A comprehensive assessment approach for multiscale regional economic development: Fusion modeling of nighttime lights and OpenStreetMap data

Zhe Wang , Jianghua Zheng , Chuqiao Han , Binbin Lu , Danlin Yu , Juan Yang , Linzhi Han

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100230

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100230 DOI: 10.1016/j.geosus.2024.08.009
Research Article
review-article

A comprehensive assessment approach for multiscale regional economic development: Fusion modeling of nighttime lights and OpenStreetMap data

Author information +
History +
PDF

Abstract

Assessing regional economic development is key for advancing towards the Sustainable Development Goals and ensuring sustainable societal progress. Traditional evaluation methods focus on basic economic metrics like population and capital, which may not fully reflect the complexities of economic activities. Nighttime light (NTL) has been validated as an alternative indicator for regional economic development, yet limitations persist in its evaluation. This study integrates OpenStreetMap (OSM) data and NTL data, providing a novel data integration approach for evaluating economic development. The study uses mainland of China as a case, applying ordinary least squares (OLS) and geographically weighted regression (GWR) to evaluate OSM and NTL data across provincial, municipal, and county levels. It compares OSM, NTL, and their combined use, providing key empirical insights for enhancing data fusion models. The study results reveal: (1) NTL data is more accurate for provincial-level economic activity, while OSM data excels at the county level. (2) GWR demonstrates superior capability over OLS in revealing the spatial dynamics of economic development across scales. (3) Through the integration of both datasets, it is observed that, compared to single-data modeling, the performance is enhanced at the city scale and county scale. The study demonstrates that combining OSM and NTL data effectively assesses economic development in both developed and underdeveloped areas at provincial, municipal, and county levels. The study offers a straightforward and efficient approach to data integration. The findings offer new research perspectives and scientific support for sustainable regional economic growth, particularly valuable in data-scarce, underdeveloped areas.

Keywords

Volunteered geographic information (VGI) / Nighttime light (NTL) / Geographically weighted regression (GWR) / Regional economy / Multiscale

Cite this article

Download citation ▾
Zhe Wang, Jianghua Zheng, Chuqiao Han, Binbin Lu, Danlin Yu, Juan Yang, Linzhi Han. A comprehensive assessment approach for multiscale regional economic development: Fusion modeling of nighttime lights and OpenStreetMap data. Geography and Sustainability, 2025, 6(2): 100230 DOI:10.1016/j.geosus.2024.08.009

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhe Wang: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft. Jianghua Zheng: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing – review & editing. Chuqiao Han: Methodology, Writing – review & editing. Binbin Lu: Methodology, Software, Writing – review & editing. Danlin Yu: Writing – review & editing. Juan Yang: Writing – review & editing. Linzhi Han: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This research was funded by The Third Comprehensive Scientific Investigation in Xinjiang (Grant No. 2021xjkk1001), Program of National Social Science Foundation of China (Grant No. 22BJL061), Major Project of Xinjiang Social Science Foundation (Grant No. 21AZD008) and The National Natural Science Foundation of China (Grant No. 41461035).

References

[1]

Akaike, H., 1998. Information theory and an extension of the maximum likelihood principle. In: Parzen, E., Tanabe, K., Kitagawa, G. (Eds.), Selected Papers of Hirotugu Akaike, Springer Series in Statistics. Springer, New York, NY, pp. 199–213. https://doi.org/10.1007/978-1-4612-1694-0_15

[2]

Assaye, R, Suryabhagavan, K. V., Balakrishnan, M, Hameed, S., 2017. Geo-spatial approach for urban green space and environmental quality assessment: a case study in Addis Ababa City. J. Geogr. Inf. Syst., 9 , pp. 191-206. doi: 10.4236/jgis.2017.92012.

[3]

Boeing, G., 2022. Street network models and indicators for every urban area in the world. Geogr. Anal., 54 , pp. 519-535. doi: 10.1111/gean.12281.

