Integrated spatial priority assessment in Central Asia: Bridging biodiversity, ecosystem services, and human activities

Shiran Song , Xi Chen , Chanjuan Zan , Hao Zhang , Chuan Wang , Zengyun Hu , Yaoming Li

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100231

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100231 DOI: 10.1016/j.geosus.2024.08.010
Research Article
review-article

Integrated spatial priority assessment in Central Asia: Bridging biodiversity, ecosystem services, and human activities

Author information +
History +
PDF

Abstract

Central Asia (CA) faces escalating threats from increasing temperature, glacier retreat, biodiversity loss, unsustainable water use, terminal lake shrinkage, and soil salinization, all of which challenge the balance between ecological integrity and socio-economic development essential for achieving Sustainable Development Goals. However, a comprehensive understanding of priority areas from a multi-dimensional perspective is lacking, hindering effective conservation and development strategies. To address this, we developed a comprehensive assessment framework with a tailored indicator system, enabling a spatial evaluation of CA’s priority areas by integrating biodiversity, ecosystem services (ESs), and human activities. Combining zonation and geographical detectors, this approach facilitates spatial prioritization and examines ecological and socio-economic heterogeneity. Our findings reveal a heterogeneous distribution of priority areas across CA, with significant concentrations in eastern mountainous regions, river valleys, and oasis agricultural lands. We identified 184 key districts crucial for ecological and societal sustainability. Attribution analysis shows that natural factors like soil types, precipitation, and evapotranspiration significantly shape these areas, influencing human activities and the distribution of biodiversity and ESs. Multi-dimensional analysis indicates existing protected areas cover only 15 % of the top 30 % priority areas, revealing substantial conservation gaps. Additionally, a 38 % overlap between ESs and human activities, along with 63.25 % congruence in integrated areas, underscores significant human impacts on ecological systems and their dependency on ESs. Given CA’s limited resources, it is crucial to implement measures that strengthen conservation efforts, align ecological preservation with socio-economic demands, and enhance resource efficiency through sustainable integrated land and water resource management.

Keywords

Spatially priority assessment / Biodiversity / Ecosystem services / Human activities / Central Asia

Cite this article

Download citation ▾
Shiran Song, Xi Chen, Chanjuan Zan, Hao Zhang, Chuan Wang, Zengyun Hu, Yaoming Li. Integrated spatial priority assessment in Central Asia: Bridging biodiversity, ecosystem services, and human activities. Geography and Sustainability, 2025, 6(2): 100231 DOI:10.1016/j.geosus.2024.08.010

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Shiran Song: Writing – original draft, Visualization, Validation, Methodology, Formal analysis, Data curation. Xi Chen: Writing – review & editing, Supervision, Project administration, Funding acquisition, Conceptualization. Chanjuan Zan: Writing – original draft. Hao Zhang: Writing – original draft. Chuan Wang: Data curation. Zengyun Hu: Methodology. Yaoming Li: Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the Joint CAS-MPG Research Project (HZXM20225001MI), and this research was also supported partly by the key program of National Natural Science Foundation of China (42230708), and the Tianshan Talent Project of Xinjiang Uygur Autonomous Region, China (2022TSYCLJ0056).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.08.010.

References

[1]

Akiner, S., 2011. Silk roads, great games and Central Asia. Asian Aff., 42 , pp. 391-402. doi: 10.1080/03068374.2011.605601.

[2]

Banks, J. R., Heinold, B, Schepanski, K., 2022. Impacts of the desiccation of the Aral Sea on the Central Asian dust life-cycle. J. Geophys. Res.-Atmos., 127 , Article e2022JD036618. doi: 10.1029/2022JD036618.

[3]

Bekzod, A, Habibullo, S, Fan, L, Li, K, Ma, X, Li, Y., 2021. Transformation of vegetative cover on the Ustyurt Plateau of Central Asia as a consequence of the Aral Sea shrinkage. J. Arid Land, 13 , pp. 71-87. doi: 10.1007/s40333-020-0077-7.

[4]

Belote, R. T., Barnett, K, Dietz, M. S., Burkle, L, Jenkins, C. N., Dreiss, L, Aycrigg, J. L., Aplet, G. H., 2021. Options for prioritizing sites for biodiversity conservation with implications for “30 by 30”. Biol. Conserv., 264 , Article 109378. doi: 10.1016/j.biocon.2021.109378.

