Analyzing the extent and use of impervious land in rural landscapes

Andreas Moser , Jasper van Vliet , Ulrike Wissen Hayek , Adrienne Grêt-Regamey

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) : 625 -636.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) :625 -636. DOI: 10.1016/j.geosus.2024.08.004
Research Article
review-article

Analyzing the extent and use of impervious land in rural landscapes

Author information +
History +
PDF

Abstract

The amount of impervious surface is increasing rapidly worldwide. Although urban expansion has been studied extensively, the alteration of impervious land cover in rural regions remains under-examined. In particular, insights into the utilization of these sealed surfaces are crucially needed to unravel the underlying dynamics of land use changes beyond urban areas. This study focuses on rural regions from a Swiss case study and presents an analysis of the use of sealed surfaces in such regions, rather than solely quantifying the extent of sealed surfaces. Utilizing a synergistic approach that merges detailed cadastral plans with very-high-resolution remote sensing imagery and sophisticated deep learning algorithms, we characterized the uses of sealed surfaces, including buildings and their surroundings. Our findings reveal that 2.1 % of the study area’s rural regions comprises sealed surfaces - an area comparable to the sealed surfaces in the urban regions. Within these rural regions, transport infrastructure represents 68 % of this impervious surface. Buildings account for 12 %, and their surroundings, constituting 13 %, are utilized primarily for agricultural purposes, including farming and livestock activities. The deep learning approach achieved a classification accuracy of 72 % for a shallow model and 79 % for a deeper model, indicating that mapping building types is possible with reasonable accuracy. The outcomes of this study underscore the critical need to factor in the presence and utilization of impervious land cover within rural regions for the sustainable management of land resources.

Keywords

Soil sealing / Rural areas / Very-high-resolution aerial imagery / Building types / Convolutional neural networks / Cadastral data

Cite this article

Download citation ▾
Andreas Moser, Jasper van Vliet, Ulrike Wissen Hayek, Adrienne Grêt-Regamey. Analyzing the extent and use of impervious land in rural landscapes. Geography and Sustainability, 2024, 5(4): 625-636 DOI:10.1016/j.geosus.2024.08.004

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Andreas Moser: Writing – original draft, Visualization, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Jasper van Vliet: Conceptualization, Writing – review & editing, Supervision. Ulrike Wissen Hayek: Supervision, Project administration. Adrienne Grêt-Regamey: Writing – review & editing, Supervision, Funding acquisition, Conceptualization, Project administration.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research is part of the project “Interkantonal koordiniertes Monitoring Bauen ausserhalb Bauzonen” and was funded by the Swiss Federal Office for Spatial Development (ARE), Swiss Federal Office for Environment (FOEN), Swiss Federal Office for Agriculture (FOAG), Canton of Bern (Amt für Gemeinden und Raumordnung), Canton of St. Gallen (Amt für Raumentwicklung und Geoinformation), Canton of Appenzell Ausserrhoden (Amt für Raum und Wald), Canton of Appenzell Innerrhoden (Amt für Raumentwicklung), Canton of Glarus (Abteilung Raumentwicklung und Geoinformation), and Canton of Vaud (Direction générale du territoire et du logement). JvV was supported by the Netherlands Organization for Scientific Research NWO in the form of a VIDI grant (Grant No. VI.Vidi.198.008).

Supplementary materials

Supplementary material associated with this article can be found in the online version, at doi:10.1016/j.geosus.2024.08.004.

References

[1]

Albert, A, Kaur, J, Gonzalez, M. C., 2017. Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, ACM, pp. 1357-1366. doi: 10.1145/3097983.3098070.

[2]

Alzubaidi, L, Zhang, J, Humaidi, A. J., Al-Dujaili, A, Duan, Y, Al-Shamma, O, Santamaría, J, Fadhel, M. A., Al-Amidie, M, Farhan, L., 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data, 8 (1), p. 53. doi: 10.1186/s40537-021-00444-8.

[3]

Antrop, M., 2000. Changing patterns in the urbanized countryside of Western Europe. Landsc. Ecol., 15, 257-270.

