Planting area and production decreased for winter-triticeae crops but increased for rapeseed in Ukraine with climatic impacts dominating

Jichong Han , Yuchuan Luo , Zhao Zhang , Jialu Xu , Yi Chen , Senthold Asseng , Jonas Jägermeyr , Christoph Müller , Jørgen E Olesen , Reimund Rötter , Fulu Tao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100226

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100226 DOI: 10.1016/j.geosus.2024.08.006
Research Article
review-article

Planting area and production decreased for winter-triticeae crops but increased for rapeseed in Ukraine with climatic impacts dominating

Author information +
History +
PDF

Abstract

On-time mapping dynamics of crop area, yield, and production is important for global food security. Such information, however, is often not available. Here, we used satellite information, a spectral-phenology integration approach for mapping crop area, and a machine learning model for predicting yield in the war-stricken Ukraine. We found that in Ukraine crop area and production declined in 2022 relative to 2017–2021 and 2021 for winter-triticeae crops, which was invaded before the cropping season in February of that year. At the same time, crop area and production for rapeseed increased in Ukraine, with yields consistently lower by 6.5 % relative to 2021. The low precipitation and the Russian-Ukrainian conflict-related factors contributed to such yield variations by -1.3 % and -0.9 % for winter-triticeae crops and -4.2 % and -0.5 % for rapeseed in 2022. We demonstrate a robust framework for monitoring country-wide crop production dynamics in near real-time, serving as an early-food-security-warning system.

Keywords

Food security / Conflict / Machine learning / Production / Satellite

Cite this article

Download citation ▾
Jichong Han, Yuchuan Luo, Zhao Zhang, Jialu Xu, Yi Chen, Senthold Asseng, Jonas Jägermeyr, Christoph Müller, Jørgen E Olesen, Reimund Rötter, Fulu Tao. Planting area and production decreased for winter-triticeae crops but increased for rapeseed in Ukraine with climatic impacts dominating. Geography and Sustainability, 2025, 6(2): 100226 DOI:10.1016/j.geosus.2024.08.006

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jichong Han: Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation. Yuchuan Luo: Validation, Software, Methodology, Formal analysis, Data curation. Zhao Zhang: Writing – review & editing, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Conceptualization. Jialu Xu: Project administration, Funding acquisition. Yi Chen: Investigation. Senthold Asseng: Resources. Jonas Jägermeyr: Resources. Christoph Müller: Resources. Jørgen E Olesen: Resources. Reimund Rötter: Resources. Fulu Tao: Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

MCD12Q1 data is available at https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1.

MOD09A1 is available at https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09A1.

MOD11A2 data is available at https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A2.

Nighttime light is available at https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMSLCFG#description.

ACLED is available at https://acleddata.com/.

ERA5-Land is available at https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY.

HWSD is available at https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/.

Agricultural statistics are available at https://ukrstat.gov.ua/.

GADM is available at https://gadm.org/.

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (Grant No. 42061144003).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.08.006.

References

[1]

Anderson, W, Taylor, C, McDermid, S, Ilboudo-Nébié, E, Seager, R, Schlenker, W, Cottier, F, de Sherbinin, A, Mendeloff, D, Markey, K., 2021. Violent conflict exacerbated drought-related food insecurity between 2009 and 2019 in sub-Saharan Africa. Nat. Food, 2 , pp. 603-615. doi: 10.1038/s43016-021-00327-4.

[2]

Baumann, M, Kuemmerle, T., 2016. The impacts of warfare and armed conflict on land systems. J. Land Use Sci., 11 , pp. 672-688. doi: 10.1080/1747423X.2016.1241317.

[3]

Behnassi, M, El Haiba, M., 2022. Implications of the Russia–Ukraine war for global food security. Nat. Hum. Behav., 6 , pp. 754-755. doi: 10.1038/s41562-022-01391-x.

[4]

Ben Hassen, T, El Bilali, H., 2022. Impacts of the Russia-Ukraine war on global food security: towards more sustainable and resilient food systems?. Foods, 11 , p. 2301. doi: 10.3390/foods11152301.