[5]

Bennett, E. M., Cramer, W, Begossi, A, Cundill, G, Díaz, S, Egoh, B. N., Geijzendorffer, I. R., Krug, C. B., Lavorel, S, Lazos, E, Lebel, L, Martín-López, B, Meyfroidt, P, Mooney, H. A., Nel, J. L., Pascual, U, Payet, K, Harguindeguy, N. P., Peterson, G. D, Prieur-Richard, A-.H, Reyers, B, Roebeling, P, Seppelt, R, Solan, M, Tschakert, P, Tscharntke, T, Turner, B, Verburg, P. H., Viglizzo, E. F., White, P. C., Woodward, G., 2015. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain., 14 , pp. 76-85. doi: 10.1016/j.cosust.2015.03.007.

[6]

Chytrý, M, Horsák, M, Syrovátka, V, Danihelka, J, Ermakov, N, German, D. A., Hájek, M, Hájek, O, Hájková, P, Horsáková, V, Kočí, M, Kubešová, S, Lustyk, P, Nekola, J. C., Preislerová, Z, Resl, P, Valachovič, M., 2017. Refugial ecosystems in central Asia as indicators of biodiversity change during the Pleistocene–Holocene transition. Ecol. Indic., 77 , pp. 357-367. doi: 10.1016/j.ecolind.2016.12.033.

[7]

Cuesta, F, Peralvo, M, Merino-Viteri, A, Bustamante, M, Baquero, F, Freile, J. F., Muriel, P, Torres-Carvajal, O., 2017. Priority areas for biodiversity conservation in mainland Ecuador. Neotrop. Biodivers., 3 , pp. 93-106. doi: 10.1080/23766808.2017.1295705.

[8]

Dey, C. J., Rego, A. I., Midwood, J. D., Koops, M. A., 2020. A review and meta-analysis of collaborative research prioritization studies in ecology, biodiversity conservation and environmental science. Proc. R. Soc. B Biol. Sci., 287 , Article 20200012. doi: 10.1098/rspb.2020.0012.

[9]

Ding, Q., Wang, L., Fu, M., 2024. Spatial characteristics and trade-offs of ecosystem services in arid central asia. Ecol. Indic. 161, 111935. doi: 10.1016/j.ecolind. 2024.111935.

[10]

Foggin, J. M., Lechner, A. M., Emslie-Smith, M, Hughes, A. C., Sternberg, T, Dossani, R., 2021. Belt and Road Initiative in Central Asia: anticipating socioecological challenges from large-scale infrastructure in a global biodiversity hotspot. Conserv. Lett., 14 , p. e12819. doi: 10.1111/conl.12819.

[11]

Gao, C, Ren, X, Fan, L, He, H, Zhang, L, Zhang, X, Li, Y, Zeng, N, Chen, X., 2023. Assessing the vegetation dynamics and its influencing factors in Central Asia from 2001 to 2020. Remote Sens., 15 , p. 4670. doi: 10.3390/rs15194670.

[12]

Haines-Young, R, Potschin, M., 2010. The links between biodiversity, ecosystem services and human well-being. C.L.J. Frid, D.G. Raffaelli (Eds.), Ecosystem Ecology: A New Synthesis, Ecological Reviews, Cambridge University Press, Cambridge , pp. 110-139. doi: 10.1017/CBO9780511750458.007.

[13]

Hu, Z., Dakos, V., Rietkerk, M., 2022. Using functional indicators to detect state changes in terrestrial ecosystems. Trends Ecol. Evol. 37, 1036–1045. doi: 10.1016/j. tree.2022.07.011.

[14]

Hu, Z, Guo, Q, Li, S, Piao, S, Knapp, A. K., Ciais, P, Li, X, Yu, G., 2018. Shifts in the dynamics of productivity signal ecosystem state transitions at the biome-scale. Ecol. Lett., 21 , pp. 1457-1466. doi: 10.1111/ele.13126.

[15]

Hua, L., Zhao, T., Zhong, L., 2022. Future changes in drought over Central Asia under CMIP6 forcing scenarios. J. Hydrol. Reg. Stud. 43, 101191. doi: 10.1016/j.ejrh. 2022.101191.

[16]

Huang, S, Chen, X, Chang, C, Liu, T, Huang, Y, Zan, C, Ma, X, De Maeyer, P, Van de Voorde, T., 2022. Impacts of climate change and evapotranspiration on shrinkage of Aral Sea. Sci. Total Environ., 845 , Article 157203. doi: 10.1016/j.scitotenv.2022.157203.

