Combinatorial innovation and lifecycle analysis of low-carbon energy technologies in China

Zerun Jin , Shengjun Zhu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100236

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100236 DOI: 10.1016/j.geosus.2024.08.013
Research Article
review-article

Combinatorial innovation and lifecycle analysis of low-carbon energy technologies in China

Author information +
History +
PDF

Abstract

Measuring the lifecycle of low-carbon energy technologies is critical to better understanding the innovation pattern. However, previous studies on lifecycle either focus on technical details or just provide a general overview, due to the lack of connection with innovation theories. This article attempts to fill this gap by analyzing the lifecycle from a combinatorial innovation perspective, based on patent data of ten low-carbon energy technologies in China from 1999 to 2018. The problem of estimating lifecycle stages can be transformed into analyzing the rise and fall of knowledge combinations. By building the international patent classification (IPC) co-occurrence matrix, this paper demonstrates the lifecycle evolution of technologies and develops an efficient quantitative index to define lifecycle stages. The mathematical measurement can effectively reflect the evolutionary pattern of technologies. Additionally, this article relates the macro evolution of lifecycle to the micro dynamic mechanism of technology paradigms. The sign of technology maturity is that new inventions tend to follow the patterns established by prior ones. Following this logic, this paper identifies different trends of paradigms in each technology field and analyze their transition. Furthermore, catching-up literature shows that drastic transformation of technology paradigms may open “windows of opportunity” for laggard regions. From the results of this paper, it is clear to see that latecomers can catch up with pioneers especially when there is a radical change in paradigms. Therefore, it is important for policy makers to capture such opportunities during the technology lifecycle and coordinate regional innovation resources.

Keywords

Combinatorial innovation / Technology lifecycle / Low-carbon energy technologies / Catching-up

Cite this article

Download citation ▾
Zerun Jin, Shengjun Zhu. Combinatorial innovation and lifecycle analysis of low-carbon energy technologies in China. Geography and Sustainability, 2025, 6(2): 100236 DOI:10.1016/j.geosus.2024.08.013

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zerun Jin: Writing – review & editing, Writing – original draft, Methodology, Formal analysis, Data curation, Conceptualization. Shengjun Zhu: Writing – review & editing, Validation, Supervision, Funding acquisition, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grants No. 42122006, 42471187).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.08.013.

References

[1]

Albino, V, Ardito, L, Dangelico, R. M., Messeni Petruzzelli, A., 2014. Understanding the development trends of low-carbon energy technologies: a patent analysis. Appl. Energy, 135 , pp. 836-854. doi: 10.1016/j.apenergy.2014.08.012.

[2]

Andersen, B., 1999. The hunt for S-shaped growth paths in technological innovation: a patent study. J. Evol. Econ., 9 , pp. 487-526. doi: 10.1007/s001910050093.

[3]

Arthur, W. B., 2007. The structure of invention. Res. Policy, 36 , pp. 274-287. doi: 10.1016/j.respol.2006.11.005.

[4]

Balland, P-A, Jara-Figueroa, C, Petralia, S. G., Steijn, M. P. A., Rigby, D. L., Hidalgo, C. A., 2020. Complex economic activities concentrate in large cities. Nat. Hum. Behav., 4 , pp. 248-254. doi: 10.1038/s41562-019-0803-3.

[5]

Balland, P-A, Rigby, D., 2017. The geography of complex knowledge. Econ. Geogr., 93 , pp. 1-23. doi: 10.1080/00130095.2016.1205947.

[6]

Barbieri, N., Perruchas, F., Consoli, D., 2020. Specialization, diversification, and environmental technology life cycle. Econ. Geogr. 96, 161–186. doi: 10.1080/00130095.2020.1721279.

[7]

Barbieri, N., Perruchas, F., Consoli, D., 2020. Specialization, diversification, and environmental technology life cycle. Econ. Geogr. 96 (2), 161–186. doi: 10.1080/00130095.2020.1721279.

[8]

Binz, C, Gosens, J, Hansen, T, Hansen, U. E., 2017. Toward technology-sensitive catching-up policies: insights from renewable energy in China. World Dev., 96 , pp. 418-437. doi: 10.1016/j.worlddev.2017.03.027.

