High-resolution Standardized Precipitation Evapotranspiration Index (SPEI) reveals trends in drought and vegetation water availability in China

Qian He , Ming Wang , Kai Liu , Bowen Wang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100228

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100228 DOI: 10.1016/j.geosus.2024.08.007
Research Article
review-article

High-resolution Standardized Precipitation Evapotranspiration Index (SPEI) reveals trends in drought and vegetation water availability in China

Author information +
History +
PDF

Abstract

Understanding vegetation water availability can be important for managing vegetation and combating climate change. Changes in vegetation water availability throughout China remains poorly understood, especially at a high spatial resolution. Standardized Precipitation Evapotranspiration Index (SPEI) is an ideal water availability index for assessing the spatiotemporal characteristics of drought and investigating the vegetation-water availability relationship. However, no high-resolution and long-term SPEI datasets over China are available. To fill this gap, we developed a new model based on machine learning to obtain high-resolution (1 km) SPEI data by combining climate variables with topographical and geographical features. Here, we analyzed the long-term drought over the past century (1901–2020) and vegetation-water availability relationship in the past two decades (2000–2020). The century-long drought trend analyses indicated an overall drying trend across China with increasing drought frequency, duration, and severity during the past century. We found that drought events in 1901–1961 showed a larger increase than that in 1961–2020, with the Qinghai-Xizang Plateau showing a significant drying trend during 1901–1960 but a wetting trend during 1961–2020. There were 13.90 % and 28.21 % of vegetation in China showing water deficit and water surplus respectively during 2000–2020. The water deficit area significantly shrank from 2000 to 2020 across China, which is dominated by the significant decrease in water deficit areas in South China. Among temperature, precipitation, and vegetation abundance, temperature is the most important factor for the vegetation-water availability dynamics in China over the past two decades, with high temperature contributing to water deficit. Our findings are important for water and vegetation management under a warming climate.

Keywords

Standardized Precipitation Evapotranspiration Index (SPEI) / Long-term drought / Vegetation-water relationship / High-resolution dataset

Cite this article

Download citation ▾
Qian He, Ming Wang, Kai Liu, Bowen Wang. High-resolution Standardized Precipitation Evapotranspiration Index (SPEI) reveals trends in drought and vegetation water availability in China. Geography and Sustainability, 2025, 6(2): 100228 DOI:10.1016/j.geosus.2024.08.007

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Qian He: Writing – original draft, Visualization, Validation, Methodology, Data curation, Conceptualization. Ming Wang: Writing – review & editing, Supervision. Kai Liu: Writing – review & editing, Funding acquisition. Bowen Wang: Writing – review & editing, Validation.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The study is funded by the General Program of National Natural Science Foundation of China (Grant No. 42377467). We greatly appreciate Jacob Jones for his assistance in refining the language of the manuscript. We also extend our gratitude to Dr. Gavin D. Madakumbura for his valuable advice on revising the paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.08.007.

References

[1]

Abatzoglou, J. T., Williams, A. P., Barbero, R., 2019. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett., 46 , pp. 326-336. doi: 10.1029/2018GL080959.

[2]

Anderegg, W. R. L., Konings, A. G., Trugman, A. T., Yu, K, Bowling, D. R., Gabbitas, R, Karp, D. S., Pacala, S, Sperry, J. S., Sulman, B. N., Zenes, N., 2018. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 561 , pp. 538-541. doi: 10.1038/s41586-018-0539-7.

[3]

Beguería, S, Vicente-Serrano, S. M., Angulo-Martínez, M., 2010. A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc., 91 , pp. 1351-1354. doi: 10.1175/2010BAMS2988.1.

[4]

Beguería, S, Vicente-Serrano, S. M., Reig, F, Latorre, B., 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol., 34 , pp. 3001-3023. doi: 10.1002/joc.3887.

[5]

Berdugo, M, Gaitán, J. J., Delgado-Baquerizo, M, Crowther, T. W., Dakos, V., 2022. Prevalence and drivers of abrupt vegetation shifts in global drylands. Proc. Natl. Acad. Sci. U.S.A., 119 , Article e2123393119. doi: 10.1073/pnas.2123393119.