[5]

Bentley, A. R., Donovan, J, Sonder, K, Baudron, F, Lewis, J. M., Voss, R, Rutsaert, P, Poole, N, Kamoun, S, Saunders, D. G. O., Hodson, D, Hughes, D. P., Negra, C, Ibba, M. I., Snapp, S, Sida, T. S., Jaleta, M, Tesfaye, K, Becker-Reshef, I, Govaerts, B., 2022. Near- to long-term measures to stabilize global wheat supplies and food security. Nat. Food, 3 , pp. 483-486. doi: 10.1038/s43016-022-00559-y.

[6]

Blankespoor, B, Touray, S, Katayama, R.Estimating the effect of conflict on agricultural activity in the Central African Republic with remotely sensed data. American Geophysical Union, Fall Meeting 2020. 2020; NH033-N0011.

[7]

Chen, B, Tu, Y, An, J, Wu, S, Lin, C, Gong, P., 2024. Quantification of losses in agriculture production in eastern Ukraine due to the Russia-Ukraine war. Commun. Earth Environ., 5 , pp. 1-10. doi: 10.1038/s43247-024-01488-3.

[8]

Chen, J, Jönsson, Per, Tamura, M, Gu, Z, Matsushita, B, Eklundh, L., 2004. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ., 91 , pp. 332-344. doi: 10.1016/j.rse.2004.03.014.

[9]

Chen, Y, Tao, F., 2022. Potential of remote sensing data-crop model assimilation and seasonal weather forecasts for early-season crop yield forecasting over a large area. Field Crops Res., 276 , Article 108398. doi: 10.1016/j.fcr.2021.108398.

[10]

Copernicus Climate Change Service, 2019. ERA5-Land monthly averaged data from 2001 to present. doi: 10.24381/CDS.68D2BB30.

[11]

Deininger, K, Ali, D. A., Kussul, N, Shelestov, A, Lemoine, G, Yailimova, H., 2022. Quantifying war-induced crop losses in Ukraine in near real time to strengthen local and global food security (Working Paper). World Bank, Washington, D.C. . doi: 10.1596/1813-9450-10123.

[12]

Eklund, L, Degerald, M, Brandt, M, Prishchepov, A. V., Pilesjö, P., 2017. How conflict affects land use: agricultural activity in areas seized by the Islamic State. Environ. Res. Lett., 12 , Article 054004. doi: 10.1088/1748-9326/aa673a.

[13]

European Commission Joint Research Centre, 2022. JRC MARS Bulletin - Global Outlook: Crop Monitoring European Neighbourhood Ukraine. September 2022. Publications Office, LU.

[14]

FAO, 2022. Ukraine: Note on the Impact of the War on Food Security in Ukraine. Food and Agriculture Organization of the United Nations (FAO), Rome.

[15]

FAO, ISRIC, 2012. Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

[16]

Gorelick, N, Hancher, M, Dixon, M, Ilyushchenko, S, Thau, D, Moore, R., 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ., 202 , pp. 18-27. doi: 10.1016/j.rse.2017.06.031.

[17]

Han, J, Zhang, Z, Luo, Y, Cao, J, Zhang, L, Zhang, J, Li, Z., 2021. The RapeseedMap10 database: annual maps of rapeseed at a spatial resolution of 10 m based on multi-source data. Earth Syst. Sci. Data, 13 , pp. 2857-2874. doi: 10.5194/essd-13-2857-2021.

[18]

Jagtap, S, Trollman, H, Trollman, F, Garcia-Garcia, G, Martindale, W., 2024. Surviving the storm: navigating the quadruple whammy impact on Europe's food supply chain. Int. J. Food Sci. Technol., 59 , pp. 3652-3666. doi: 10.1111/ijfs.17106.