[17]

Huang, Z., Qian, L., Cao, W., 2022. Developing a novel approach integrating ecosystem services and biodiversity for identifying priority ecological reserves. Resour. Conserv. Recycl. 179, 106128. doi: 10.1016/j.resconrec.2021.106128.

[18]

IPBES, 2019. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) secretaiat, Bonn, Germany. doi: 10.5281/zenodo.6417333.

[19]

IPBES, 2018. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) secretaiat, Bonn, Germany. doi: 10.5281/zenodo.3237429.

[20]

Isbell, F, Calcagno, V, Hector, A, Connolly, J, Harpole, W. S., Reich, P. B., Scherer-Lorenzen, M, Schmid, B, Tilman, D, van Ruijven, J, Weigelt, A, Wilsey, B. J., Zavaleta, E. S., Loreau, M., 2011. High plant diversity is needed to maintain ecosystem services. Nature, 477 , pp. 199-202. doi: 10.1038/nature10282.

[21]

Jandt, U, Bruelheide, H, Jansen, F, Bonn, A, Grescho, V, Klenke, R. A., Sabatini, F. M., Bernhardt-Römermann, M, Blüml, V, Dengler, J, Diekmann, M, Doerfler, I, Döring, U, Dullinger, S, Haider, S, Heinken, T, Horchler, P, Kuhn, G, Lindner, M, Metze, K, Müller, N, Naaf, T, Peppler-Lisbach, C, Poschlod, P, Roscher, C, Rosenthal, G, Rumpf, S. B., Schmidt, W, Schrautzer, J, Schwabe, A, Schwartze, P, Sperle, T, Stanik, N, Storm, C, Voigt, W, Wegener, U, Wesche, K, Wittig, B, Wulf, M., 2022. More losses than gains during one century of plant biodiversity change in Germany. Nature, 611 , pp. 512-518. doi: 10.1038/s41586-022-05320-w.

[22]

Jiang, J, Zhou, T., 2023. Agricultural drought over water-scarce Central Asia aggravated by internal climate variability. Nat. Geosci., 16 , pp. 154-161. doi: 10.1038/s41561-022-01111-0.

[23]

Joppa, L. N., Loarie, S. R., Pimm, S. L., 2008. On the protection of “protected areas”. Proc. Natl. Acad. Sci. U.S.A., 105 , pp. 6673-6678. doi: 10.1073/pnas.0802471105.

[24]

Jung, M, Arnell, A, de Lamo, X, García-Rangel, S, Lewis, M, Mark, J, Merow, C, Miles, L, Ondo, I, Pironon, S, Ravilious, C, Rivers, M, Schepaschenko, D, Tallowin, O, van Soesbergen, A, Govaerts, R, Boyle, B. L., Enquist, B. J., Feng, X, Gallagher, R, Maitner, B, Meiri, S, Mulligan, M, Ofer, G, Roll, U, Hanson, J. O., Jetz, W, Di Marco, M, McGowan, J, Rinnan, D. S., Sachs, J. D., Lesiv, M, Adams, V. M., Andrew, S. C., Burger, J. R., Hannah, L, Marquet, P. A., McCarthy, J. K., Morueta-Holme, N, Newman, E. A., Park, D. S., Roehrdanz, P. R, Svenning, J-.C, Violle, C, Wieringa, J. J., Wynne, G, Fritz, S, Strassburg, B. B. N., Obersteiner, M, Kapos, V, Burgess, N, Schmidt-Traub, G, Visconti, P., 2021. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol., 5 , pp. 1499-1509. doi: 10.1038/s41559-021-01528-7.

[25]

Karthe, D., Chalov, S., Borchardt, D., 2015. Water resources and their management in central Asia in the early twenty first century: status, challenges and future prospects. Environ. Earth Sci. 73, 487–499. doi: 10.1007/s12665-014-3789-1.

[26]

Khaydar, D, Chen, X, Huang, Y, Ilkhom, M, Liu, T, Friday, O, Farkhod, A, Khusen, G, Gulkaiyr, O., 2021. Investigation of crop evapotranspiration and irrigation water requirement in the lower Amu Darya River Basin, Central Asia. J. Arid Land, 13 , pp. 23-39. doi: 10.1007/s40333-021-0054-9.