[4]

Borkowska, S, Pokonieczny, K., 2022. Analysis of OpenStreetMap data quality for selected counties in Poland in terms of sustainable development. Sustainability, 14 , p. 3728. doi: 10.3390/su14073728.

[5]

Budhathoki, N. R., 2010. Participants’ Motivations to Contribute Geographic Information in an Online Community. Ph.D, thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois

[6]

Cai, B, Lou, Z, Wang, J, Geng, Y, Sarkis, J, Liu, J, Gao, Q., 2018. CH4 mitigation potentials from China landfills and related environmental co-benefits. Sci. Adv., 4 , p. eaar8400. doi: 10.1126/sciadv.aar8400.

[7]

Cao, C, Zhang, B, Xia, F, Bai, Y., 2022. Exploring VIIRS night light long-term time series with CNN/SI for urban change detection and aerosol monitoring. Remote Sens., 14, 3126.

[8]

Cao, J, Chen, Y, Wilson, J. P., Tan, H, Yang, J, Xu, Z., 2020. Modeling China’s prefecture-level economy using VIIRS imagery and spatial methods. Remote Sens., 12 , p. 839. doi: 10.3390/rs12050839.

[9]

Cao, R, Tu, W, Cai, J, Zhao, T, Xiao, J, Cao, J, Gao, Q, Su, H., 2022. Machine learning-based economic development mapping from multi-source open geospatial data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences , pp. 259-266. doi: 10.5194/isprs-annals-V-4-2022-259-2022.

[10]

Chen, D, Zhang, Y, Yao, Y, Hong, Y, Guan, Q, Tu, W., 2019. Exploring the spatial differentiation of urbanization on two sides of the Hu Huanyong Line – based on nighttime light data and cellular automata. Appl. Geogr., 112 , Article 102081. doi: 10.1016/j.apgeog.2019.102081.

[11]

Chen, Q, Ye, T, Zhao, N, Ding, M, Ouyang, Z, Jia, P, Yue, W, Yang, X., 2021. Mapping China's regional economic activity by integrating points-of-interest and remote sensing data with random forest. Environ. Plan. B: Urban Anal. City Sci., 48 , pp. 1876-1894. doi: 10.1177/2399808320951580.

[12]

Chen, T-H. K., Prishchepov, A. V., Fensholt, R, Sabel, C. E., 2019. Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017. Remote Sens. Environ., 225 , pp. 317-327. doi: 10.1016/j.rse.2019.03.013.

[13]

Chen, X, Nordhaus, W. D., 2019. VIIRS nighttime lights in the estimation of cross-sectional and time-series GDP. Remote Sens., 11 , p. 1057. doi: 10.3390/rs11091057.

[14]

Chen, X, Nordhaus, W. D., 2011. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. U.S.A., 108 , pp. 8589-8594. doi: 10.1073/pnas.1017031108.

[15]

Chen, Z, Yu, B, Yang, C, Zhou, Y, Yao, S, Qian, X, Wang, C, Wu, B, Wu, J., 2021. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data, 13 , pp. 889-906. doi: 10.5194/essd-13-889-2021.

[16]

Cui, Y, Shi, K, Jiang, L, Qiu, L, Wu, S., 2021. Identifying and evaluating the nighttime economy in China using multisource data. IEEE Geosci. Remote Sens. Lett., 18 , pp. 1906-1910. doi: 10.1109/LGRS.2020.3010936.

[17]

Fan, H, Zhao, C, Yang, Y., 2020. 220 , Article 117066. doi: 10.1016/j.atmosenv.2019.117066.

[18]

Feige, E. L., Urban, I., 2008. Measuring underground (unobserved, non-observed, unrecorded) economies in transition countries: can we trust GDP?. J. Comp. Econ., 36 , pp. 287-306. doi: 10.1016/j.jce.2008.02.003.

[19]

Feldmeyer, D, Meisch, C, Sauter, H, Birkmann, J., 2020. Using OpenStreetMap data and machine learning to generate socio-economic indicators. ISPRS Int. J. Geo-Inf., 9 , p. 498. doi: 10.3390/ijgi9090498.

