Impacts of increasing compound hot-dry events on vegetation under the warming-wetting trend in Northwest China

Zejin Liu , Limin Jiao , Xihong Lian

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) : 100222

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (2) :100222 DOI: 10.1016/j.geosus.2024.08.003
Research Article
review-article

Impacts of increasing compound hot-dry events on vegetation under the warming-wetting trend in Northwest China

Author information +
History +
PDF

Abstract

In a warming world, climate extremes tend to be more frequent and intense. The exceptional response of ecosystems triggered by extreme climate events under a warmer and wetter climate in northwest China (NWC) has aroused growing concern. However, understanding the responses of vegetation to climate extremes from the compound events perspective remains challenging. In this study, we identify the climate dynamics in NWC during 1971–2020 based on daily meteorological observations, focusing on the changes in compound hot-dry events (CHDEs) during the warmer and wetter period. We further explore the effects of CHDEs on vegetation by examining vegetation anomalies and recovery time using daily gross primary productivity (GPP) data. The results show a clear warmer and wetter period in NWC during 2000–2020. No signs of a hiatus in CHDEs increase are observed during this period, and even the duration of CHDEs in western NWC keeps showing an increasing tendency. Vegetation in eastern NWC, with a lower probability of GPP anomalies, exhibits stronger resistance of ecosystems to CHDEs than in western NWC. In NWC, vegetation typically returns to its normal state in 5.50 days on average, but exhibits greater resilience in the western region, where it takes less recovery time (4.82 days). Vegetation in the central region shows the lowest probability of GPP anomalies and relatively longer recovery time, likely due to its higher altitudes. Our research underscores the imperative to address the considerable impacts of CHDEs on vegetation growth even as the regional climate becomes increasingly warmer and wetter.

Keywords

Warming-wetting trend / Compound hot-dry events / Vegetation anomaly / Recovery time

Cite this article

Download citation ▾
Zejin Liu, Limin Jiao, Xihong Lian. Impacts of increasing compound hot-dry events on vegetation under the warming-wetting trend in Northwest China. Geography and Sustainability, 2025, 6(2): 100222 DOI:10.1016/j.geosus.2024.08.003

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zejin Liu: Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. Limin Jiao: Writing – review & editing, Conceptualization. Xihong Lian: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 42371423), the Fundamental Research Funds for the Central Universities (Grant No. 2042023kfyq04), the China Postdoctoral Science Foundation (Grant No. 2023M742682), and the Postdoctoral Fellowship Program of CPSF (Grant No. GZB20230539).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.08.003.

References

[1]

Alizadeh, M. R., Adamowski, J, Nikoo, M. R., AghaKouchak, A, Dennison, P, Sadegh, M., 2020. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Sci. Adv., 6, eaaz4571.

[2]

Cao, S, He, Y, Zhang, L, Sun, Q, Zhang, Y, Li, H, Wei, X, Liu, Y., 2023. Spatiotemporal dynamics of vegetation net ecosystem productivity and its response to drought in Northwest China. GISci. Remote Sens., 60(1), 2194597.

[3]

Chen, D., Dai, Y., 2009. Characteristics of Northwest China rainfall intensity in recent 50 years. Chin. J. Atmos. Sci. 33, 923–935 (in Chinese).

[4]

Chen, F, Xie, T, Yang, Y, Chen, S, Chen, F, Huang, W, Chen, J., 2023. Discussion of the “warming and wetting” trend and its future variation in the drylands of Northwest China under global warming. Sci. China: Earth Sci., 66(6), 1241-1257.

[5]

Chen, G, Huang, R., 2012. Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J. Clim., 25(22), 7834-7851.

[6]

Chen, L, Chen, X, Cheng, L, Zhou, P, Liu, Z., 2019. Compound hot droughts over China: identification, risk patterns and variations. Atmos. Res., 227, 210-219.

[7]

Chiang, F, Mazdiyasni, O, AghaKouchak, A., 2018. Amplified warming of droughts in southern United States in observations and model simulations. Sci. Adv., 4, eaat2380.

[8]

Cranko Page, J, De Kauwe, M. G., Abramowitz, G, Pitman, A. J., 2023. Non-stationary lags and legacies in ecosystem flux response to antecedent rainfall. J. Geophys. Res.: Biogeosci., 128(5), e2022JG007144.

[9]

De Keersmaecker, W, Lhermitte, S, Tits, L, Honnay, O, Somers, B, Coppin, P., 2015. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr., 24(5), 539-548.

[10]

Deng, H, Chen, Y, Shi, X, Li, W, Wang, H, Zhang, S, Fang, G., 2014. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of Northwest China. Atmos. Res., 138, 346-355.

[11]

Deng, H, Tang, Q, Yun, X, Tang, Y, Liu, X, Xu, X, Sun, S, Zhao, G, Zhang, Y, Zhang, Y., 2022. Wetting trend in Northwest China reversed by warmer temperature and drier air. J. Hydrol., 613, 128435.