[27]

Le Provost, G, Schenk, N. V., Penone, C, Thiele, J, Westphal, C, Allan, E, Ayasse, M, Blüthgen, N, Boeddinghaus, R. S., Boesing, A. L., Bolliger, R, Busch, V, Fischer, M, Gossner, M. M., Hölzel, N, Jung, K, Kandeler, E, Klaus, V. H., Kleinebecker, T, Leimer, S, Marhan, S, Morris, K, Müller, S, Neff, F, Neyret, M, Oelmann, Y, Perović, D. J., Peter, S, Prati, D, Rillig, M. C., Saiz, H, Schäfer, D, Scherer-Lorenzen, M, Schloter, M, Schöning, I, Schrumpf, M, Steckel, J, Steffan-Dewenter, I, Tschapka, M, Vogt, J, Weiner, C, Weisser, W, Wells, K, Werner, M, Wilcke, W, Manning, P., 2023. The supply of multiple ecosystem services requires biodiversity across spatial scales. Nat. Ecol. Evol., 7 , pp. 236-249. doi: 10.1038/s41559-022-01918-5.

[28]

Leng, P, Zhang, Q, Li, F, Kulmatov, R, Wang, G, Qiao, Y, Wang, J, Peng, Y, Tian, C, Zhu, N, Hirwa, H, Khasanov, S., 2021. Agricultural impacts drive longitudinal variations of riverine water quality of the Aral Sea basin (Amu Darya and Syr Darya Rivers), Central Asia. Environ. Pollut., 284 , Article 117405. doi: 10.1016/j.envpol.2021.117405.

[29]

Li, J, Chen, H, Zhang, C, Pan, T., 2019. Variations in ecosystem service value in response to land use/land cover changes in Central Asia from 1995 to 2035. PeerJ, 7 , p. e7665. doi: 10.7717/peerj.7665.

[30]

Li, J, Chen, X, De Maeyer, P, Van de Voorde, T, Li, Y., 2024. Ecological security warning in Central Asia: integrating ecosystem services protection under SSPs-RCPs scenarios. Sci. Total Environ., 912 , Article 168698. doi: 10.1016/j.scitotenv.2023.168698.

[31]

Li, J., Chen, X., Kurban, A., Van de Voorde, T., De Maeyer, P., Zhang, C., 2021a. Identification of conservation priorities in the major basins of Central Asia: using an integrated GIS-based ordered weighted averaging approach. J. Environ. Manage. 298, 113442. doi: 10.1016/j.jenvman.2021.113442.

[32]

Li, J., Chen, X., Kurban, A., Van de Voorde, T., De Maeyer, P., Zhang, C., 2021b. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 129, 107936. doi: 10.1016/j.ecolind.2021.107936.

[33]

Li, S, Yu, D, Huang, T, Hao, R., 2022. Identifying priority conservation areas based on comprehensive consideration of biodiversity and ecosystem services in the Three-River Headwaters Region, China. J. Clean. Prod., 359 , Article 132082. doi: 10.1016/j.jclepro.2022.132082.

[34]

Li, S, Zhang, H, Zhou, X, Yu, H, Li, W., 2020. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau. Ecosyst. Serv., 43 , Article 101090. doi: 10.1016/j.ecoser.2020.101090.

[35]

Lin, Z, Wu, T, Xiao, Y, Rao, E, Shi, X, Ouyang, Z., 2022. Protecting biodiversity to support ecosystem services: an analysis of trade-offs and synergies in southwestern China. J. Appl. Ecol., 59 , pp. 2440-2451. doi: 10.1111/1365-2664.14248.

[36]

Liu, W, Wang, Y, Huang, J, Zhu, W., 2023. Assessment on the sustainability of water resources utilization in Central Asia based on water resources carrying capacity. J. Geogr. Sci., 33 , pp. 1967-1988. doi: 10.1007/s11442-023-2161-3.

[37]

Liu, Y, Wang, P, Gojenko, B, Yu, J, Wei, L, Luo, D, Xiao, T., 2021. A review of water pollution arising from agriculture and mining activities in Central Asia: facts, causes and effects. Environ. Pollut., 291 , Article 118209. doi: 10.1016/j.envpol.2021.118209.

[38]

Ma, Y, Li, Y. P., Zhang, Y. F., Huang, G. H., 2021. Mathematical modeling for planning water-food-ecology-energy nexus system under uncertainty: a case study of the Aral Sea Basin. J. Clean. Prod., 308 , Article 127368. doi: 10.1016/j.jclepro.2021.127368.

