Department of Economic & Social Affairs, United Nations.

[34]

Jia, K. Y., Qiao, W. F., Wang, Y. H., Ge, D. Z., Huang, L. Y., 2019. Cognition, function and construction of village-scale territorial spatial planning against the background of rural vitalization. China Land Sci., 33(8), 16-23.

[35]

Juodis, A, Karavias, Y, Sarafidis, V., 2021. A homogeneous approach to testing for Granger non-causality in heterogeneous panels. Empir. Econ., 60, 93-112.

[36]

Kabisch, N., 2015. Ecosystem service implementation and governance challenges in urban green space planning—the case of Berlin, Germany. Land Use Policy 42, 557-567.

[37]

Kassouri, Y., 2021. Monitoring the spatial spillover effects of urbanization on water, built-up land and ecological footprints in sub-Saharan Africa. J. Environ. Manage., 300, 113690.

[38]

Kasraian, D, Maat, K, Stead, D, van Wee, B., 2016. Long-term impacts of transport infrastructure networks on land-use change: an international review of empirical studies. Transp. Rev., 36(6), 772-792.

[39]

Kuang, L, Huang, N, Hong, Y, Yan, Z., 2019. Spillover effects of financial incentives on non-incentivized user engagement: evidence from an online knowledge exchange platform. J. Manag. Inf. Syst., 36(1), 289-320.

[40]

Laurian, L, Day, M, Backhurst, M, Berke, P, Ericksen, N, Crawford, J, Dixon, J, Chapman, S., 2004. What drives plan implementation? Plans, planning agencies and developers. J. Environ. Plan. Manag., 47(4), 555-577.

[41]

Lee, S, Lee, B., 2014. The influence of urban form on GHG emissions in the U.S. household sector. Energy Policy 68, 534-549.

[42]

Lindkvist, C, Juhasz-Nagy, E, Nielsen, B. F., Neumann, H. M., Lobaccaro, G, Wyckmans, A., 2019. Intermediaries for knowledge transfer in integrated energy planning of urban districts. Technol. Forecast. Soc., 142, 354-363.

[43]

Liu, T, Huang, D, Tan, X, Kong, F., 2020. Planning consistency and implementation in urbanizing China: comparing urban and land use plans in suburban Beijing. Land Policy 94, 104498.

[44]

Liu, T. L., Wang, Y. F., Song, Q. J., Qi, Y., 2018. Low-carbon governance in China—case study of low carbon industry park pilot. J. Clean. Prod., 174, 837-846.

[45]

Liu, Y. S., Zhou, Y., 2021. Territory spatial planning and national governance system in China. Land Policy 102, 105288.

[46]

Liu, Z, Guan, D, Wei, W, Davis, S. J., Ciais, P, Bai, J, Peng, S, Zhang, Q, Hubacek, K, Marland, G, Andres, R. J., Crawford-Brown, D, Lin, J, Zhao, H, Hong, C, Boden, T. A., Feng, K, Peters, G. P., Xi, F, Liu, J, Li, Y, Zhao, Y, Zeng, N, He, K., 2015. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335-338.

[47]

Liu, Z, Ma, J, Chai, Y., 2017. Neighborhood-scale urban form, travel behavior, and CO2 emissions in Beijing: implications for low-carbon urban planning. Urban Geogr., 3, 381-400.

[48]

Long, Y, Gu, Y, Han, H., 2012. Spatiotemporal heterogeneity of urban planning implementation effectiveness: evidence from five urban master plans of Beijing. Landsc. Urban Plan., 108(2-4), 103-111.

[49]

Long, Y, Han, H, Lai, S. K., Jia, Z, Hsu, W., 2020. Evaluation of urban planning implementation from spatial dimension: an analytical framework for Chinese cities and case study of Beijing. Habitat Int., 101, 102197.

[50]

Makido, Y, Dhakal, S, Yamagata, Y., 2012. Relationship between urban form and CO2 emissions: evidence from fifty Japanese cities. Urban Clim., 2, 55-67.

[51]

Malhi, Y, Franklin, J, Seddon, N, Solan, M, Turner, M. G., Field, C. B., Knowlton, N., 2020. Climate change and ecosystems: threats, opportunities and solutions. Philos. Trans. R. Soc. B 375(1794), 20190104.

[52]

Moroni, S, Chiffi, D. 2021. Complexity and uncertainty: implications for urban planning. J. Portugali (Ed.), Handbook on Cities and Complexity, Edward Elgar Publishing, pp.319-330.

[53]

Naess, P., 2001. Urban planning and sustainable development. Eur. Plan. Stud., 9(4), 503-524.

[54]

Nakamura, K, Hayashi, Y., 2013. Strategies and instruments for low-carbon urban transport: an international review on trends and effects. Transp. Policy 29, 264-274.

[55]

Negeri, M. D., Guta, M. S., Erena, S. H., 2023. Determinant factors hinder urban structure plan implementation: the case of Nekemte Town, Ethiopia. Heliyon 9(3), e13448.

