Bridging climate refuges for climate change adaptation: A spatio-temporal connectivity network approach

Dongmei Xu , Jian Peng , Menglin Liu , Hong Jiang , Hui Tang , Jianquan Dong , Jeroen Meersmans

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100235

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100235 DOI: 10.1016/j.geosus.2024.08.012
Research Article
review-article

Bridging climate refuges for climate change adaptation: A spatio-temporal connectivity network approach

Author information +
History +
PDF

Abstract

Enhancing the spatio-temporal connectivity of dynamic landscapes is crucial for species to adapt to climate change. However, the spatio-temporal connectivity network approach considering climate change and species movement is often overlooked. Taking Tibetan wild ass on the Qinghai-Xizang Plateau as an example, we simulated species distribution under current (2019) and future scenarios (2100), constructed spatio-temporal connectivity networks, and assessed the spatio-temporal connectivity. The results show that under the current, SSP2–4.5 and SSP3–7.0 scenarios, suitable habitats for the Tibetan wild ass account for 21.11 %, 21.34 %, and 20.95 % of the total area, respectively, with increased fragmentation projected by 2100. 78.35 % of the habitats which are predicted to be suitable under current conditions will remain suitable in the future, which can be regarded as stable climate refuges. With the increase in future emission intensity, the percentage of auxiliary connectivity corridors increases from 27.65 % to 33.57 %. This indicates that more patches will function as temporary refuges and the auxiliary connectivity corridors will gradually weaken the dominance of direct connectivity corridors. Under different SSP-RCP scenarios, the internal spatio-temporal connectivity is always higher than direct connectivity and auxiliary connectivity, accounting for 42 %–43 %. Compared with the spatio-temporal perspective, the purely spatial perspective overestimates network connectivity by about 28 % considering all current and future patches, and underestimates network connectivity by 16 %–21 % when only considering all current or future patches. In this study, a new approach of spatio-temporal connectivity network is proposed to bridge climate refuges, which contributes to the long-term effectiveness of conservation networks for species’ adaptation to climate change.

Keywords

Species distribution / Minimum cumulative resistance model / Connectivity corridor / Future climate change scenarios / Tibetan wild ass

Cite this article

Download citation ▾
Dongmei Xu, Jian Peng, Menglin Liu, Hong Jiang, Hui Tang, Jianquan Dong, Jeroen Meersmans. Bridging climate refuges for climate change adaptation: A spatio-temporal connectivity network approach. Geography and Sustainability, 2025, 6(2): 100235 DOI:10.1016/j.geosus.2024.08.012

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Dongmei Xu: Writing – original draft, Visualization, Software, Methodology, Conceptualization. Jian Peng: Writing – review & editing, Supervision, Methodology, Conceptualization. Menglin Liu: Writing – original draft, Visualization, Software, Methodology, Conceptualization. Hong Jiang: Writing – review & editing, Methodology, Conceptualization. Hui Tang: Writing – review & editing, Methodology, Conceptualization. Jianquan Dong: Writing – review & editing, Methodology. Jeroen Meersmans: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (Grant No. 2022YFF1303201).

References

[1]

Adam, M. M., Lenzner, B, van Kleunen, M, Essl, F., 2022. Call for integrating future patterns of biodiversity into European conservation policy. Conserv. Lett., 15(5), e12911.

[2]

Arneth, A, Shin, Y. J., Leadley, P, Rondinini, C, Bukvareva, E, Kolb, M, Midgley, G. F., Oberdorff, T, Palomo, I, Saito, O., 2020. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. U.S.A., 117(49), 30882-30891.

[3]

Baisero, D, Visconti, P, Pacifici, M, Cimatti, M, Rondinini, C., 2020. Projected global loss of mammal habitat due to land-use and climate change. One Earth 2(6), 578-585.

[4]

Bellard, C, Bertelsmeier, C, Leadley, P, Thuiller, W, Courchamp, F., 2012. Impacts of climate change on the future of biodiversity. Ecol. Lett., 15(4), 365-377.

[5]

Bishop-Taylor, R, Tulbure, M. G., Broich, M., 2018. Evaluating static and dynamic landscape connectivity modelling using a 25-year remote sensing time series. Landsc. Ecol., 33, 625-640.

[6]

Bodin, Ö, Saura, S., 2010. Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol. Modell., 221(19), 2393-2405.

[7]

Brennan, A, Naidoo, R, Greenstreet, L, Mehrabi, Z, Ramankutty, N, Kremen, C., 2022. Functional connectivity of the world's protected areas. Science 376(6597), 1101-1104.