[39]

Ma, H, Sun, Z., 2020. Comprehensive urbanization level and its dynamic factors for five Central Asian countries. J. Geogr. Sci., 30 , pp. 1761-1780. doi: 10.1007/s11442-020-1811-y.

[40]

Magris, R. A., Costa, M. D. P., Ferreira, C. E. L., Vilar, C. C, Joyeux, J-.C, Creed, J. C., Copertino, M. S., Horta, P. A., Sumida, P. Y. G., Francini-Filho, R. B., Floeter, S. R., 2021. A blueprint for securing Brazil's marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib., 27 , pp. 198-215. doi: 10.1111/ddi.13183.

[41]

Margules, C. R., Pressey, R. L., Williams, P. H., 2002. Representing biodiversity: data and procedures for identifying priority areas for conservation. J. Biosci., 27 , pp. 309-326. doi: 10.1007/BF02704962.

[42]

Moilanen, A., 2007. Landscape Zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv., 134 , pp. 571-579. doi: 10.1016/j.biocon.2006.09.008.

[43]

Moilanen, A, Franco, A. M. A., Early, R. I., Fox, R, Wintle, B, Thomas, C. D., 2005. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc. R. Soc. B Biol. Sci., 272 , pp. 1885-1891. doi: 10.1098/rspb.2005.3164.

[44]

Mokany, K, Ferrier, S, Harwood, T. D., Ware, C, Di Marco, M, Grantham, H. S., Venter, O, Hoskins, A. J., Watson, J. E. M., 2020. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl. Acad. Sci. U.S.A., 117 , pp. 9906-9911. doi: 10.1073/pnas.1918373117.

[45]

Montràs-Janer, T, Suggitt, A. J., Fox, R, Jönsson, M, Martay, B, Roy, D. B., Walker, K. J., Auffret, A. G., 2024. Anthropogenic climate and land-use change drive short- and long-term biodiversity shifts across taxa. Nat. Ecol. Evol., 8 , pp. 739-751. doi: 10.1038/s41559-024-02326-7.

[46]

Mueller, L., Suleimenov, M., Karimov, A., Qadir, M., Saparov, A., Balgabayev, N., Helming, K., Lischeid, G., 2014. Land and water resources of Central Asia, their utilisation and ecological status. In: Mueller, L., Saparov, A., Lischeid, G. (Eds.), Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia, Environmental Science and Engineering. Springer International Publishing, Cham, pp. 3–59. doi: 10.1007/978-3-319-01017-5_1.

[47]

Nowak, A, Nowak, S, Hisorev, H, Klichowska, E, Wróbel, A, Nobis, A, Nobis, M., 2020. Red List of vascular plants of Tajikistan – the core area of the mountains of Central Asia global biodiversity hotspot. Sci. Rep., 10 , p. 6235. doi: 10.1038/s41598-020-63333-9.

[48]

Nunez, S, Alkemade, R, Kok, K, Leemans, R., 2020. Potential biodiversity change in Central Asian grasslands: scenarios for the impact of climate and land-use change. Reg. Environ. Change, 20 , p. 39. doi: 10.1007/s10113-020-01619-4.

[49]

Olson, D. M., Dinerstein, E, Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I, Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y, Lamoreux, J. F., Wettengel, W. W., Hedao, P, Kassem, K. R., 2001. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience, 51 , p. 933. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.

[50]

Peng, J, Liu, T, Chen, J, Li, Z, Ling, Y, De Wulf, A, De Maeyer, P., 2023. The conflicts of agricultural water supply and demand under climate change in a typical arid land watershed of Central Asia. J. Hydrol. Reg. Stud., 47 , Article 101384. doi: 10.1016/j.ejrh.2023.101384.