[4]

Antrop, M., 2004. Landscape change and the urbanization process in Europe. Landsc. Urban Plan., 67 (1–4), pp. 9-26. doi: 10.1016/S0169-2046(03)00026-4.

[5]

Barrington-Leigh, C, Millard-Ball, A., 2017. The world's user-generated road map is >80 % complete. PLoS One, 12 (8), Article e0180698. doi: 10.1371/journal.pone.0180698.

[6]

Baveye, P. C., Baveye, J, Gowdy, J., 2016. Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Front. Environ. Sci., 4, p. 41. doi: 10.3389/fenvs.2016.00041.

[7]

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens., 65 (1), pp. 2-16. doi: 10.1016/j.isprsjprs.2009.06.004.

[8]

Brovelli, M, Zamboni, G., 2018. A new method for the assessment of spatial accuracy and completeness of OpenStreetMap building footprints. ISPRS J. Photogramm. Remote Sens., 7 (8), p. 289. doi: 10.3390/ijgi7080289.

[9]

Chen, Y, Jiang, H, Li, C, Jia, X, Ghamisi, P., 2016. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens., 54 (10), pp. 6232-6251. doi: 10.1109/TGRS.2016.2584107.

[10]

Chen, B, Tu, Y, Song, Y, Theobald, D. M., Zhang, T, Ren, Z, Li, X, Yang, J, Wang, J, Wang, X, Gong, P, Bai, Y, Xu, B., 2021. Mapping essential urban land use categories with open big data: results for five metropolitan areas in the United States of America. ISPRS J. Photogramm. Remote Sens., 178, pp. 203-218. doi: 10.1016/j.isprsjprs.2021.06.010.

[11]

Chollet, F., 2017. Xception: deep learning with depthwise separable convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, IEEE, pp. 1800-1807. doi: 10.1109/CVPR.2017.195.

[12]

Codemo, A, Pianegonda, A, Ciolli, M, Favargiotti, S, Albatici, R., 2022. Mapping pervious surfaces and canopy cover using high-resolution airborne imagery and digital elevation models to support urban planning. Sustainability, 14 (10), p. 6149. doi: 10.3390/su14106149.

[13]

Coetzee, S, Ivánová, I, Mitasova, H, Brovelli, M., 2020. Open geospatial software and data: a review of the current state and a perspective into the future. ISPRS Int. J. Geo-Inf., 9 (2), p. 90. doi: 10.3390/ijgi9020090.

[14]

Copernicus Land Monitoring Service (CLMS), 2020. Copernicus Land Monitoring Service, European Environment Agency.

[15]

Defries, R. S., Townshend, J. R. G., 1994. Defries, J.R.G. Townshend. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens., 15 (17), pp. 3567-3586. doi: 10.1080/01431169408954345.

[16]

European Commission, 2011. Roadmap to a Resource Efficient Europe (No. COM(2011) 571 Final) European Commission, Brussels (accessed 17 April 2023).

[17]

European Environment Agency (EEA), 2018. CORINE Land Cover (CLC). [dataset]. European Environment Agency, Copenhagen. doi: 10.2909/960998c1-1870-4e82-8051-6485205ebbac.

[18]

European Environment Agency (EEA), 2020. Imperviousness and Imperviousness Change in Europe. European Environment Agency, Copenhagen (accessed 13 April 2023).

[19]

European Parliament and Council, 2007. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE) (Official Journal of the European Union No. L 108/1). https://eur-lex.europa.eu/eli/dir/2007/2/oj (accessed 28 April 2023).

[20]

Eurostat, 1998. Classification of Types of Constructions (CC). European Commission, Luxembourg (accessed 29 March 2023).

[21]

Eurostat, 2022. Population density by NUTS 3 region (online data code: demo_r_d3dens).

[22]

Federal Office for Spatial Development (ARE), 2022. Bauzonenstatistik Schweiz 2022 – Statistik und Analysen. Federal Office for Spatial Development, Bern. (in German).

[23]

Federal Office for Spatial Development (ARE), 2023. Monitoring Bauen ausserhalb Bauzonen – Standbericht 2023. Federal Office for Spatial Development, Bern. (in German).