[8]

Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P, Poloczanska, E. S., Brander, K. M., Brown, C, Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J, Kappel, C. V., Kiessling, W, O'Connor, M. I., Pandolfi, J. M., Parmesan, C, Schwing, F. B., Sydeman, W. J., Richardson, A. J., 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334(5056), 652-656.

[9]

Carvalho, D, Rafael, S, Monteiro, A, Rodrigues, V, Lopes, M, Rocha, A., 2022. How well have CMIP3, CMIP5 and CMIP6 future climate projections portrayed the recently observed warming. Sci. Rep., 12, 11983.

[10]

Correa Ayram, C. A., Mendoza, M. E., Etter, A, Salicrup, D. R. P., 2016. Habitat connectivity in biodiversity conservation: a review of recent studies and applications. Prog. Phys. Geogr., 40(1), 7-37.

[11]

Ding, G, Yi, D, Yi, J, Guo, J, Ou, M, Ou, W, Tao, Y, Pueppke, S. G., 2023. Protecting and constructing ecological corridors for biodiversity conservation: a framework that integrates landscape similarity assessment. Appl. Geogr., 160, 103098.

[12]

Dong, J, Peng, J, Xu, Z, Liu, Y, Wang, X, Li, B., 2021. Integrating regional and interregional approaches to identify ecological security patterns. Landsc. Ecol., 36, 2151-2164.

[13]

Fan, F, Liu, Y, Chen, J, Dong, J., 2021. Scenario-based ecological security patterns to indicate landscape sustainability: a case study on the Qinghai-Tibet Plateau. Landsc. Ecol., 36, 2175-2188.

[14]

Fan, F, Wen, X, Feng, Z, Gao, Y, Li, W., 2022. Optimizing urban ecological space based on the scenario of ecological security patterns: the case of central Wuhan, China. Appl. Geogr., 138, 102619.

[15]

Fu, B, Meadows, M. E., Zhao, W., 2022. Geography in the Anthropocene: transforming our world for sustainable development. Geogr. Sustain., 3(1), 1-6.

[16]

Garcia, R. A., Cabeza, M, Rahbek, C, Araújo, M. B., 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344(6183), 486-495.

[17]

Goicolea, T, Mateo-Sánchez, M. C., 2022. Static vs dynamic connectivity: how landscape changes affect connectivity predictions in the Iberian Peninsula. Landsc. Ecol., 37, 1855-1870.

[18]

Haddad, N. M., Brudvig, L. A., Clobert, J, Davies, K. F., Gonzalez, A, Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls, A. O., Orrock, J. L., Song, D. X., Townshend, J. R., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv., 1(2), e1500052.

[19]

Harrison, R. L., 1992. Toward a theory of inter-refuge corridor design. Conserv. Biol., 6(2), 293-295.

[20]

Hawn, C. L., Herrmann, J. D., Griffin, S. R., Haddad, N. M., 2018. Connectivity increases trophic subsidies in fragmented landscapes. Ecol. Lett., 21(11), 1620-1628.

[21]

Hua, T, Zhao, W, Cherubini, F, Hu, X, Pereira, P., 2022. Strengthening protected areas for climate refugia on the Tibetan Plateau, China. Biol. Conserv., 275, 109781.

[22]

Huang, J. L., Andrello, M, Martensen, A. C., Saura, S, Liu, D. F., He, J. H., Fortin, M. J., 2020. Importance of spatio–temporal connectivity to maintain species experiencing range shifts. Ecography 43(4), 591-603.

[23]

Jiang, H, Peng, J, Zhao, Y, Xu, D, Dong, J., 2022. Zoning for ecosystem restoration based on ecological network in mountainous region. Ecol. Indic., 142, 109138.

[24]

Keeley, A. T. H., Ackerly, D. D., Cameron, D. R., Heller, N. E., Huber, P. R., Schloss, C. A., Thorne, J. H., Merenlender, A. M., 2018. New concepts, models, and assessments of climate-wise connectivity. Environ. Res. Lett., 13, 073002.

[25]

Knaapen, J. P., Scheffer, M, Harms, B., 1992. Estimating habitat isolation in landscape planning. Landsc. Urban Plan., 23(1), 1-16.

[26]

Kuussaari, M, Bommarco, R, Heikkinen, R. K., Helm, A, Krauss, J, Lindborg, R, Öckinger, E, Pärtel, M, Pino, J, Rodà, F, Stefanescu, C, Teder, T, Zobel, M, Steffan-Dewenter, I., 2009. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol., 24(10), 564-571.