[6]

Birgen, C, Magnanelli, E, Carlsson, P, Skreiberg, Ø, Mosby, J, Becidan, M., 2021. Machine learning based modelling for lower heating value prediction of municipal solid waste. Fuel, 283 , Article 118906. doi: 10.1016/j.fuel.2020.118906.

[7]

Chang, Q, Ficklin, D. L., Jiao, W, Denham, S. O., Wood, J. D., Brunsell, N. A., Matamala, R, Cook, D. R., Wang, L, Novick, K. A., 2023. Earlier ecological drought detection by involving the interaction of phenology and eco-physiological function. Earths Future, 11 , Article e2022EF002667. doi: 10.1029/2022EF002667.

[8]

Chen, C, Park, T, Wang, X, Piao, S, Xu, B, Chaturvedi, R. K., Fuchs, R, Brovkin, V, Ciais, P, Fensholt, R, Tømmervik, H, Bala, G, Zhu, Z, Nemani, R. R., Myneni, R. B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2 , pp. 122-129. doi: 10.1038/s41893-019-0220-7.

[9]

Delavaux, C. S., Crowther, T. W., Zohner, C. M., Robmann, N. M., Lauber, T, van den Hoogen, J, Kuebbing, S, Liang, J, de-Miguel, S, G-Nabuurs, J, Reich, P. B., Abegg, M, Adou Yao, Y. C., Alberti, G, Almeyda Zambrano, A. M., Alvarado, B. V., Alvarez-Dávila, E, Alvarez-Loayza, P, Alves, L. F., Ammer, C, Antón-Fernández, C, Araujo-Murakami, A, Arroyo, L, Avitabile, V, Aymard, G. A., Baker, T. R., Bałazy, R, Banki, O, Barroso, J. G., Bastian, M. L, Bastin, J-.F, Birigazzi, L, Birnbaum, P, Bitariho, R, Boeckx, P, Bongers, F, Bouriaud, O, Brancalion, P. H. S., Brandl, S, Brienen, R, Broadbent, E. N., Bruelheide, H, Bussotti, F, Gatti, R. C., César, R. G., Cesljar, G, Chazdon, R, Chen, H. Y. H., Chisholm, C, Cho, H, Cienciala, E, Clark, C, Clark, D, Colletta, G. D., Coomes, D. A., Cornejo Valverde, F, Corral-Rivas, J. J., Crim, P. M., Cumming, J. R., Dayanandan, S, de Gasper, A. L., Decuyper, M, Derroire, G, DeVries, B, Djordjevic, I, Dolezal, J, Dourdain, A, Engone Obiang, N. L., Enquist, B. J., Eyre, T. J., Fandohan, A. B., Fayle, T. M., Feldpausch, T. R., Ferreira, L. V., Fischer, M, Fletcher, C, Frizzera, L, Gamarra, J. G. P., Gianelle, D, Glick, H. B., Harris, D. J., Hector, A, Hemp, A, Hengeveld, G, Hérault, B, Herbohn, J. L., Herold, M, Hillers, A, Honorio Coronado, E. N., Hui, C, Ibanez, T. T., Amaral, I, Imai, N, Jagodziński, A. M., Jaroszewicz, B, Johannsen, V. K., Joly, C. A., Jucker, T, Jung, I, Karminov, V, Kartawinata, K, Kearsley, E, Kenfack, D, Kennard, D. K., Kepfer-Rojas, S, Keppel, G, Khan, M. L., Killeen, T. J., Kim, H. S., Kitayama, K, Köhl, M, Korjus, H, Kraxner, F, Laarmann, D, Lang, M, Lewis, S. L., Lu, H, Lukina, N. V., Maitner, B. S., Malhi, Y, Marcon, E, Marimon, B. S., Marimon-Junior, B. H., Marshall, A. R., Martin, E. H., Martynenko, O, Meave, J. A., Melo-Cruz, O, Mendoza, C, Merow, C, Mendoza, A. M., Moreno, V. S., Mukul, S. A., Mundhenk, P, Nava-Miranda, M. G., Neill, D, Neldner, V. J., Nevenic, R. V., Ngugi, M. R., Niklaus, P. A., Oleksyn, J, Ontikov, P, Ortiz-Malavasi, E, Pan, Y, Paquette, A, Parada-Gutierrez, A, Parfenova, E. I., Park, M, Parren, M, Parthasarathy, N, Peri, P. L., Pfautsch, S, Phillips, O. L., Picard, N, Piedade, M. T. T. F., Piotto, D, Pitman, N. C. A., Polo, I, Poorter, L, Poulsen, A. D., Pretzsch, H, Ramirez Arevalo, F, Restrepo-Correa, Z, Rodeghiero, M, Rolim, S. G., Roopsind, A, Rovero, F, Rutishauser, E, Saikia, P, Salas-Eljatib, C, Saner, P, Schall, P, Schepaschenko, D, Scherer-Lorenzen, M, Schmid, B, Schöngart, J, Searle, E. B., Seben, V, Serra-Diaz, J. M., Sheil, D, Shvidenko, A. Z., Silva-Espejo, J. E., Silveira, M, Singh, J, Sist, P, Slik, F, Sonké, B, Souza, A. F., Miscicki, S, Stereńczak, K. J, Svenning, J-.C, Svoboda, M, Swanepoel, B, Targhetta, N, Tchebakova, N, ter Steege, H, Thomas, R, Tikhonova, E, Umunay, P. M., Usoltsev, V. A., Valencia, R, Valladares, F, van der Plas, F, Do, T. V., van Nuland, M. E., Vasquez, R. M., Verbeeck, H, Viana, H, Vibrans, A. C., Vieira, S, von Gadow, K, H-Wang, F, Watson, J. V., Werner, G. D. A., Wiser, S. K., Wittmann, F, Woell, H, Wortel, V, Zagt, R, Zawiła-Niedźwiecki, T, Zhang, C, Zhao, X, Zhou, M, Z-Zhu, X, Zo-Bi, I. C., Maynard, D. S., 2023. Native diversity buffers against severity of non-native tree invasions. Nature, 621 , pp. 773-781. doi: 10.1038/s41586-023-06440-7.