[56]

Nieuwenhuijsen, M. J., 2020. Urban and transport planning pathways to carbon neutral, liveable and healthy cities: a review of the current evidence. Environ. Int., 140, 105661.

[57]

Nikolić, D. S., Pantić, M. D., Jokić, V. T., 2021. Urban and spatial planning: pragmatic considerations for plan implementation improvements (a case study of the city of Bor). Sage Open 11(1), 1-14.

[58]

Pacheco-Torres, R, Roldán, J, Gago, E. J., Ordóñez, J., 2017. Assessing the relationship between urban planning options and carbon emissions at the use stage of new urbanized areas: a case study in a warm climate location. Energy Build., 136, 73-85.

[59]

Passas, C., 2023. Standardized capital stock estimates for the Greek economy 1948–2020. Struct. Change Econ. D 64, 236-244.

[60]

Penazzi, S, Accorsi, R, Manzini, R., 2019. Planning low carbon urban-rural ecosystems: an integrated transport land-use model. J. Clean. Prod., 235, 96-111.

[61]

Peng, T, Yan, J. Z., Chen, F., 2019. Characteristics and influencing factors of rural household migration in Chongqing Mountainous regions. Trans. Chin. Soc. Agric. Eng., 35(14), 270-279.

[62]

Qiao, X. J., Anders, K, Randrup, T. B., 2018. Challenges to implementing urban sustainable stormwater management from a governance perspective: a literature review. J. Clean. Prod., 196, 943-952.

[63]

Qin, B, Han, S., 2013. Planning parameters and household carbon emission: evidence from high- and low-carbon neighborhoods in Beijing. Habitat Int., 37, 52-60.

[64]

Rauws, W., 2017. Embracing uncertainty without abandoning planning: exploring an adaptive planning approach for guiding urban transformations. DISP 53(1), 32-45.

[65]

Reckien, D, Salvia, M, Heidrich, O, Church, J. M., Pietrapertosa, F, De Gregorio-Hurtado, S, D'Alonzo, V, Foley, A, Simoes, S. G., Krkoška Lorencová, E, Orru, H, Orru, K, Wejs, A, Flacke, J, Olazabal, M, Geneletti, D, Feliu, E, Vasilie, S, Nador, C, Krook-Riekkola, A, Matosović, M, Fokaides, P. A., Ioannou, B. I., Flamos, A, N-Spyridaki, A, Balzan, M. V., Fülöp, O, Paspaldzhiev, I., 2018. How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. J. Clean. Prod., 191, 207-219.

[66]

Rong, P. J., Zhang, L. J., Yang, Q. T., Qin, Y. C., Lu, H. L., 2016. Spatial differential patterns of carbon emissions from residential energy consumption in small and medium-sized cities: a case study of Kaifeng. Geogr. Res., 35(8), 1495-1509.

[67]

Sabri, S, Witte, P., 2023. Digital technologies in urban planning and urban management. J. Urban Manag., 12(1), 1-3.

[68]

Sanches-Pereira, A, Tudeschini, L. G., Coelho, S. T., 2016. Evolution of the Brazilian residential carbon footprint based on direct energy consumption. Renew. Sustain. Energy Rev., 54, 184-201.

[69]

Sanz, V. M., Muñoz, S. R., Chaparro, T. S., Gómez, L. B., Herdt, T., 2022. Making green work: implementation strategies in a new generation of urban forests. Urban Plan., 7(2), 202-213.

[70]

Shan, Y, Guan, D, Zheng, H, Ou, J, Li, Y, Meng, J, Mi, Z. F., Liu, Z, Zhang, Q., 2018. China CO2 emission accounts 1997–2015. Sci. Data 5, 170201.

[71]

Shan, Y, Huang, Q, Guan, D, Hubacek, K., 2020. Emission accounts 2016–2017. Sci. Data 7, 54.

[72]

Shen, Z. J., Li, M. Y., 2017. Big Data Support of Urban Planning and Management: The Experience in China. Springer International Publishing

[73]

Shi, F, Liao, X, Shen, L, Meng, C, Lai, Y., 2022. Exploring the spatiotemporal impacts of urban form on CO2 emissions: evidence and implications from 256 Chinese cities. Environ. Impact Assess., 96, 106850.

[74]

Silva, M, Leal, V, Oliveira, V, Horta, I. M., 2018. A scenario-based approach for assessing the energy performance of urban development pathways. Sust. Cities Soc., 40, 372-382.

[75]

Song, L, Xu, F, Shen, M, Wen, B., 2023. The relationship between rural spatial form and carbon emission—a case study of suburban integrated villages in Hunan province, China. Land 12(8), 1585.

[76]

Su, Q, DeSalvo, J. S., 2008. The effect of transportation subsidies on urban sprawl. J. Reg. Sci., 48(3), 567-594.

[77]

Taleai, M, Mansourian, A., 2008. Using Delphi-AHP method to survey major factors causing urban planning implementation failure. J. Appl. Sci., 8(15), 2746-2751.

[78]

Tian, L, Shen, T., 2011. Evaluation of plan implementation in the transitional China: a case of Guangzhou city master plan. Cities 28(1), 11-27.