[9]

Binz, C, Gosens, J, X-Yap, S, Yu, Z., 2020. Catch-up dynamics in early industry lifecycle stages—A typology and comparative case studies in four clean-tech industries. Ind. Corp. Change, 29 (5) , pp. 1257-1275. doi: 10.1093/icc/dtaa020.

[10]

Caviggioli, F., 2016. Technology fusion: identification and analysis of the drivers of technology convergence using patent data. Technovation, 55–56 , pp. 22-32. doi: 10.1016/j.technovation.2016.04.003.

[11]

Chen, Y-H, C-Chen, Y, S-Lee, C., 2011. Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. Int. J. Hydrog. Energy, 36 , pp. 6957-6969. doi: 10.1016/j.ijhydene.2011.03.063.

[12]

Dai, Y. X., Haakonsson, S, Oehler, L., 2020. Catching up through green windows of opportunity in an era of technological transformation: empirical evidence from the Chinese wind energy sector. Ind. Corp. Change, 29 (5) , pp. 1277-1295. doi: 10.1093/icc/dtaa034.

[13]

Dosi, G., 1982. Technological paradigms and technological trajectories. A suggested interpretation of the determinants and directions of technical change. Res. Policy, 11 (3) , pp. 147-162. doi: 10.1016/0048-7333(82)90016-6.

[14]

Eckman, R. S., Stackhouse, P. W., 2012. CEOS contributions to informing energy management and policy decision making using space-based Earth observations. Appl. Energy, 90 (1) , pp. 206-210. doi: 10.1016/j.apenergy.2011.03.001.

[15]

Ferguson, J-P, Carnabuci, G., 2017. Risky recombinations: institutional gatekeeping in the innovation process. Organ. Sci., 28 , pp. 133-151. doi: 10.1287/orsc.2016.1106.

[16]

Fleming, L., 2001. Recombinant uncertainty in technological search. Manage. Sci., 47 , pp. 117-132. doi: 10.1287/mnsc.47.1.117.10671.

[17]

Fleming, L, Sorenson, O., 2001. Technology as a complex adaptive system: evidence from patent data. Res. Policy, 30 , pp. 1019-1039. doi: 10.1016/S0048-7333(00)00135-9.

[18]

Gao, L, Porter, A. L., Wang, J, Fang, S, Zhang, X, Ma, T, Wang, W, Huang, L., 2013. Technology life cycle analysis method based on patent documents. Technol. Forecast. Soc. Chang., 80 , pp. 398-407. doi: 10.1016/j.techfore.2012.10.003.

[19]

Gosens, J, Lu, Y., 2013. From lagging to leading? Technological innovation systems in emerging economies and the case of Chinese wind power. Energy Policy, 60 , pp. 234-250. doi: 10.1016/j.enpol.2013.05.027.

[20]

Harmon, R. R., Cowan, K. R., 2009. A multiple perspective view of the market case for green energy. Technol. Forecast. Soc. Chang., 76 , pp. 204-213. doi: 10.1016/j.techfore.2008.03.026.

[21]

Haupt, R, Kloyer, M, Lange, M., 2007. 36 , pp. 387-398. doi: 10.1016/j.respol.2006.12.004.

[22]

Henderson, R. M., Clark, K. B., 1990. Architectural innovation: the reconfiguration of existing product technologies and the failure of established firms. Adm. Sci. Q., 35 , pp. 9-30. doi: 10.2307/2393549.

[23]

Hesse, K, Fornahl, D., 2020. Essential ingredients for radical innovations? The role of (un-)related variety and external linkages in Germany. Pap. Reg. Sci., 99 , pp. 1165-1183. doi: 10.1111/pirs.12527.

[24]

Hoggett, R., 2014. Technology scale and supply chains in a secure, affordable and low carbon energy transition. Appl. Energy, 123 , pp. 296-306. doi: 10.1016/j.apenergy.2013.12.006.

[25]

Huang, K. G., Jia, N, Ge, Y., 2024. Forced to innovate? Consequences of United States’ anti-dumping sanctions on innovations of Chinese exporters. Res. Policy, 53 , Article 104899. doi: 10.1016/j.respol.2023.104899.