[10]

Ebrahimy, H, Azadbakht, M., 2019. Downscaling MODIS land surface temperature over a heterogeneous area: an investigation of machine learning techniques, feature selection, and impacts of mixed pixels. Comput. Geosci., 124 , pp. 93-102. doi: 10.1016/j.cageo.2019.01.004.

[11]

Eyring, V, Gillett, N. P., Achuta Rao, K. M., Barimalala, R, Barreiro Parrillo, M, Bellouin, N, Cassou, C, Durack, P. J., Kosaka, Y, McGregor, S., 2021. Chapter 3: human influence on the climate system. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA , pp. 423-552. doi: 10.1017/9781009157896.005.

[12]

Farr, T. G., Rosen, P. A., Caro, E, Crippen, R, Duren, R, Hensley, S, Kobrick, M, Paller, M, Rodriguez, E, Roth, L, Seal, D, Shaffer, S, Shimada, J, Umland, J, Werner, M, Oskin, M, Burbank, D, Alsdorf, D., 2007. The shuttle radar topography mission. Rev. Geophys., 45 , p. RG2004. doi: 10.1029/2005RG000183.

[13]

Fathipour-Azar, H., 2022. Machine learning-assisted distinct element model calibration: ANFIS, SVM, GPR, and MARS approaches. Acta Geotech., 17 , pp. 1207-1217. doi: 10.1007/s11440-021-01303-9.

[14]

Feng, W, Lu, H. W., Yao, T. C., Yu, Q., 2020. Drought characteristics and its elevation dependence in the Qinghai–Tibet Plateau during the last half-century. Sci. Rep., 10 , p. 14323. doi: 10.1038/s41598-020-71295-1.

[15]

Folberth, C, Baklanov, A, Balkovič, J, Skalský, R, Khabarov, N, Obersteiner, M., 2019. Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agric. For. Meteorol., 264 , pp. 1-15. doi: 10.1016/j.agrformet.2018.09.021.