[19]

Jagtap, S, Trollman, H, Trollman, F, Garcia-Garcia, G, Parra-López, C, Duong, L, Martindale, W, Munekata, P. E. S., Lorenzo, J. M., Hdaifeh, A, Hassoun, A, Salonitis, K, Afy-Shararah, M., 2022. The Russia-Ukraine conflict: its implications for the global food supply chains. Foods, 11 , p. 2098. doi: 10.3390/foods11142098.

[20]

Levin, N, Kyba, C. C. M., Zhang, Q, Sánchez de Miguel, A, Román, M. O., Li, X, Portnov, B. A., Molthan, A. L., Jechow, A, Miller, S. D., Wang, Z, Shrestha, R. M., Elvidge, C. D., 2020. Remote sensing of night lights: a review and an outlook for the future. Remote Sens. Environ., 237 , Article 111443. doi: 10.1016/j.rse.2019.111443.

[21]

Li, X, Liu, S, Jendryke, M, Li, D, Wu, C., 2018. Night-time light dynamics during the Iraqi Civil War. Remote Sens., 10 , p. 858. doi: 10.3390/rs10060858.

[22]

Li, X. Y., Li, X, Fan, Z, Mi, L, Kandakji, T, Song, Z, Li, D, Song, X. P., 2022. Civil war hinders crop production and threatens food security in Syria. Nat. Food, 3 , pp. 38-46. doi: 10.1038/s43016-021-00432-4.

[23]

Liadze, I, Macchiarelli, C, Mortimer-Lee, P, Juanino, P. S., 2022. The economic costs of the Russia-Ukraine conflict. NIESR Policy Paper 32, National Institute of Economic and Social Research, London

[24]

Luo, Y, Zhang, Z, Cao, J, Zhang, L, Zhang, J, Han, J, Zhuang, H, Cheng, F, Tao, F., 2022. Accurately mapping global wheat production system using deep learning algorithms. Int. J. Appl. Earth Obs. Geoinf., 110 , Article 102823. doi: 10.1016/j.jag.2022.102823.

[25]

Ma, Y, Lyu, D, Sun, K, Li, S, Zhu, B, Zhao, R, Zheng, M, Song, K., 2022. Spatiotemporal analysis and war impact assessment of agricultural land in Ukraine using RS and GIS technology. Land, 11 , p. 1810. doi: 10.3390/land11101810.

[26]

Mbah, R. E., Wasum, D. F., 2022. Russian-Ukraine 2022 war: a review of the economic impact of Russian-Ukraine crisis on the USA, UK, Canada, and Europe. Adv. Soc. Sci. Res. J., 9, 144-153.

[27]

Mkhabela, M. S., Bullock, P, Raj, S, Wang, S, Yang, Y., 2011. Crop yield forecasting on the Canadian prairies using MODIS NDVI data. Agric. For. Meteorol., 151 , pp. 385-393. doi: 10.1016/j.agrformet.2010.11.012.

[28]

Mottaleb, K. A., Kruseman, G, Snapp, S., 2022. Potential impacts of Ukraine-Russia armed conflict on global wheat food security: a quantitative exploration. Glob. Food Secur., 35 , Article 100659. doi: 10.1016/j.gfs.2022.100659.

[29]

Mustafa, S. E., 2022. The importance of ukraine and the russian federation for global agricultural markets and the risks associated with the current conflict. Food and Agriculture Organization of the United Nations

[30]

Nasir, M. A., Nugroho, A. D., Lakner, Z., 2022. Impact of the Russian–Ukrainian conflict on global food crops. Foods, 11 , p. 2979. doi: 10.3390/foods11192979.

[31]

Olsen, V. M., Fensholt, R, Olofsson, P, Bonifacio, R, Butsic, V, Druce, D, Ray, D, Prishchepov, A. V., 2021. The impact of conflict-driven cropland abandonment on food insecurity in South Sudan revealed using satellite remote sensing. Nat. Food, 2 , pp. 990-996. doi: 10.1038/s43016-021-00417-3.