[27]

Li, L, Huang, X, Wu, D, Yang, H., 2023. Construction of ecological security pattern adapting to future land use change in Pearl River Delta, China. Appl. Geogr., 154, 102946.

[28]

Littlefield, C. E., Krosby, M, Michalak, J. L., Lawler, J. J., 2019. Connectivity for species on the move: supporting climate-driven range shifts. Front. Ecol. Environ., 17(5), 270-278.

[29]

Littlefield, C. E., McRae, B. H., Michalak, J. L., Lawler, J. J., Carroll, C., 2017. Connecting today's climates to future climate analogs to facilitate movement of species under climate change. Conserv. Biol., 31(6), 1397-1408.

[30]

Liu, M, Peng, J, Dong, J, Jiang, H, Xu, D, Meersmans, J., 2024. Trade-offs of landscape connectivity between regional and interregional ecological security patterns in a junction area of Beijing-Tianjin-Hebei region. Appl. Geogr., 167, 103272.

[31]

Martensen, A. C., Saura, S, Fortin, M. J., 2017. Spatio-temporal connectivity: assessing the amount of reachable habitat in dynamic landscapes. Methods Ecol. Evol., 8(10), 1253-1264.

[32]

McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A., Theobald, D. M., 2016. Achieving climate connectivity in a fragmented landscape. Proc. Natl. Acad. Sci. U.S.A., 113(26), 7195-7200.

[33]

McRae, B, Dickson, B, Keitt, T., 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10), 2712-2724.

[34]

Merow, C, Smith, M. J., Silander, J. A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36(10), 1058-1069.

[35]

Mi, C, Ma, L, Yang, M, Li, X, Meiri, S, Roll, U, Oskyrko, O, Pincheira-Donoso, D, Harvey, L. P., Jablonski, D, Safaei-Mahroo, B, Ghaffari, H, Smid, J, Jarvie, S, Kimani, R. M., Masroor, R, Kazemi, S. M., Nneji, L. M., Fokoua, A. M. T., Tasse Taboue, G. C., Bauer, A, Nogueira, C, Meirte, D, Chapple, D. G., Das, I, Grismer, L, Avila, L. J., Ribeiro Júnior, M. A., Tallowin, O. J. S., Torres-Carvajal, O, Wagner, P, Ron, S. R., Wang, Y, Itescu, Y, Nagy, Z. T., Wilcove, D. S., Liu, X, Du, W., 2023. Global protected areas as refuges for amphibians and reptiles under climate change. Nat. Commun., 14, 1389.

[36]

Mu, H, Li, X, Wen, Y, Huang, J, Du, P, Su, W, Miao, S, Geng, M., 2022. A global record of annual terrestrial human footprint dataset from 2000 to 2018. Sci. Data 9, 176.

[37]

Ohashi, H, Hasegawa, T, Hirata, A, Fujimori, S, Takahashi, K, Tsuyama, I, Nakao, K, Kominami, Y, Tanaka, N, Hijioka, Y, Matsui, T., 2019. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun., 10, 5240.

[38]

Peng, J, Pan, Y, Liu, Y, Zhao, H, Wang, Y., 2018. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int., 71, 110-124.

[39]

Peng, J, Yang, Y, Liu, Y, Hu, Y, Du, Y, Meersmans, J, Qiu, S., 2018. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ., 644, 781-790.

[40]

Peng, J, Xu, D, Xu, Z, Tang, H, Jiang, H, Dong, J, Liu, Y., 2024. Ten key issues for ecological restoration of territorial space. Natl. Sci. Rev., 11, nwae176.

[41]

Pilosof, S, Porter, M. A., Pascual, M, Kéfi, S., 2017. The multilayer nature of ecological networks. Nat. Ecol. Evol., 1, 0101.

[42]

Riordan-Short, E, Pither, R, Pither, J., 2023. Four steps to strengthen connectivity modeling. Ecography 2023(11), e06766.

[43]

Saura, S, Bodin, Ö, Fortin, M. J., 2014. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol., 51(1), 171-182.

[44]

Saura, S, Pascual-Hortal, L., 2007. A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc. Urban Plan., 83(2–3), 91-103.

[45]

Saura, S, Rubio, L., 2010. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33(3), 523-537.

[46]

Schloss, C. A., Nuñez, T. A., Lawler, J. J., 2012. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl. Acad. Sci. U.S.A., 109(22), 8606-8611.