[16]

Forzieri, G, Alkama, R, Miralles, D. G., Cescatti, A., 2017. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 356 , pp. 1180-1184. doi: 10.1126/science.aal1727.

[17]

Fu, R, Chen, R, Wang, C, Chen, X, Gu, H, Wang, C, Xu, B, Liu, G, Yin, G., 2022. Generating high-resolution and long-term SPEI daset over southwest China through downscaling EEAD product by machine learning. Remote Sens., 14 , p. 1662. doi: 10.3390/rs14071662.

[18]

Fu, L, Zhang, G, Huang, J, Peng, M, Ding, L, Han, D., 2024. Prevalence of vegetation browning in China's drylands under climate change. Geogr. Sustain., 5 , pp. 405-414. doi: 10.1016/j.geosus.2024.04.002.

[19]

Guo, L, Sun, F, Liu, W, Zhang, Y, Wang, H, Cui, H, Wang, H, Zhang, J, Du, B., 2019. Response of ecosystem water use efficiency to drought over China during 1982–2015: spatiotemporal variability and resilience. Forests, 10 , p. 598. doi: 10.3390/f10070598.

[20]

Hao, Z, Singh, V. P., Xia, Y., 2018. Seasonal drought prediction: advances, challenges, and future prospects. Rev. Geophys., 56 , pp. 108-141. doi: 10.1002/2016RG000549.

[21]

He, Q, Wang, M, Liu, K, Li, K. W., Jiang, Z. Y., 2022. GPRChinaTemp1km: a high-resolution monthly air temperature data set for China (1951–2020) based on machine learning. Earth Syst. Sci. Data, 14 , pp. 3273-3292. doi: 10.5194/essd-14-3273-2022.

[22]

He, Q, Wang, M, Liu, K, Li, B, Jiang, Z., 2023. Spatiotemporal analysis of meteorological drought across China based on the high-spatial-resolution multiscale SPI generated by machine learning. Weather Clim. Extremes, 40 , Article 100567. doi: 10.1016/j.wace.2023.100567.

[23]

Hu, Y, Wei, F, Fu, B, Zhang, W, Sun, C., 2023. Ecosystems in China have become more sensitive to changes in water demand since 2001. Commun. Earth Environ., 4 , pp. 1-8. doi: 10.1038/s43247-023-01105-9.

[24]

Jiang, W. G., Yuan, L. H., Wang, W. J., Cao, R, Zhang, Y. F., Shen, W. M., 2015. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic., 51 , pp. 117-126. doi: 10.1016/j.ecolind.2014.07.031.

[25]

Jiao, W., Chang, Q., Wang, L., 2019. The sensitivity of satellite solar-induced chlorophyll fluorescence to meteorological drought. Earths Future 7, 558–573. doi: 10.1029/2018EF001087.

[26]

Jiao, W, Wang, L, Smith, W. K., Chang, Q, Wang, H, D'Odorico, P., 2021. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun., 12 , p. 3777. doi: 10.1038/s41467-021-24016-9.

[27]

Ke, Y, Im, J, Park, S, Gong, H., 2016. Downscaling of MODIS one kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sens., 8 , p. 215. doi: 10.3390/rs8030215.

[28]

Ke, G, Meng, Q, Finley, T, Wang, T, Chen, W, Ma, W, Ye, Q, T-Liu, Y. 2017. LightGBM: a highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.3149-3157.

[29]

Li, X, Li, Y, Chen, A, Gao, M, Slette, I. J., Piao, S., 2019. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric. For. Meteorol., 269–270 , pp. 239-248. doi: 10.1016/j.agrformet.2019.01.036.

[30]

Li, B., Liu, K., Wang, M., Wang, Y., He, Q., Zhuang, L., Zhu, W., 2023a. High-spatiotemporal-resolution dynamic water monitoring using LightGBM model and Sentinel-2 MSI data. Int. J. App. Earth Obs. Geoinf. 118, 103278. doi: 10.1016/j.jag.2023.103278.

[31]

Li, Y., Zhang, W., Schwalm, C.R., Gentine, P., Smith, W.K., Ciais, P., Kimball, J.S., Gazol, A., Kannenberg, S.A., Chen, A., Piao, S., Liu, H., Chen, D., Wu, X., 2023b. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems. Nat. Clim. Chang. 13, 182–188. doi: 10.1038/s41558-022-01584-2.