[79]

Ürge-Vorsatz, D, Rosenzweig, C, Dawson, R. J., Rodriguez, R. S., Bai, X, Barau, A. S., Seto, K. C., Dhakal, S., 2018. Locking in positive climate responses in cities. Nat. Clim. Change 8, 174-177.

[80]

Wang, S. H., Huang, S. L., Huang, P. J., 2018. Can spatial planning really mitigate carbon dioxide emissions in urban areas? A case study in Taipei, Taiwan. Landsc. Urban Plan., 169, 22-36.

[81]

Wang, M, Krstikj, A, Koura, H., 2017. Effects of urban planning on urban expansion control in Yinchuan city, western China. Habitat Int., 64, 85-97.

[82]

Williams, J., 2013. The role of planning in delivering low-carbon urban infrastructure. Environ. Plan. B-Plan. Des., 40, 683-706.

[83]

Wilson, E, Piper, J., 2010. Spatial Planning and Climate Change. Routledge, London

[84]

Wu, F., 2015. Planning for Growth: Urban and Regional Planning in China. Routledge, London

[85]

Xie, Z. Q., Gao, X. N., Yuan, W. H., Fang, J. D., Jiang, Z. B., 2020. Decomposition and prediction of direct residential carbon emission indicators in Guangdong Province of China. Ecol. Indic., 115, 106344.

[86]

Xiong, J, Lu, K, Jiang, Z. Y., Zhang, C, Fu, Q. L., Jin, Y., 2021. Study and thoughts on territorial spatial planning under the goal of carbon emissions peak and carbon neutrality. Urban Plan. Forum 264(4), 74-80.

[87]

Xu, C, Haase, D, Su, M. R., Yang, Z. F., 2019. The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: population density vs physical compactness. Appl. Energy 254, 113671.

[88]

Xu, L, Qu, J. S., Li, H. J., Wu, J. J., Zhang, H. F., 2019. Analysis and prediction of household carbon emission in northwest China. Arid Land Geogr., 42(5), 1166-1175.

[89]

Yin, C. Z., Xiao, J. H., Qian, X. Y., 2023. Understanding urban planning failure in China: identifying practitioners' perspectives using Q methodology. Cities 134, 104193.

[90]

Yu, B, Tang, M, Wu, Q, Yang, C, Deng, S, Shi, K, Peng, C, Wu, J, Chen, Z., 2018. Urban built-up area extraction from log-transformed NPP-VIIRS nighttime light composite data. IEEE Geosci. Remote Sens. Lett., 15(8), 1279-1283.

[91]

Yu, H, Wang, M, Lin, X, Guo, H, Liu, H, Zhao, Y, Wang, H, Li, C, Jing, R., 2021. Prioritizing urban planning factors on community energy performance based on GIS-informed building energy modeling. Energy Build., 249(15), 111191.

[92]

Yu, L., 2014. Low carbon eco-city: new approach for Chinese urbanisation. Habitat Int., 44, 102-110.

[93]

Yuan, R, Li, N, Zheng, S. L., 2023. Impacts of interprovincial migration on the household energy footprints in China. Appl. Geogr., 161, 103137.

[94]

Zhang, H, Peng, J. Y., Wang, R, Zhang, J. X., Yu, D., 2021. Spatial planning factors that influence CO2 emissions: a systematic literature review. Urban Clim., 36, 100809.

[95]

Zhang, J. J., Yu, B. Y., Cai, J. W., Wei, Y. M., 2017. Impacts of household income change on CO2 emissions: an empirical analysis of China. J. Clean. Prod., 157, 190-200.

[96]

Zhang, X. B., Sun, J. Y., Wei, C., 2020. Cooler rooms on a hotter planet? Household coping strategies, climate change, and air conditioning usage in rural China. Energy Res. Soc. Sci., 68, 101605.

[97]

Zhao, M, Pan, H. X., 2023. Construction logic and implementation strategies of spatial planning system of China. Front. Urban Rural Plan., 1, 6.

[98]

Zeng, C, Song, Y, Cai, D. W., Hu, P. Y., Cui, H. T., Yang, J, Zhang, H. X., 2019. Exploration on the spatial spillover effect of infrastructure network on urbanization: a case study in Wuhan urban agglomeration. Sust. Cities Soc., 47, 101476.

[99]

Zhou, Q, Shi, W., 2022. How does town planning affect urban-rural income inequality: evidence from China with simultaneous equation analysis. Landsc. Urban Plan., 221, 104380.

[100]

Zhou, Q, Liu, Y, Qu, S., 2022. Emission effects of China's rural revitalization: the nexus of infrastructure investment, household income, and direct residential CO2 emissions. Renew. Sustain. Energy Rev., 167, 112829.

[101]

Zhu, S, Li, Y, Wei, S, Wang, C, Zhang, X. K., Jin, X, Zhou, X, Shi, X., 2022. The impact of urban vegetation morphology on urban building energy consumption during summer and winter seasons in Nanjing, China. Landsc. Urban Plan., 228, 104576.

PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

/