[47]

Semper-Pascual, A, Macchi, L, Sabatini, F. M., Decarre, J, Baumann, M, Blendinger, P. G., Gómez-Valencia, B, Mastrangelo, M. E., Kuemmerle, T., 2018. Mapping extinction debt highlights conservation opportunities for birds and mammals in the South American Chaco. J. Appl. Ecol., 55(3), 1218-1229.

[48]

Shi, F, Liu, S, An, Y, Sun, Y, Zhao, S, Liu, Y, Li, M., 2023. Climatic factors and human disturbance influence ungulate species distribution on the Qinghai-Tibet Plateau. Sci. Total Environ., 869, 161681.

[49]

Stralberg, D, Carroll, C, Nielsen, S. E., 2020. Toward a climate-informed North American protected areas network: incorporating climate-change refugia and corridors in conservation planning. Conserv. Lett., 13, e12712.

[50]

Sun, J, Liang, E, Barrio, I. C., Chen, J, Wang, J, Fu, B., 2021. Fences undermine biodiversity targets. Science 374(6565), 269.

[51]

Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285-1293.

[52]

Tarabon, S, Calvet, C, Delbar, V, Dutoit, T, Isselin-Nondedeu, F., 2020. Integrating a landscape connectivity approach into mitigation hierarchy planning by anticipating urban dynamics. Landsc. Urban Plan., 202, 103871.

[53]

Tulbure, M. G., Kininmonth, S, Broich, M., 2014. Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot - implications for conservation. Environ. Res. Lett., 9, 114012.

[54]

Urban, D, Keitt, T., 2001. Landscape connectivity: a graph-theoretic perspective. Ecology 82(5), 1205-1218.

[55]

Uroy, L, Alignier, A, Mony, C, Foltête, J. C., Ernoult, A., 2021. How to assess the temporal dynamics of landscape connectivity in ever-changing landscapes: a literature review. Landsc. Ecol., 36, 2487-2504.

[56]

Valavi, R, Elith, J, Lahoz-Monfort, J. J., Guillera-Arroita, G., 2021. Modelling species presence-only data with random forests. Ecography 44(12), 1731-1742.

[57]

Wu, H, Yu, L, Shen, X, Hua, F, Ma, K., 2023. Maximizing the potential of protected areas for biodiversity conservation, climate refuge and carbon storage in the face of climate change: a case study of Southwest China. Biol. Conserv., 284, 110213.

[58]

Xu, D, Peng, J, Dong, J, Jiang, H, Liu, M, Luo, Y, Xu, Z., 2024. Expanding China's protected areas network to enhance resilience of climate connectivity. Sci. Bull., 69(14), 2273-2280.

[59]

Xu, D, Peng, J, Jiang, H, Dong, J, Liu, M, Chen, Y, Wu, J, Meersmans, J., 2024. Incorporating barriers restoration and stepping stones establishment to enhance the connectivity of watershed ecological security patterns. Appl. Geogr., 170, 103347.

[60]

Xu, W, Xiao, Y, Zhang, J, Ouyang, Z., 2017. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U.S.A., 114(7), 1601-1606.

[61]

Zeigler, S. L., Fagan, W. F., 2014. Transient windows for connectivity in a changing world. Mov. Ecol., 2, 1.

[62]

Zhang, L, Peng, J, Liu, Y, Wu, J., 2017. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: a case study in Beijing–Tianjin–Hebei region, China. Urban Ecosyst., 20, 701-714.

[63]

Zhang, R, Tian, D, Wang, J, Niu, S., 2023. Critical role of multidimensional biodiversity in contributing to ecosystem sustainability under global change. Geogr. Sustain., 4(3), 232-243.

[64]

Zhang, Y, Zhao, R, Liu, Y, Huang, K, Zhu, J., 2021. Sustainable wildlife protection on the Qingzang Plateau. Geogr. Sustain., 2(1), 40-47.

[65]

Zhao, H, Liu, D, Li, F, Liu, X, Niu, J, He, J, Liu, Y., 2021. Incorporating spatio-temporal connectivity for prioritized conservation of individual habitat patches in a dynamic landscape. Ecol. Indic., 124, 107414.

[66]

Zhu, Q, Chen, H, Peng, C, Liu, J, Piao, S, He, J. S., Wang, S, Zhao, X, Zhang, J, Fang, X, Jin, J, Yang, Q. E., Ren, L, Wang, Y., 2023. An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nat. Commun., 14, 6406.

PDF

1004

Accesses

0

Citation

Detail

Sections
Recommended

/