[32]

Liu, H, Gong, P, Wang, J, Clinton, N, Bai, Y, Liang, S., 2020. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst. Sci. Data, 12 , pp. 1217-1243. doi: 10.5194/essd-12-1217-2020.

[33]

Liu, X, Sun, G, Fu, Z, Ciais, P, Feng, X, Li, J, Fu, B., 2023. Compound droughts slow down the greening of the Earth. Glob. Change Biol., 29 , pp. 3072-3084. doi: 10.1111/gcb.16657.

[34]

Mayer, M., Stando, A., 2024. shapviz: SHAP Visualizations

[35]

Pendergrass, A. G., Meehl, G. A., Pulwarty, R, Hobbins, M, Hoell, A, AghaKouchak, A, Bonfils, C. J. W., Gallant, A. J. E., Hoerling, M, Hoffmann, D, Kaatz, L, Lehner, D, Llewellyn, D, Mote, P, Neale, R. B., Overpeck, J. T., Sheffield, A, Stahl, K, Svoboda, M, Wheeler, M. C., Wood, A. W., Woodhouse, C. A., 2020. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang., 10 , pp. 191-199. doi: 10.1038/s41558-020-0709-0.

[36]

Peng, S. Z., Ding, Y. X., Liu, W. Z., Li, Z., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data, 11 , pp. 1931-1946. doi: 10.5194/essd-11-1931-2019.

[37]

Peng, J, Dadson, S, Hirpa, F, Dyer, E, Lees, T, Miralles, D. G., Vicente-Serrano, S. M., Funk, C., 2020. A pan-African high-resolution drought index dataset. Earth Syst. Sci. Data, 12 , pp. 753-769. doi: 10.5194/essd-12-753-2020.

[38]

Peters, W, van der Velde, I. R., van Schaik, E, Miller, J. B., Ciais, P, Duarte, H. F., van der Laan-Luijkx, I. T., van der Molen, M. K., Scholze, M, Schaefer, K, Vidale, P. L., Verhoef, A, Wårlind, D, Zhu, D, Tans, P. P., Vaughn, B, White, J. W. C., 2018. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci., 11 , pp. 744-748. doi: 10.1038/s41561-018-0212-7.

[39]

Piao, S. L., Wang, X. H., Park, T, Chen, C, Lian, X, He, Y, Bjerke, J. W., Chen, A. P., Ciais, P, Tømmervik, H, Nemani, R. R., Myneni, R. B., 2020. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1 , pp. 14-27. doi: 10.1038/s43017-019-0001-x.

[40]

Pyarali, K, Peng, J, Disse, M, Tuo, Y., 2022. Development and application of high resolution SPEI drought dataset for Central Asia. Sci. Data, 9 , p. 172. doi: 10.1038/s41597-022-01279-5.

[41]

Qian, C, Zhou, T., 2014. Multidecadal variability of North China aridity and its relationship to PDO during 1900–20doi: 10. J. Clim., 27 , pp. 1210-1222, 10.1175/JCLI-D-13-00235.1.

[42]

Rodell, M, Houser, P. R., Jambor, U, Gottschalck, J, Mitchell, K, C-Meng, J, Arsenault, K, Cosgrove, B, Radakovich, J, Bosilovich, M, Entin, J. K., Walker, J. P., Lohmann, D, Toll, D., 2004. The global land data assimilation system. Bull. Am. Meteor. Soc., 85 , pp. 381-394. doi: 10.1175/BAMS-85-3-381.

[43]

Rohde, M. M., 2023. Floods and droughts are intensifying globally. Nat. Water, 1 , pp. 226-227. doi: 10.1038/s44221-023-00047-y.

[44]

Schwalm, C. R., Anderegg, W. R. L., Michalak, A. M., Fisher, J. B., Biondi, F, Koch, G, Litvak, M, Ogle, K, Shaw, J. D., Wolf, A, Huntzinger, D. N., Schaefer, K, Cook, R, Wei, Y, Fang, Y, Hayes, D, Huang, M, Jain, A, Tian, H., 2017. Global patterns of drought recovery. Nature, 548 , pp. 202-205. doi: 10.1038/nature23021.