[20]

Gibson, J, Olivia, S, Boe-Gibson, G, Li, C., 2021. Which night lights data should we use in economics, and where?. J. Dev. Econ., 149 , p. 102602. doi: 10.1016/j.jdeveco.2020.102602.

[21]

Goodchild, M. F., 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 69 , pp. 211-221. doi: 10.1007/s10708-007-9111-y.

[22]

Goodchild, M. F., Li, L., 2012. Assuring the quality of volunteered geographic information. Spat. Stat., 1 , pp. 110-120. doi: 10.1016/j.spasta.2012.03.002.

[23]

Goodchild, M.F., Li, L., 2012. Assuring the quality of volunteered geographic information. Spat. Stat. 1, 110–120. doi: 10.1016/j.spasta.2012.03.002.

[24]

Gu, H, Chen, C, Lu, Y, Chu, Y, Ma, Y., 2019. Construction of regional economic development model based on remote sensing data. IOP Conf. Ser.: Earth Environ. Sci., 310 , Article 052060. doi: 10.1088/1755-1315/310/5/052060.

[25]

Han, C, Lu, B, Zheng, J, Yu, D, Zheng, S., 2024. Research on multiscale OpenStreetMap in China: data quality assessment with EWM-TOPSIS and GDP modeling. Geo-Spat. Inf. Sci. . doi: 10.1080/10095020.2024.2356238.

[26]

Henderson, J. V., Storeygard, A, Weil, D. N., 2011. A bright idea for measuring economic growth. Am. Econ. Rev., 101 , pp. 194-199. doi: 10.1257/aer.101.3.194.

[27]

Hu, H. Y., 1935. The distribution of population in China, with statistics and maps. Acta Geogr. Sin., 2 , pp. 33-74. doi: 10.11821/xb193502002.

[28]

Huang, Z, Li, S, Gao, F, Wang, F, Lin, J, Tan, Z., 2021. Evaluating the performance of LBSM data to estimate the gross domestic product of China at multiple scales: a comparison with NPP-VIIRS nighttime light data. J. Clean. Prod., 328 , p. 129558. doi: 10.1016/j.jclepro.2021.129558.

[29]

Ivković, A., 2016. Limitations of the GDP as a measure of progress and well-being. Ekonomski Vjesnik 29, 257-272.

[30]

Jokarrsanjani, A., Mooney, P., Zipf, A., Schauss, A., 2015. Quality assessment of the contributed land use information from, OpenStreet, Map versus authoritative datasets. In: Jokarrsanjani, A, J., Zipf, A., Mooney, P., Helbich, M. (Eds.), OpenStreet, Map incience: Experiences, G. I. S, andpplications, Research, .A, Lecture, Notes in, Geoinformation and, Cartography. Springer, Internationalublishing, P, Cham, pp. 37–58. https://doi.org/10.1007/978-3-319-14280-7_3

[31]

Keola, S, Andersson, M, Hall, O., 2015. 66 , pp. 322-334. doi: 10.1016/j.worlddev.2014.08.017.

[32]

Li, G, Fan, J, Zhou, Y, Zhang, Y., 2021. Development characteristics estimation of shandong peninsula urban agglomeration using VIIRS night light data. Remote Sens. Technol. Appl., 35, 1348-1359.

[33]

Li, S, Zhang, T, Yang, Z, Li, X, Xu, H., 2017. Night time light satellite data for evaluating the socioeconomics in Central Asia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 42 (2W7) , pp. 1237-1243. doi: 10.5194/isprs-archives-XLII-2-W7-1237-2017.

[34]

Li, X, Ma, R, Zhang, Q, Li, D, Liu, S, He, T, Zhao, L., 2019. Anisotropic characteristic of artificial light at night – Systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ., 233 , Article 111357. doi: 10.1016/j.rse.2019.111357.