[12]

Deng, Y, Wang, X, Wang, K, Ciais, P, Tang, S, Jin, L, Li, L, Piao, S., 2021. Responses of vegetation greenness and carbon cycle to extreme droughts in China. Agric. For. Meteorol., 298-299 , Article 108307

[13]

Dietze, M. C., Sala, A, Carbone, M. S., Czimczik, C. I., Mantooth, J. A., Richardson, A. D., Vargas, R., 2014. Nonstructural carbon in woody plants. Annu. Rev. Plant. Biol., 65, 667-687.

[14]

China, Meteorologicaldministration, A.Meteorological data set description file format standard (draft for review).China, Meteorological, Administration (CM, A). https://www.resdc.cn/. [Dataset]

[15]

Ding, Y., Liu, Y., Xu, Y., Wu, P., Xue, T., Wang, J., Shi, Y., Zhang, Y., Song, Y., Wang, P., 2023. Regional responses to global climate change: progress and prospects for trend, causes, and projection of climatic warming-wetting in Northwest China. Adv. Earth Sci. 38, 551–562 (in Chinese).

[16]

Dong, C, MacDonald, G. M., Willis, K, Gillespie, T. W., Okin, G. S., Williams, A. P., 2019. Vegetation responses to 2012–2016 drought in northern and southern California. Geophys. Res. Lett., 46(7), 3810-3821.

[17]

Dreesen, F. E., De Boeck, H. J., Janssens, I. A., Nijs, I., 2014. Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages. Biogeosciences 11(1), 109-121.

[18]

Feng, S, Hao, Z, Wu, X, Zhang, X, Hao, F., 2021. A multi-index evaluation of changes in compound dry and hot events of global maize areas. J. Hydrol., 602, 126728.

[19]

Feng, S, Hu, Q, Qian, W., 2004. Quality control of daily meteorological data in China, 1951–2000: a new dataset. Int. J. Climatol., 24(7), 853-870.

[20]

Feng, S, Wu, X, Hao, Z, Hao, Y, Zhang, X, Hao, F., 2020. A database for characteristics and variations of global compound dry and hot events. Weather Clim. Extremes 30, 100299.

[21]

Feng, Y, Wang, H, Sun, F, Liu, W., 2023. Dependence of compound hot and dry extremes on individual ones across China during 1961–2014. Atmos. Res., 283, 106553.

[22]

Forzieri, G, Dakos, V, McDowell, N. G., Ramdane, A, Cescatti, A., 2022. Emerging signals of declining forest resilience under climate change. Nature 608(7923), 534-539.

[23]

Frank, D, Reichstein, M, Bahn, M, Thonicke, K, Frank, D, Mahecha, M. D., Smith, P, van der Velde, M, Vicca, S, Babst, F, Beer, C, Buchmann, N, Canadell, J. G., Ciais, P, Cramer, W, Ibrom, A, Miglietta, F, Poulter, B, Rammig, A, Seneviratne, S. I., Walz, A, Wattenbach, M, Zavala, M. A., Zscheischler, J., 2015. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol., 21(8), 2861-2880.

[24]

Friedl, M., Sulla-Menashe, D., 2015. MCD12Q1 MODIS/Terra + Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid: NASA LP DAAC. https://ladsweb.modaps.eosdis.nasa.gov/. [Dataset]

[25]

Gampe, D, Zscheischler, J, Reichstein, M, O'Sullivan, M, Smith, W. K., Sitch, S, Buermann, W., 2021. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11(9), 772-779.

[26]

Gazol, A, Camarero, J. J., Vicente-Serrano, S. M., Sanchez-Salguero, R, Gutierrez, E, de Luis, M, Sanguesa-Barreda, G, Novak, K, Rozas, V, Tiscar, P. A., Linares, J. C., Martin-Hernandez, E, Martinez Del Castillo, M, Ribas, I, Garcia-Gonzalez, F, Silla, A, Camison, M, Genova, N, Olano, J. M., Longares, L. A., Hevia, A, Tomas-Burguera, M, Galvan, J. D., 2018. Forest resilience to drought varies across biomes. Glob. Change Biol., 24(5), 2143-2158.

[27]

Ge, W, Li, X, Xie, M, Yu, B, Jiao, J, Han, J, Wang, F., 2023. Quantitative evaluation of drought risk related to vegetation productivity in China. J. Hydrol., 623, 129877.

[28]

Guo, T, Tian, C, Chen, C, Duan, Z, Zhu, Q, Sun, L. Z., 2020. Growth and carbohydrate dynamic of perennial ryegrass seedlings during PEG-simulated drought and subsequent recovery. Plant Physiol. Biochem., 154, 85-93.

[29]

Hao, Y, Hao, Z, Fu, Y, Feng, S, Zhang, X, Wu, X, Hao, F., 2021. Probabilistic assessments of the impacts of compound dry and hot events on global vegetation during growing seasons. Environ. Res. Lett., 16(7), 074055.

[30]

Hao, Z, Hao, F, Singh, V. P., Zhang, X., 2018. Changes in the severity of compound drought and hot extremes over global land areas. Environ. Res. Lett., 13(12), 124022.