[45]

Sen, P. K., 1968. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc., 63 , pp. 1379-1389. doi: 10.1080/01621459.1968.10480934.

[46]

Sharifi, A., 2021. Yield prediction with machine learning algorithms and satellite images. J. Sci. Food Agric., 101 , pp. 891-896. doi: 10.1002/jsfa.10696.

[47]

Shi, Y, Ke, G, Soukhavong, D, Lamb, J, Meng, Q, Finley, T, Wang, T, Chen, W, Ma, W, Ye, Q, T-Liu, Y, Titov, N, Yan, Y, Corporation, M, Ferreira, A, Lemire, D, Zverovich, V, Corporation, I. B. M., Cortes, D, Mayer, M., 2024. lightgbm: light Gradient Boosting Machine. R package version 4.5.0.99

[48]

Spinoni, J, Barbosa, P, De Jager, A, McCormick, N, Naumann, G, Vogt, J. V., Magni, D, Masante, D, Mazzeschi, M., 2019. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol.: Reg. Stud., 22 , Article 100593. doi: 10.1016/j.ejrh.2019.100593.

[49]

Publication, UNCCD., 2022. Drought in Numbers. UNCCD Publication

[50]

Van Loon, A. F., Gleeson, T, Clark, J, Van Dijk, A. I. J. M., Stahl, K, Hannaford, J, Di Baldassarre, G, Teuling, A. J., Tallaksen, L. M., Uijlenhoet, R, Hannah, D. M., Sheffield, J, Svoboda, M, Verbeiren, B, Wagener, T, Rangecroft, S, Wanders, N, Van Lanen, H. A. J., 2016. Drought in the Anthropocene. Nat. Geosci., 9 , pp. 89-91. doi: 10.1038/ngeo2646.

[51]

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010a. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718. doi: 10.1175/2009JCLI2909.1.

[52]

Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., Angulo, M., El Kenawy, A., 2010b. A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: com-parison with current drought index datasets based on the Palmer drought severity index. J. Hydrometeorol. 11, 1033–1043. doi: 10.1175/2010JHM1224.1.

[53]

Vicente-Serrano, S. M., Gouveia, C, Camarero, J. J., Begueria, S, Trigo, R, Lopez-Moreno, J. I., Azorin-Molina, C, Pasho, E, Lorenzo-Lacruz, J, Revuelto, J, Moran-Tejeda, E, Sanchez-Lorenzo, A., 2013. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. U.S.A., 110 , pp. 52-57. doi: 10.1073/pnas.1207068110.

[54]

Wang, S., Zhu, J., Cai, J., 2004. Interdecadal variability of temperature and precipitation in China since 1880. Adv. Atmos. Sci. 21, 307–313. doi: 10.1007/BF02915560.

[55]

Wang, Q. R., Huang, J, Liu, R. M., Men, C, Guo, L. J., Miao, Y. X., Jiao, L. J., Wang, Y. F., Shoaib, M, Xia, X. H., 2020. Sequence-based statistical downscaling and its application to hydrologic simulations based on machine learning and big data. J. Hydrol., 586 , Article 124875. doi: 10.1016/j.jhydrol.2020.124875.

[56]

Wang, Q. F., Zeng, J. Y., Qi, J. Y., Zhang, X. S., Zeng, Y, Shui, W, Xu, Z. H., Zhang, R. R., Wu, X. P., Cong, J., 2021. A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018. Earth Syst. Sci. Data, 13 , pp. 331-341. doi: 10.5194/essd-13-331-2021.

[57]

Wei, Z, Meng, Y, Zhang, W, Peng, J, Meng, L., 2019. Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau. Remote Sens. Environ., 225 , pp. 30-44. doi: 10.1016/j.rse.2019.02.022.