[32]

Pereira, P, Bašić, F, Bogunovic, I, Barcelo, D., 2022. Russian-Ukrainian war impacts the total environment. Sci. Total Environ., 837 , Article 155865. doi: 10.1016/j.scitotenv.2022.155865.

[33]

Pörtner, L. M., Lambrecht, N, Springmann, M, Bodirsky, B. L., Gaupp, F, Freund, F, Lotze-Campen, H, Gabrysch, S., 2022. We need a food system transformation—in the face of the Russia-Ukraine war, now more than ever. One Earth, 5 , pp. 470-472. doi: 10.1016/j.oneear.2022.04.004.

[34]

Raleigh, C, Linke, A, Hegre, H, Karlsen, J., 2010. Introducing ACLED: an armed conflict location and event dataset: special data feature. J. Peace Res., 47 , pp. 651-660. doi: 10.1177/0022343310378914.

[35]

Sacks, W. J., Deryng, D, Foley, J. A., Ramankutty, N., 2010. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr., 19 (5) , pp. 607-620. doi: 10.1111/j.1466-8238.2010.00551.x.

[36]

Skakun, S, Justice, C. O., Kussul, N, Shelestov, A, Lavreniuk, M., 2019. Satellite data reveal cropland losses in South-Eastern Ukraine under military conflict. Front. Earth Sci., 7 , p. 00305. doi: 10.3389/feart.2019.00305.

[37]

Sulik, J. J., Long, D. S., 2016. Spectral considerations for modeling yield of canola. Remote Sens. Environ., 184 , pp. 161-174. doi: 10.1016/j.rse.2016.06.016.

[38]

Sulla-Menashe, D, Friedl, M. A., 2018. User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) Product. USGS, Reston, VA, USA

[39]

Sun, Z, Scherer, L, Zhang, Q, Behrens, P., 2022. Adoption of plant-based diets across Europe can improve food resilience against the Russia–Ukraine conflict. Nat. Food, 3 , pp. 905-910. doi: 10.1038/s43016-022-00634-4.

[40]

Tarja, L., 2022. Russia’s war on Ukraine: EU food policy implications. European Parliamentary Research Service

[41]

Yelistratova, L. O., Apostolov, O. A, Khodorovskyi, AYa, Khyzhniak, A. V., Tomchenko, O. V., Lialko, V. I., 2022. Use of satellite information for evaluation of socio-economic consequences of the war in Ukraine. Ukr. Geogr. J., 2 (118) , pp. 11-18. doi: 10.15407/ugz2022.02.011.

[42]

Yuan, W, Zheng, Y, Piao, S, Ciais, P, Lombardozzi, D, Wang, Y, Ryu, Y, Chen, G, Dong, W, Hu, Z, Jain, A. K., Jiang, C, Kato, E, Li, S, Lienert, S, Liu, S, Nabel, J. E. M. S., Qin, Z, Quine, T, Sitch, S, Smith, W. K., Wang, F, Wu, C, Xiao, Z, Yang, S., 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396. . doi: 10.1126/sciadv.aax1396.

[43]

Zang, Y, Chen, X, Chen, J, Tian, Y, Shi, Y, Cao, X, Cui, X., 2020. Remote sensing index for mapping canola flowers using MODIS data. Remote Sens., 12 , p. 3912. doi: 10.3390/rs12233912.

[44]

Zheng, Z, Wu, Z, Cao, Z, Zhang, Q, Chen, Y, Guo, G, Yang, Z, Guo, C, Wang, X, Marinello, F., 2022. Estimates of power shortages and affected populations during the initial period of the Ukrainian-Russian conflict. Remote Sens., 14 , p. 4793. doi: 10.3390/rs14194793.

[45]

Zhou, X. Y., Lu, G, Xu, Z, Yan, X, Khu, S. T., Yang, J, Zhao, J., 2023. Influence of Russia-Ukraine war on the global energy and food security. Resour. Conserv. Recy., 188 , Article 106657. doi: 10.1016/j.resconrec.2022.106657.

PDF

218

Accesses

0

Citation

Detail

Sections
Recommended

/