[51]

Pereira, H. M., Martins, I. S., Rosa, I. M. D., Kim, H, Leadley, P, Popp, A, van Vuuren, D. P., Hurtt, G, Quoss, L, Arneth, A, Baisero, D, Bakkenes, M, Chaplin-Kramer, R, Chini, L, Di Marco, M, Ferrier, S, Fujimori, S, Guerra, C. A., Harfoot, M, Harwood, T. D., Hasegawa, T, Haverd, V, Havlík, P, Hellweg, S, Hilbers, J. P., Hill, S. L. L., Hirata, A, Hoskins, A. J., Humpenöder, F, Janse, J. H., Jetz, W, Johnson, J. A., Krause, A, Leclère, D, Matsui, T, Meijer, J. R., Merow, C, Obersteiner, M, Ohashi, H, De Palma, A, Poulter, B, Purvis, A, Quesada, B, Rondinini, C, Schipper, A. M., Settele, J, Sharp, R, Stehfest, E, Strassburg, B. B. N., Takahashi, K, Talluto, M. V., Thuiller, W, Titeux, N, Visconti, P, Ware, C, Wolf, F, Alkemade, R., 2024. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science, 384 , pp. 458-465. doi: 10.1126/science.adn3441.

[52]

Pobedinsky, V, Shestak, V., 2020. Improving environmental legislation in Central Asia. Environ. Policy Law, 50 , pp. 69-79. doi: 10.3233/EPL-200205.

[53]

Qin, J, Duan, W, Chen, Y, Dukhovny, V. A., Sorokin, D, Li, Y, Wang, X., 2022. Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia. Renew. Sustain. Energy Rev., 157 , Article 112061. doi: 10.1016/j.rser.2021.112061.

[54]

Ricketts, T. H., Watson, K. B., Koh, I, Ellis, A. M., Nicholson, C. C., Posner, S, Richardson, L. L., Sonter, L. J., 2016. Richardson, L.J. Sonter. Disaggregating the evidence linking biodiversity and ecosystem services. Nat. Commun., 7 , p. 13106. doi: 10.1038/ncomms13106.

[55]

Saidaliyeva, Z, Muccione, V, Shahgedanova, M, Bigler, S, Adler, C, Yapiyev, V., 2024. Adaptation to climate change in the mountain regions of Central Asia: a systematic literature review. WIREs Clim. Change 15(5), e891 . doi: 10.1002/wcc.891.

[56]

Scherer, L, J-Svenning, C, Huang, J, Seymour, C. L., Sandel, B, Mueller, N, Kummu, M, Bekunda, M, Bruelheide, H, Hochman, Z, Siebert, S, Rueda, O, van Bodegom, P. M., 2020. Global priorities of environmental issues to combat food insecurity and biodiversity loss. Sci. Total Environ., 730 , Article 139096. doi: 10.1016/j.scitotenv.2020.139096.

[57]

Shi, H, Luo, G, Zheng, H, Chen, C, Hellwich, O, Bai, J, Liu, T, Liu, S, Xue, J, Cai, P, He, H, Ochege, F. U., Van de Voorde, T, de Maeyer, P., 2021. A novel causal structure-based framework for comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins. Hydrol. Earth Syst. Sci., 25 , pp. 901-925. doi: 10.5194/hess-25-901-2021.

[58]

Siderius, C, Schoumans, O., 2009. Baseline assessment Amudarya: on water quantity, quality and ecosystem issues. Report of the NeWater Project - New Approaches to Adaptive Water Mangement under Uncertainty

[59]

Simoncini, R, Ring, I, Sandström, C, Albert, C, Kasymov, U, Arlettaz, R., 2019. Constraints and opportunities for mainstreaming biodiversity and ecosystem services in the EU’s common agricultural policy: insights from the IPBES assessment for Europe and Central Asia. Land Use Policy, 88 , Article 104099. doi: 10.1016/j.landusepol.2019.104099.

[60]

Song, S., Chen, X., Hu, Z., Zan, C., Liu, T., De Maeyer, P., Sun, Y., 2023a. Deciphering the impact of wind erosion on ecosystem services: an integrated framework for assessment and spatiotemporal analysis in arid regions. Ecol. Indic. 154, 110693. doi: 10.1016/j.ecolind.2023.110693.

[61]

Song, S., Chen, X., Liu, T., Zan, C., Hu, Z., Huang, S., De Maeyer, P., Wang, M., Sun, Y., 2023b. Indicator-based assessments of the coupling coordination degree and correlations of water-energy-food-ecology nexus in Uzbekistan. J. Environ. Manage. 345, 118674. doi: 10.1016/j.jenvman.2023.118674.

[62]

Spawn, S. A., Sullivan, C. C., Lark, T. J., Gibbs, H. K., 2020. Harmonized global maps of above and belowground biomass carbon density in the year 20doi: 10. Sci. Data, 7 , p. 112, 10.1038/s41597-020-0444-4.