[26]

Huang, Y, Li, R, Zou, F, Jiang, L, Porter, A. L., Zhang, L., 2022. Technology life cycle analysis: from the dynamic perspective of patent citation networks. Technol. Forecast. Soc. Chang., 181 , Article 121760. doi: 10.1016/j.techfore.2022.121760.

[27]

Huenteler, J, Schmidt, T. S., Ossenbrink, J, Hoffmann, V. H., 2016. Technology life-cycles in the energy sector — technological characteristics and the role of deployment for innovation. Technol. Forecast. Soc. Chang., 104 , pp. 102-121. doi: 10.1016/j.techfore.2015.09.022.

[28]

Jacobsson, S, Johnson, A., 2000. The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy, 28 , pp. 625-640. doi: 10.1016/S0301-4215(00)00041-0.

[29]

Järvenpää, H. M., Mäkinen, S. J., Seppänen, M., 2011. Patent and publishing activity sequence over a technology's life cycle. Technol. Forecast. Soc. Chang., 78 , pp. 283-293. doi: 10.1016/j.techfore.2010.06.020.

[30]

Johnstone, N., Ha šči č, I., Popp, D., 2010. Renewable energy policies and technological innovation: evidence based on patent counts. Environ. Resour. Econ. 45, 133–155. doi: 10.1007/s10640-009-9309-1.

[31]

Kalthaus, M., 2020. Knowledge recombination along the technology life cycle. J. Evol. Econ., 30 , pp. 643-704. doi: 10.1007/s00191-020-00661-z.

[32]

Karvonen, M, Kässi, T., 2013. Patent citations as a tool for analysing the early stages of convergence. Technol. Forecast. Soc. Chang., 80 , pp. 1094-1107. doi: 10.1016/j.techfore.2012.05.006.

[33]

Kuznets, S. S., 1930. Secular Movements in Production and Prices: Their Nature and Their Bearing Upon Cyclical Fluctuations. Houghton Mifflin, New York and Boston

[34]

Lee, C, Kim, J, Kwon, O, H-Woo, G., 2016. Stochastic technology life cycle analysis using multiple patent indicators. Technol. Forecast. Soc. Chang., 106 , pp. 53-64. doi: 10.1016/j.techfore.2016.01.024.

[35]

Lema, R., Fu, X., Rabellotti, R., 2020. Green windows of opportunity: latecomer development in the age of transformation toward sustainability. Ind. Corp. Change 29, 1193–1209. doi: 10.1093/icc/dtaa044.

[36]

Lema, R, Lema, A., 2012. Technology transfer? The rise of China and India in green technology sectors. Innov. Dev., 2 , pp. 23-44. doi: 10.1080/2157930X.2012.667206.

[37]

Lin, D, Liu, W, Guo, Y, Meyer, M., 2021. Using technological entropy to identify technology life cycle. J. Informetr., 15 , Article 101137. doi: 10.1016/j.joi.2021.101137.

[38]

Luo, S, Lovely, M. E., Popp, D., 2017. Intellectual returnees as drivers of indigenous innovation: evidence from the Chinese photovoltaic industry. World Econ., 40 , pp. 2424-2454. doi: 10.1111/twec.12544.

[39]

McJeon, H. C., Clarke, L, Kyle, P, Wise, M, Hackbarth, A, Bryant, B. P., Lempert, R. J., 2011. Bryant, R.J. Lempert. Technology interactions among low-carbon energy technologies: what can we learn from a large number of scenarios?. Energy Econ., 33 , pp. 619-631. doi: 10.1016/j.eneco.2010.10.007.

[40]

Nemet, G. F., 2012. Inter-technology knowledge spillovers for energy technologies. Energy Econ., 34 (5) , pp. 1259-1270. doi: 10.1016/j.eneco.2012.06.002.

[41]

Nuttall, W. J., Manz, D. L., 2008. A new energy security paradigm for the twenty-first century. Technol. Forecast. Soc. Chang., 75 , pp. 1247-1259. doi: 10.1016/j.techfore.2008.02.007.