[24]

Federal Statistical Office (FSO), 2019. Arealstatistik Schweiz - Erhebung Der Bodennutzung und Der Bodenbedeckung (No. 897–1900). Federal Statistical Office, Neuchâtel. (in German).

[25]

Federal Statistical Office (FSO), 2022a. Federal Statistical Office https://www.bfs. admin.ch/asset/en/px-x-0102020000_201 . (accessed 20 March 2023).

[26]

Federal Statistical Office (FSO), 2022b. Federal Statistical Office https://www. housing-stat.ch/de/index.html . (accessed 29 March 2023). (in German).

[27]

Géron, A., 2019. Hands-on Machine Learning With Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed. O’Reilly Media, Inc., Sebastopol.

[28]

Gao, J, O'Neill, B. C., 2020. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun., 11 (1), p. 2302. doi: 10.1038/s41467-020-15788-7.

[29]

Gerber, J.-D., Hartmann, T., Hengstermann, A., 2018. Instruments of Land Policy: Dealing with Scarcity of Land, 1st ed. Routledge, Abingdon doi: 10.4324/9781315511658.

[30]

Grêt-Regamey, A, Weibel, B, Bagstad, K. J., Ferrari, M, Geneletti, D, Klug, H, Schirpke, U, Tappeiner, U., 2014. On the effects of scale for ecosystem services mapping. PLoS One, 9 (12), Article e112601. doi: 10.1371/journal.pone.0112601.

[31]

He, K, Zhang, X, Ren, S, Sun, J., 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, IEEE, pp. 770-778. doi: 10.1109/CVPR.2016.90.

[32]

Hecht, R., Kunze, C., Hahmann, S., 2013. Measuring completeness of building footprints in OpenStreetMap over space and time. ISPRS Int. J. Geo-Inf. 2 (4), 1066–1091. doi: 10.3390/ijgi2041066.

[33]

Hennig, E. I., Schwick, C, Soukup, T, Orlitová, E, Kienast, F, Jaeger, J. A. G., 2015. Multi-scale analysis of urban sprawl in Europe: towards a European de-sprawling strategy. Land Use Policy, 49, pp. 483-498. doi: 10.1016/j.landusepol.2015.08.001.

[34]

Hersperger, A. M., Oliveira, E, Pagliarin, S, Palka, G, Verburg, P, Bolliger, J, Grădinaru, S., 2018. Urban land-use change: the role of strategic spatial planning. Glob. Environ. Change, 51, pp. 32-42. doi: 10.1016/j.gloenvcha.2018.05.001.

[35]

Hoeser, T, Kuenzer, C., 2020. Object detection and image segmentation with deep learning on Earth observation data: a review-Part I: evolution and recent trends. Remote. Sens., 12, p. 1667. doi: 10.3390/rs12101667.

[36]

Hoffmann, E. J., Wang, Y, Werner, M, Kang, J, Zhu, X. X., 2019. Model fusion for building type classification from aerial and street view images. Remote. Sens., 11 (11), p. 1259. doi: 10.3390/rs11111259.

[37]

Hossain, M. D., Chen, D., 2019. Segmentation for object-based image analysis (OBIA): a review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens., 150, pp. 115-134. doi: 10.1016/j.isprsjprs.2019.02.009.

[38]

Ioffe, S, Szegedy, C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research, PMLR, Lille, pp.448-456.

[39]

Kang, J, Körner, M, Wang, Y, Taubenböck, H, Zhu, X. X., 2018. Building instance classification using street view images. ISPRS J. Photogramm. Remote Sens., 145, pp. 44-59. doi: 10.1016/j.isprsjprs.2018.02.006.

[40]

Kim, B, Yuvaraj, N, Sri Preethaa, K. R., Arun Pandian, R., 2021. Surface crack detection using deep learning with shallow CNN architecture for enhanced computation. Neural Comput. Appl., 33 (15), pp. 9289-9305. doi: 10.1007/s00521-021-05690-8.

[41]

Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. arXiv preprint. http://arxiv.org/abs/1412.6980.