[63]

Srivathsa, A, Vasudev, D, Nair, T, Chakrabarti, S, Chanchani, P, DeFries, R, Deomurari, A, Dutta, S, Ghose, D, Goswami, V. R., Nayak, R, Neelakantan, A, Thatte, P, Vaidyanathan, S, Verma, M, Krishnaswamy, J, Sankaran, M, Ramakrishnan, U., 2023. Prioritizing India's landscapes for biodiversity, ecosystem services and human well-being. Nat. Sustain., 6 , pp. 568-577. doi: 10.1038/s41893-023-01063-2.

[64]

Strassburg, B. B. N., Iribarrem, A, Beyer, H. L., Cordeiro, C. L., Crouzeilles, R, Jakovac, C. C., Braga Junqueira, A, Lacerda, E, Latawiec, A. E., Balmford, A, Brooks, T. M., Butchart, S. H. M., Chazdon, R. L, Erb, K-.H, Brancalion, P, Buchanan, G, Cooper, D, Díaz, S, Donald, P. F., Kapos, V, Leclère, D, Miles, L, Obersteiner, M, Plutzar, C, Scaramuzza, C. A., Scarano, F. R., Visconti, P., 2020. Global priority areas for ecosystem restoration. Nature, 586 , pp. 724-729. doi: 10.1038/s41586-020-2784-9.

[65]

Sun, L, Yu, H, Sun, M, Wang, Y., 2023. Coupled impacts of climate and land use changes on regional ecosystem services. J. Environ. Manage., 326 , Article 116753. doi: 10.1016/j.jenvman.2022.116753.

[66]

Tang, H, Peng, J, Jiang, H, Lin, Y, Dong, J, Liu, M, Meersmans, J., 2023. Spatial analysis enables priority selection in conservation practices for landscapes that need ecological security. J. Environ. Manage., 345 , Article 118888. doi: 10.1016/j.jenvman.2023.118888.

[67]

Tayjanov, K, Mamadalieva, N. Z., Wink, M., 2017. Diversity of the mountain flora of Central Asia with emphasis on alkaloid-producing plants. Diversity, 9 , p. 11. doi: 10.3390/d9010011.

[68]

UNEP, 2011. Environment and Security in the Amu Darya River Basin. UNEP, UNDP, UNECE, OSCE, REC, NATO, France.

[69]

Vanneste, T, Depauw, L, De Lombaerde, E, Meeussen, C, Govaert, S, De Pauw, K, Sanczuk, P, Bollmann, K, Brunet, J, Calders, K, Cousins, S. A. O., Diekmann, M, Gasperini, C, Graae, B. J, Hedwall, P-.O, Iacopetti, G, Lenoir, J, Lindmo, S, Orczewska, A, Ponette, Q, Plue, J, Selvi, F, Spicher, F, Verbeeck, H, Zellweger, F, Verheyen, K, Vangansbeke, P, De Frenne, P., 2024. Trade-offs in biodiversity and ecosystem services between edges and interiors in European forests. Nat. Ecol. Evol., 8 , pp. 880-887. doi: 10.1038/s41559-024-02335-6.

[70]

Waldén, E, Queiroz, C, Plue, J, Lindborg, R., 2023. Biodiversity mitigates trade-offs among species functional traits underpinning multiple ecosystem services. Ecol. Lett., 26 , pp. 929-941. doi: 10.1111/ele.14220.

[71]

Waldron, A, Mooers, A. O., Miller, D. C., Nibbelink, N, Redding, D, Kuhn, T. S., Roberts, J. T., Gittleman, J. L., 2013. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl. Acad. Sci. U.S.A., 110 , pp. 12144-12148. doi: 10.1073/pnas.1221370110.

[72]

Wang, J, Xu, C., 2017. Principle and application of geodetector. Acta Geogr. Sin., 72 , pp. 116-134. doi: 10.11821/dlxb201701010.

[73]

Wang, J-F, T-Zhang, L, B-Fu, J., 2016. A measure of spatial stratified heterogeneity. Ecol. Indic., 67 , pp. 250-256. doi: 10.1016/j.ecolind.2016.02.052.

[74]

Wang, S, Xie, Z, Wu, R, Feng, K., 2022. How does urbanization affect the carbon intensity of human well-being? A global assessment. Appl. Energy, 312 , Article 118798. doi: 10.1016/j.apenergy.2022.118798.