[42]

Oltra, V, Kemp, R, De Vries, F. P., 2010. Patents as a measure for eco-innovation. Int. J. Environ. Technol. Manag., 13 , pp. 130-148. doi: 10.1504/IJETM.2010.034303.

[43]

Park, J. Y., 2014. The evolution of waste into a resource: examining innovation in technologies reusing coal combustion by-products using patent data. Res. Policy, 43 , pp. 1816-1826. doi: 10.1016/j.respol.2014.06.002.

[44]

Pedota, M., Grilli, L., Piscitello, L., 2021. Technological paradigms and the power of convergence. Ind. Corp. Change 30, 1633–1654. doi: 10.1093/icc/dtab038.

[45]

Persoon, P. G. J., Bekkers, R. N. A., Alkemade, F., 2022. The knowledge mobility of renewable energy technology. Energy Policy, 161 , Article 112670. doi: 10.1016/j.enpol.2021.112670.

[46]

Popp, D., 2002. Induced innovation and energy prices. Am. Econ. Rev., 92 , pp. 160-180. doi: 10.1257/000282802760015658.

[47]

Popp, D., 2005. Lessons from patents: using patents to measure technological change in environmental models. Ecol. Econ., 54 , pp. 209-226. doi: 10.1016/j.ecolecon.2005.01.001.

[48]

Rennings, K., 2000. Redefining innovation — eco-innovation research and the contribution from ecological economics. Ecol. Econ., 32 , pp. 319-332. doi: 10.1016/S0921-8009(99)00112-3.

[49]

Roepke, S, Moehrle, M. G., 2014. Sequencing the evolution of technologies in a system-oriented way: the concept of technology-DNA. J. Eng. Technol. Manag., 32 , pp. 110-128. doi: 10.1016/j.jengtecman.2013.08.005.

[50]

Schumpeter, J. A., 1934. The Theory of Economic Development. Routledge, London

[51]

Shubbak, M. H., 2019. The technological system of production and innovation: the case of photovoltaic technology in China. Res. Policy, 48 , pp. 993-1015. doi: 10.1016/j.respol.2018.10.003.

[52]

Strumsky, D, Lobo, J., 2015. Identifying the sources of technological novelty in the process of invention. Res. Policy, 44 , pp. 1445-1461. doi: 10.1016/j.respol.2015.05.008.

[53]

Su, H-N., 2018. How to analyze technology lifecycle from the perspective of patent characteristics? The cases of DVDs and hard drives. R&D Manag., 48 , pp. 308-319. doi: 10.1111/radm.12279.

[54]

Sun, Y, Lu, Y, Wang, T, Ma, H, He, G., 2008. Pattern of patent-based environmental technology innovation in China. Technol. Forecast. Soc. Chang., 75 , pp. 1032-1042. doi: 10.1016/j.techfore.2007.09.004.

[55]

Verhoeven, D., Bakker, J., Veugelers, R., 2016. Measuring technological novelty with patent-based indicators. Res. Policy 45, 707–723. doi: 10.1016/j.respol.2015.11.010

[56]

Wu, C-C, H-Leu, J., 2014. Examining the trends of technological development in hydrogen energy using patent co-word map analysis. Int. J. Hydrog. Energy, 39 , pp. 19262-19269. doi: 10.1016/j.ijhydene.2014.05.006.

[57]

Xin, X., Lyu, L., Zhao, Y., 2023. Dynamic evolution and trend prediction of multi-scale green innovation in China. Geogr. Sustain. 4, 222–231. doi: 10.1016/j.geosus.2023.05.001.

[58]

Yan, Z. M., Du, K. R., Yang, Z. M., Deng, M., 2017. Convergence or divergence? Understanding the global development trend of low-carbon technologies. Energy Policy, 109 , pp. 499-509. doi: 10.1016/j.enpol.2017.07.024.

[59]

Yu, H, Y-Wei, M, B-Tang, J, Mi, Z, S-Pan, Y., 2016. Assessment on the research trend of low-carbon energy technology investment: a bibliometric analysis. Appl. Energy 184, 960-970.

[60]

Zhang, S., Meng, Y., Chen, W., 2024. Does innovation lead to anti-dumping: a case study of China. Appl. Econ. doi: 10.1080/00036846.2024.2316663.

PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

/