[42]

Konferenz der, Kantonalen, Vermessungsämter (KKV), A.Detaillierungsgrad in der amtlichen Vermessung - Informationsebene Bodenbedeckung.Konferenz der, Kantonalenermessungsämter, V, swisstopo/Eidgenössische, Vermessungsdirektion. https://www.cadastre.ch/content/cadastre-internet/de/manual-av/publication/guidline.download/cadastre-internet/de/documents/av-richtlinien/Richtlinie-Detaillierungsgrad-B, B-de.pdf. (accessed 26 September 2022) (in, German).

[43]

Krizhevsky, A, Sutskever, I, Hinton, G. E., 2012. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84-90.

[44]

Lal, R, Bouma, J, Brevik, E, Dawson, L, Field, D. J., Glaser, B, Hatano, R, Hartemink, A. E., Kosaki, T, Lascelles, B, Monger, C, Muggler, C, Ndzana, G. M., Norra, S, Pan, X, Paradelo, R, Reyes-Sánchez, L. B., Sandén, T, Singh, B. R., Spiegel, H, Yanai, J, Zhang, J., 2021. Soils and sustainable development goals of the United Nations: an International Union of Soil Sciences perspective. Geoderma Reg., 25, p. e00398. doi: 10.1016/j.geodrs.2021.e00398.

[45]

Lasanta, T, Arnáez, J, Pascual, N, Ruiz-Flaño, P, Errea, M. P., Lana-Renault, N., 2017. Space–time process and drivers of land abandonment in Europe. Catena, 149, pp. 810-823. doi: 10.1016/j.catena.2016.02.024.

[46]

Lei, F, Liu, X, Dai, Q, BW-Ling, K., 2020. Shallow convolutional neural network for image classification. SN Appl. Sci., 2 (1), p. 97. doi: 10.1007/s42452-019-1903-4.

[47]

Li, W, Dong, R, Fu, H, Wang, J, Yu, L, Gong, P., 2020. Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sens. Environ., 237, Article 111563. doi: 10.1016/j.rse.2019.111563.

[48]

Liu, X, Hu, G, Chen, Y, Li, X, Xu, X, Li, S, Pei, F, Wang, S., 2018. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ., 209, pp. 227-239. doi: 10.1016/j.rse.2018.02.055.

[49]

Liu, X, Huang, Y, Xu, X, Li, X, Li, X, Ciais, P, Lin, P, Gong, K, Ziegler, A. D., Chen, A, Gong, P, Chen, J, Hu, G, Chen, Y, Wang, S, Wu, Q, Huang, K, Estes, L, Zeng, Z., 2020. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain., 3 (7), pp. 564-570. doi: 10.1038/s41893-020-0521-x.

[50]

Müller, F., Iosifescu, I., Hurni, L., 2015. Assessment and visualization of OSM building footprint quality. In: Proceedings of the 27th International Cartographic Conference (ICC 2015). Rio de Janeiro.

[51]

Ma, L, Liu, Y, Zhang, X, Ye, Y, Yin, G, Johnson, B. A., 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote Sens., 152, pp. 166-177. doi: 10.1016/j.isprsjprs.2019.04.015.

[52]

McDonnell, M. D., Vladusich, T., 2015. Enhanced image classification with a fast-learning shallow convolutional neural network. 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, IEEE, pp. 1-7. doi: 10.1109/IJCNN.2015.7280796.

[53]

Miao, S, Xu, H, Han, Z, Zhu, Y., 2019. Recognizing facial expressions using a shallow convolutional neural network. IEEE Access, 7, pp. 78000-78011. doi: 10.1109/ACCESS.2019.2921220.

[54]

Neuenfeldt, S, Gocht, A, Heckelei, T, Ciaian, P., 2019. Explaining farm structural change in the European agriculture: a novel analytical framework. Eur. Rev. Agric. Econ., 46 (5), pp. 713-768. doi: 10.1093/erae/jby037.

[55]

Peroni, F, Pappalardo, S. E., Facchinelli, F, Crescini, E, Munafò, M, Hodgson, M. E., De Marchi, M., 2022. How to map soil sealing, land take and impervious surfaces? A systematic review. Environ. Res. Lett., 17 (5), Article 053005. doi: 10.1088/1748-9326/ac6887.