[58]

Wei, X, He, W, Zhou, Y, Cheng, N, Xiao, J, Bi, W, Liu, Y, Sun, S, Ju, W., 2023. Increased sensitivity of global vegetation productivity to drought over the recent three decades. J. Geophys. Res.: Atmos., 128 , Article e2022JD037504. doi: 10.1029/2022JD037504.

[59]

West, H, Quinn, N, Horswell, M., 2019. Remote Sens. Environ., 232 , Article 111291. doi: 10.1016/j.rse.2019.111291.

[60]

Westerhoff, R. S., 2015. Using uncertainty of Penman and Penman–Monteith methods in combined satellite and ground-based evapotranspiration estimates. Remote Sens. Environ., 169 , pp. 102-112. doi: 10.1016/j.rse.2015.07.021.

[61]

Wu, W, Ji, F, Hu, S, He, Y., 2024. Asymmetric drying and wetting trends in eastern and western China. Adv. Atmos. Sci., 41 , pp. 221-232. doi: 10.1007/s00376-022-2216-x.

[62]

Xu, K, Yang, D, Yang, H, Li, Z, Qin, Y, Shen, Y., 2015. Spatio-temporal variation of drought in China during 1961–2012: a climatic perspective. J. Hydrol., 526 , pp. 253-264. doi: 10.1016/j.jhydrol.2014.09.047.

[63]

Xu, Y, Wang, L, Ross, K. W., Liu, C, Berry, K., 2018. Standardized soil moisture index for drought monitoring based on soil moisture active passive observations and 36 years of North American land data assimilation system data: a case study in the southeast United States. Remote Sens., 10 , p. 301. doi: 10.3390/rs10020301.

[64]

Yuan, W, Zheng, Y, Piao, S, Ciais, P, Lombardozzi, D, Wang, Y, Ryu, Y, Chen, G, Dong, W, Hu, Z, Jain, A. K., Jiang, C, Kato, E, Li, S, Lienert, S, Liu, S, Nabel, J. E. M. S., Qin, Z, Quine, T, Sitch, S, Smith, W. K., Wang, F, Wu, C, Xiao, Z, Yang, S., 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv., 5 , p. eaax1396. doi: 10.1126/sciadv.aax1396.

[65]

Zeng, Y, Hao, D, Huete, A, Dechant, B, Berry, J, Chen, J. M., Joiner, J, Frankenberg, C, Bond-Lamberty, B, Ryu, Y, Xiao, J, Asrar, G. R., Chen, M., 2022. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ., 3 , pp. 477-493. doi: 10.1038/s43017-022-00298-5.

[66]

Zhang, L.X., Chen, Z.M., Zhou, T.J., 2021a. Human influence on the increasing drought risk over southeast Asian monsoon region. Geophys. Res. Lett. 48, e2021GL093777. doi: 10.1029/2021GL093777.

[67]

Zhang, Y., Keenan, T.F., Zhou, S., 2021b. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498. doi: 10.1038/s41559-021-01551-8.

[68]

Zhang, G., Nan, Z., Hu, N., Yin, Z., Zhao, L., Cheng, G., Mu, C., 2022a. Qinghai-Tibet Plateau permafrost at risk in the late 21st century. Earths Future 10, e2022EF002652. doi: 10.1029/2022EF002652.

[69]

Zhang, Q., She, D., Zhang, L., Wang, G., Chen, J., Hao, Z., 2022b. High sensitivity of compound drought and heatwave events to global warming in the future. Earths Future 10 (11), e2022EF002833. doi: 10.1029/2022EF002833.

[70]

Zhang, R. R., Bento, V. A., Qi, J. Y., Xu, F, Wu, J. J., Qiu, J. X., Li, J. W., Shui, W, Wang, Q. F., 2023. The first high spatial resolution multi-scale daily SPI and SPEI raster dataset for drought monitoring and evaluating over China from 1979 to 2018. Big Earth Data, 7 , pp. 860-885. doi: 10.1080/20964471.2022.2148331.

[71]

Zhao, J, Yan, X, Guo, J, Jia, G., 2012. Evaluating spatial-temporal dynamics of net primary productivity of different forest types in northeastern China based on improved FORCCHN. PLoS One, 7 , p. e48131. doi: 10.1371/journal.pone.0048131.

PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

/