[75]

Watson, J. E., Dudley, N, Segan, D. B., Hockings, M., 2014. The performance and potential of protected areas. Nature, 515 , pp. 67-73. doi: 10.1038/nature13947.

[76]

Wu, L, Feng, J, Qin, F, Qiu, Y., 2022. Regional climate effects of irrigation over Central Asia using weather research and forecasting model. J. Geophys. Res.- Atmos., 127 , Article e2021JD036210. doi: 10.1029/2021JD036210.

[77]

Xie, L, Ibrahim, I. A., 2021. Is the ecosystem approach effective in transboundary water systems: Central Asia as a case study?. WIREs Water, 8 , p. e1542. doi: 10.1002/wat2.1542.

[78]

Xu, X., 2023. Management system of special nature reserves in Central Asian countries and China's cooperation direction. Sib. Stud., 50, 104-117.

[79]

Yan, Z, Tan, M., 2020. Changes in agricultural virtual water in Central Asia, 1992–2016. J. Geogr. Sci., 30 , pp. 1909-1920. doi: 10.1007/s11442-020-1818-4.

[80]

Yao, L, Yue, B, Pan, W, Zhu, Z., 2023. A framework for identifying multiscenario priorities based on SCP theory to promote the implementation of municipal territorial ecological conservation planning policy in China. Ecol. Indic., 155 , Article 111057. doi: 10.1016/j.ecolind.2023.111057.

[81]

Yu, Y, Chen, X, Malik, I, Wistuba, M, Cao, Y, Hou, D, Ta, Z, He, J, Zhang, L, Yu, R, Zhang, H, Sun, L., 2021. Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities. J. Arid Land, 13 , pp. 881-890. doi: 10.1007/s40333-021-0084-3.

[82]

Yu, Y, Pi, Y, Yu, X, Ta, Z, Sun, L, Disse, M, Zeng, F, Li, Y, Chen, X, Yu, R., 2019. Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years. J. Arid Land, 11 , pp. 1-14. doi: 10.1007/s40333-018-0073-3.

[83]

Zhang, G, Biradar, C. M., Xiao, X, Dong, J, Zhou, Y, Qin, Y, Zhang, Y, Liu, F, Ding, M, Thomas, R. J., 2018. Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Ecol. Appl., 28 , pp. 442-456. doi: 10.1002/eap.1660.

[84]

Zhang, J, Chen, Y, Li, Z., 2018. 28 , pp. 1329-1340. doi: 10.1007/s11442-018-1528-3.

[85]

Zhang, X, Xu, W, Xiang, X, Zhang, Z, Cui, M., 2020. Mechanism of interaction between urbanization and resource environment in Central Asia. J. Geogr. Sci., 30 , pp. 1723-1738. doi: 10.1007/s11442-020-1809-5.

[86]

Zhang, Y, Zhang, D, Li, W, Li, Y, Zhang, C, Guan, K, Pan, B., 2020. Characteristics and utilization of plant diversity and resources in Central Asia. Reg. Sustain., 1 , pp. 1-10. doi: 10.1016/j.regsus.2020.08.001.

[87]

Zhao, Y, Liu, S, Liu, H, Wang, F, Dong, Y, Wu, G, Li, Y, Wang, W, L-Phan Tran, S, Li, W., 2024. Multi-objective ecological restoration priority in China: cost-benefit optimization in different ecological performance regimes based on planetary boundaries. J. Environ. Manage., 356 , Article 120701. doi: 10.1016/j.jenvman.2024.120701.

[88]

Zhou, G, Huan, Y, Wang, L, Zhang, R, Liang, T, Dunn, M. E., Yao, F, Tong, Y., 2023. Identifying ecological priority areas for synergistic conservation across scales in the Asian Water Tower region. Ecosyst. Health Sustain., 9 , p. 0036. doi: 10.34133/ehs.0036.

[89]

Zhu, L, Hughes, A. C, Zhao, X-.Q, L-Zhou, J, K-Ma, P, X-Shen, L, Li, S, M-Liu, Z, W-Xu, B, Watson, J. E. M., 2021. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv., 7 , p. eabe4261. doi: 10.1126/sciadv.abe4261.

[90]

Environmentetwork, Zoï N.Biodiversity in Central Asia: A Visual Synthesis [WWW Document].Zoï Environment, Network. https://zoinet.org/product/ca-biodiv/. (accessed 7 June 2024).

PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

/