[56]

Pesaresi, M, Ehrlich, D, Ferri, S, Florczyk, A, Freire, S, Halkia, M, Julea, A, Kemper, T, Soille, P, Syrris, V., 2016. Operating procedure for the production of the global human settlement layer from Landsat data of the epochs 1975, 1990, 2000, and 2014 (JRC Technical Report No. EUR 27741). European Union, Luxembourg. . doi: 10.2788/253582.

[57]

Ravetz, J., Fertner, C., Nielsen, T.S., 2013. The dynamics of peri-urbanization. In: Nilsson, K., Pauleit, S., Bell, S., Aalbers, C., Sick Nielsen, T.A. (Eds.), Peri-Urban Futures: Scenarios and Models for Land Use Change in Europe. Springer, Berlin, Heidelberg, pp. 13–44. doi: 10.1007/978-3-642-30529-0_2.

[58]

Rosier, J. F., Taubenböck, H, Verburg, P. H., van Vliet, J., 2022. Fusing Earth observation and socioeconomic data to increase the transferability of large-scale urban land use classification. Remote Sens. Environ., 278, Article 113076. doi: 10.1016/j.rse.2022.113076.

[59]

Sardaro, R, La Sala, P, De Pascale, G, Faccilongo, N., 2021. The conservation of cultural heritage in rural areas: stakeholder preferences regarding historical rural buildings in Apulia, southern Italy. Land Use Policy, 109, Article 105662. doi: 10.1016/j.landusepol.2021.105662.

[60]

Scalenghe, R, Marsan, F. A., 2009. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan., 90 (1–2), pp. 1-10. doi: 10.1016/j.landurbplan.2008.10.011.

[61]

Schmidt, S, Barron, C., 2020. Mapping impervious surfaces precisely—a GIS-based methodology combining vector data and high-resolution airborne imagery. J. Geovis. Spat. Anal., 4 (1), p. 14. doi: 10.1007/s41651-020-00055-6.

[62]

Shaw, B. J., Van Vliet, J, Verburg, P. H., 2020. The peri-urbanization of Europe: a systematic review of a multifaceted process. Landsc. Urban Plan., 196, Article 103733. doi: 10.1016/j.landurbplan.2019.103733.

[63]

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv: 1409.1556.

[64]

Srivastava, S, Vargas Muñoz, J. E., Lobry, S, Tuia, D., 2020. Fine-grained landuse characterization using ground-based pictures: a deep learning solution based on globally available data. Int. J. Geogr. Inf. Sci., 34 (6), pp. 1117-1136. doi: 10.1080/13658816.2018.1542698.

[65]

Stolte, J, Tesfai, M, Kværnø, S, Keizer, J, Verheijen, F, Panagos, P, Ballabio, C, Hessel, R., 2015. Soil Threats in Europe (JRC Technical Report No. EUR 27607 EN). European Union, Luxembourg. . doi: 10.2788/828742.

[66]

Swiss Federal Act on Spatial Planning, 1979. https://www.fedlex.admin.ch/eli/cc/1979/ 1573_1573_1573/en (accessed 12 July 2023).

[67]

swisstopo, 2021a. SWISSIMAGE 10 cm. Federal Office of Topography swisstopo, Bern (accessed 29 March 2023).

[68]

swisstopo, 2021b. SWISSIMAGE RS. Federal Office of Topography swisstopo, Bern (accessed 29 March 2023).

[69]

Szegedy, C, Liu, W, Jia, Y. Q., Sermanet, P, Reed, S, Anguelov, D, Erhan, D, Vanhoucke, V, Rabinovich, A., 2015. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, IEEE, pp. 1-9. doi: 10.1109/CVPR.2015.7298594.

[70]

Szegedy, C, Ioffe, S, Vanhoucke, V, Alemi, A., 2017. Inception-v4, Inception-ResNet and the impact of residual connections on learning. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, pp. 4278-4284. doi: 10.1609/aaai.v31i1.11231.

[71]

Taylor, L, Nitschke, G., 2018. Improving deep learning with generic data augmentation. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, pp. 1542-1547. doi: 10.1109/SSCI.2018.8628742.

[72]

Tian, Y., Zhou, Q., Fu, X., 2019. An analysis of the evolution, completeness and spatial patterns of OpenStreetMap building data in China. ISPRS Int. J. Geo-Inf. 8 (1), 35. doi: 10.3390/ijgi8010035.