[35]

Li, X, Xu, H, Chen, X, Li, C., 2013. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens., 5 , pp. 3057-3081. doi: 10.3390/rs5063057.

[36]

Liang, H, Guo, Z, Wu, J, Chen, Z., 2020. GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Adv. Space Res., 65 , pp. 481-493. doi: 10.1016/j.asr.2019.09.035.

[37]

Lin, J., Luo, S., Huang, Y., 2022. Poverty estimation at the county level by combining LuoJia1-01 nighttime light data and points of interest. Geocarto Int. 37, 3590–3606. doi: 10.1080/10106049.2020.1870166.

[38]

Liu, B, Shi, Y, D-Li, J, Y-Wang, D, Fernandez, G, M-Tsou, H., 2020. An economic development evaluation based on the OpenStreetMap road network density: the case study of 85 cities in China. ISPRS Int. J. Geo-Inf., 9 , p. 517. doi: 10.3390/ijgi9090517.

[39]

Lu, B, Charlton, M, Harris, P, Fotheringham, A. S., 2014. Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data. Int. J. Geogr. Inf. Sci., 28 , pp. 660-681. doi: 10.1080/13658816.2013.865739.

[40]

Lu, B, Hu, Y, Yang, D, Liu, Y, Liao, L, Yin, Z, Xia, T, Dong, Z, Harris, P, Brunsdon, C, Comber, L, Dong, G., 2023. GWmodelS: a software for geographically weighted models. SoftwareX, 21 , Article 101291. doi: 10.1016/j.softx.2022.101291.

[41]

Ma, X, Wang, Q, Ong, J. J., Fairley, C. K., Su, S, Peng, P, Jing, J, Wang, L, Soe, N. N., Cheng, F, Zhang, L., 2018. Prevalence of human papillomavirus by geographical regions, sexual orientation and HIV status in China: a systematic review and meta-analysis. Sex. Transm. Infect., 94 , pp. 434-442. doi: 10.1136/sextrans-2017-053412.

[42]

Miao, S, Chang, Y., 2018. Research on the regional differences decomposition and convergence mechanism of internet finance development of seven regions in China. 2018 International Conference on Management Science and Engineering (ICMSE). Presented at the 2018 International Conference on Management Science and Engineering (ICMSE) , pp. 301-308. doi: 10.1109/ICMSE.2018.8745054.

[43]

Moradi, M, Roche, S, Mostafavi, M. A., 2022. Exploring five indicators for the quality of OpenStreetMap road networks: a case study of Québec, Canada. Geomatica, 75 (4) , pp. 178-208. doi: 10.1139/geomat-2021-0012.

[44]

Neis, P, Zielstra, D., 2014. Recent developments and future trends in volunteered geographic information research: the case of OpenStreetMap. Future Internet, 6 , pp. 76-106. doi: 10.3390/fi6010076.

[45]

Puri, P, Puri, V., 2022. Observing economics through geography: covid-19 and night-light data analysis of Bangladesh and Sri Lanka (2017–2021). Int. Multidiscip. Res. J., 12 , pp. 42-54. doi: 10.5958/2249-7137.2022.00183.5.

[46]

Sang, C, An, W, Sørensen, P. B., Han, M, Hong, Y, Yang, M., 2021. Gross alpha and beta measurements in drinkable water from seven major geographical regions of China and the associated cancer risks. Ecotox. Environ. Safe., 208 , Article 111728. doi: 10.1016/j.ecoenv.2020.111728.

[47]

See, L, Mooney, P, Foody, G, Bastin, L, Comber, A, Estima, J, Fritz, S, Kerle, N, Jiang, B, Laakso, M, H-Liu, Y, Milčinski, G, Nikšič, M, Painho, M, Pődör, A, A-Olteanu-Raimond, M, Rutzinger, M., 2016. Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic Iinformation. ISPRS Int. J. Geo-Inf., 5 , p. 55. doi: 10.3390/ijgi5050055.

[48]

Shi, K, Yu, B, Huang, Y, Hu, Y, Yin, B, Chen, Z, Chen, L, Wu, J., 2014. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: a comparison with DMSP-OLS data. Remote Sens., 6 , pp. 1705-1724. doi: 10.3390/rs6021705.

[49]

Tan, Y, Wu, P, Zhou, G, Li, Y, Bai, B., 2020. Combining residual neural networks and feature pyramid networks to estimate poverty using multisource remote sensing data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 13 , pp. 553-565. doi: 10.1109/JSTARS.2020.2968468.

[50]

Tang, Q, Chen, Z, Li, H, Zhang, L, Peng, M, Zeng, Y, Liu, X, Liu, Z, Hu, P., 2023. Molecular epidemiology of hepatitis C virus genotypes in different geographical regions of Chinese mainland and a phylogenetic analysis. Infect. Dis. Poverty, 12 , p. 66. doi: 10.1186/s40249-023-01106-y.

[51]

Unitedations, N., 2016. The Sustainable Development Agenda - United Nations Sustainable Development. https://www.un.org/sustainabledevelopment/development-agenda/(accessed 8 September 2023).

[52]

Wang, W., Cheng, H., Zhang, L., 2012. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China. Adv. Space Res. 49, 1253–1264. doi: 10.1016/j.asr.2012.01.025.

[53]

Wang, Y, Chen, W, Kang, Y, Li, W, Guo, F., 2018. Spatial correlation of factors affecting CO2 emission at provincial level in China: a geographically weighted regression approach. J. Clean. Prod., 184 , pp. 929-937. doi: 10.1016/j.jclepro.2018.03.002.

[54]

Wang, Z, Zheng, J, Han, C, Lu, B, Yu, D, Yang, J, Han, L., 2024. Exploring the potential of OpenStreetMap data in regional economic development evaluation modeling. Remote Sens., 16 , p. 239. doi: 10.3390/rs16020239.

[55]

Wu, J, Shen, W, Sun, W, Tueller, P. T., 2002. Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecol., 17 , pp. 761-782. doi: 10.1023/A:1022995922992.

[56]

Yang, M, Gao, X, Zhao, X, Wu, P., 2021. Scale effect and spatially explicit drivers of interactions between ecosystem services—a case study from the Loess Plateau. Sci. Total Environ., 785 , Article 147389. doi: 10.1016/j.scitotenv.2021.147389.

[57]

Yao, Y, Zhou, J, Sun, Z, Guan, Q, Guo, Z, Xu, Y, Zhang, J, Hong, Y, Cai, Y, Wang, R., 2023. Estimating China’s poverty reduction efficiency by integrating multi-source geospatial data and deep learning techniques. Geo-Spat. Inf. Sci., 27 , pp. 1000-1016. doi: 10.1080/10095020.2023.2165975.

[58]

Yu, D., 2004. Modeling Housing Market Dynamics in the City of Milwaukee: A Geographically Weighted Regression Approach. University of Wisconsin-Milwaukee, Milwaukee

[59]

Yu, D-L., 2006. Spatially varying development mechanisms in the Greater Beijing Area: a geographically weighted regression investigation. Ann. Reg. Sci., 40 , pp. 173-190. doi: 10.1007/s00168-005-0038-2.

[60]

Zhang, L, Pfoser, D., 2019. Using OpenStreetMap point-of-interest data to model urban change—a feasibility study. PLoS One, 14 , Article e0212606. doi: 10.1371/journal.pone.0212606.

[61]

Zheng, S., Zheng, J., 2014. Assessing the completeness and positional accuracy of OpenStreetMap in China. In: Bandrova, T., Konecny, M., Zlatanova, S. (Eds.), Thematic Cartography for the Society, Lecture Notes in Geoinformation and Cartography. Springer International Publishing, Cham, pp. 171–189. https://doi.org/10.1007/978-3-319-08180-9_14

PDF

222

Accesses

0

Citation

Detail

Sections
Recommended

/