[73]

UN, Generalssembly, A.Transforming our world: the 2030 agenda for sustainable development (No.A/RE, S/70/1). https://www.refworld.org/legal/resolution/unga/2015/en/111816 (accessed 9 July 2024).

[74]

van der Vaart, J. H. P., 2005. Towards a new rural landscape: consequences of non-agricultural re-use of redundant farm buildings in Friesland. Landsc. Urban Plan., 70 (1–2), pp. 143-152. doi: 10.1016/j.landurbplan.2003.10.010.

[75]

van Rijsbergen, C. J., 1979. Information Retrieval. (2nd ed.), Butterworth-Heinemann, Oxford

[76]

van Strien, M. J., Grêt-Regamey, A., 2024. A global time series of traffic volumes on extra-urban roads. Sci. Data, 11 (1), p. 470. doi: 10.1038/s41597-024-03287-z.

[77]

van Vliet, J, Verburg, P. H., Grădinaru, S. R., Hersperger, A. M., 2019. Beyond the urban-rural dichotomy: towards a more nuanced analysis of changes in built-up land. Comput. Environ. Urban Syst., 74, pp. 41-49. doi: 10.1016/j.compenvurbsys.2018.12.002.

[78]

Wang, Y, Li, M., 2019. Urban impervious surface detection from remote sensing images: a review of the methods and challenges. IEEE Geosci. Remote Sens. Mag., 7 (3), pp. 64-93. doi: 10.1109/MGRS.2019.2927260.

[79]

Wang, S., Zhou, Q., Tian, Y., 2020. Understanding completeness and diversity patterns of OSM-based land-use and land-cover dataset in China. ISPRS Int. J. Geo-Inf. 9 (9), 531. doi: 10.3390/ijgi9090531.

[80]

Weng, Q., 2012. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sens. Environ., 117, pp. 34-49. doi: 10.1016/j.rse.2011.02.030.

[81]

Wulder, M. A., Coops, N. C., Roy, D. P., White, J. C., Hermosilla, T., 2018. Land cover 2.0. Int. J. Remote Sens., 39 (12), pp. 4254-4284. doi: 10.1080/01431161.2018.1452075.

[82]

Yin, J, Dong, J, Hamm, N. A. S., Li, Z, Wang, J, Xing, H, Fu, P., 2021. Integrating remote sensing and geospatial big data for urban land use mapping: a review. Int. J. Appl. Earth Obs. Geoinf., 103, Article 102514. doi: 10.1016/j.jag.2021.102514.

[83]

Yoo, S, Lee, J, Gholami Farkoushi, M, Lee, E, H-Sohn, G., 2022. Automatic generation of land use maps using aerial orthoimages and building floor data with a Conv-Depth Block (CDB) ResU-Net architecture. Int. J. Appl. Earth Obs. Geoinf., 107, Article 102678. doi: 10.1016/j.jag.2022.102678.

[84]

Yue, J, Zhao, W, Mao, S, Liu, H., 2015. Spectral–spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett., 6 (6), pp. 468-477. doi: 10.1080/2150704X.2015.1047045.

[85]

Zhang, C, Sargent, I, Pan, X, Li, H, Gardiner, A, Hare, J, Atkinson, P. M., 2018. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens. Environ., 216, pp. 57-70. doi: 10.1016/j.rse.2018.06.034.

[86]

Zhao, W, Du, S, Emery, W. J., 2017. Object-based convolutional neural network for high-resolution imagery classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10 (7), pp. 3386-3396. doi: 10.1109/JSTARS.2017.2680324.

[87]

Zhou, Q., Wang, S., Liu, Y., 2022. Exploring the accuracy and completeness patterns of global land-cover/land-use data in OpenStreetMap. Appl. Geogr. 145, 102742. doi: 10.1016/j.apgeog.2022.102742.

[88]

Zhu, X. X., Tuia, D, Mou, L, G-Xia, S, Zhang, L, Xu, F, Fraundorfer, F., 2017. Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag., 5 (4), pp. 8-36. doi: 10.1109/MGRS.2017.27623.

PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

/