[31]

He, S, Zhang, Y, Ma, N, Tian, J, Kong, D, Liu, C., 2022. A daily and 500 m coupled evapotranspiration and gross primary production product across China during 2000–2020. Earth Syst. Sci. Data., 14(12), 5463-5488.

[32]

He, P, Ma, X, Sun, Z, Han, Z, Ma, S, Meng, X., 2022. Compound drought constrains gross primary productivity in Chinese grasslands. Environ. Res. Lett., 17(10), 104054.

[33]

Herrmann, S. M., Didan, K, Barreto-Munoz, A, Crimmins, M. A., 2016. Divergent responses of vegetation cover in Southwestern US ecosystems to dry and wet years at different elevations. Environ. Res. Lett., 11(12), 124005.

[34]

Hossain, M. L., Li, J., 2021. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Glob. Ecol. Conserv., 30, e01768.

[35]

Jarvis, A, Reuter, H. I., Nelson, A, Guevara, E., 2008. Hole-Filled Seamless SRTM Data V4 [Online]. International Centre for Tropical Agriculture (CIAT)

[36]

Jiao, T, Williams, C. A., De Kauwe, M. G., Schwalm, C. R., Medlyn, B. E., 2021. Patterns of post-drought recovery are strongly influenced by drought duration, frequency, post-drought wetness, and bioclimatic setting. Glob. Change Biol., 27(19), 4630-4643.

[37]

Jones, M. C., 1992. [book review] Applied Nonparametric Regression. By W. Härdle. ISBN 0521382483. Cambridge University Press, Cambridge, 1990. J. R. Stat. Soc. Ser. C Appl. Stat, 41 (2) , pp. 431-432. doi: 10.2307/2347575.

[38]

Li, X, Li, Y, Chen, A, Gao, M, Slette, I. J., Piao, S. 2019. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric. For. Meteorol., 269-270, pp.239-248.

[39]

Li, L, Zhang, Y, Wu, J, Li, S, Zhang, B, Zu, J, Zhang, H, Ding, M, Paudel, B., 2019. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total. Environ., 678, 21-29.

[40]

Li, P, Zhu, D, Wang, Y, Liu, D., 2020. Elevation dependence of drought legacy effects on vegetation greenness over the Tibetan Plateau. Agric. For. Meteorol., 295, 108190.

[41]

Li, X, You, Q, Ren, G, Wang, S, Zhang, Y, Yang, J, Zheng, G., 2018. Concurrent droughts and hot extremes in northwest China from 1961 to 2017. Int. J. Climatol., 39(4), 2186-2196.

[42]

Liu, L, Gudmundsson, L, Hauser, M, Qin, D, Li, S, Seneviratne, S. I., 2019. Revisiting assessments of ecosystem drought recovery. Environ. Res. Lett., 14(11), 114028.

[43]

Lobell, D. B., Bala, G, Duffy, P. B., 2006. Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett., 33(6), L06708.

[44]

Machado-Silva, F, Peres, L. F., Gouveia, C. M., Enrich-Prast, A, Peixoto, R. B., Pereira, J. M. C., Marotta, H, Fernandes, P. J. F., Libonati, R., 2021. Drought resilience debt drives NPP decline in the Amazon forest. Glob. Biogeochem. Cycle., 35 (9)

[45]

Manning, C, Widmann, M, Bevacqua, E, Van Loon, A. F., Maraun, D, Vrac, M., 2019. Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013). Environ. Res. Lett., 14(9), 094006.

[46]

Martínez-Vilalta, J, Lloret, F., 2016. Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. Glob. Planet. Change 144, 94-108.

[47]

Mazdiyasni, O, AghaKouchak, A., 2015. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. U.S.A., 112(37), 11484-11489.

[48]

Miralles, D. G., Gentine, P, Seneviratne, S. I., Teuling, A. J., 2019. Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann. N.Y. Acad. Sci., 1436(1), 19-35.

[49]

Ning, G, Luo, M, Zhang, Q, Wang, S, Liu, Z, Yang, Y, Wu, S, Zeng, Z., 2021. Understanding the mechanisms of summer extreme precipitation events in Xinjiang of arid northwest China. J. Geophys. Res.: Atmos., 126 (15)

[50]

Pepin, N, Bradley, R. S., Diaz, H. F., Baraer, M, Caceres, E. B., Forsythe, N, Williamson, S. N., Yang, D. Q., Fowler, H, Liu, X. D., Miller, J. R., Ning, L, Ohmura, A, Palazzi, E, Rangwala, I, Schöner, W, Severskiy, I, Wang, M. B., 2015. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5(5), 424-430.

[51]

Piao, S, Cui, M, Chen, A, Wang, X, Ciais, P, Liu, J, Tang, Y., 2011. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol., 151(12), 1599-1608.

[52]

Piao, S, Yue, C, Ding, J, Guo, Z., 2022. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy. Sci. China: Earth Sci., 65(6), 1178-1186.

[53]

Rosbakh, S, Leingärtner, A, Hoiss, B, Krauss, J, Steffan-Dewenter, I, Poschlod, P., 2017. Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient. Front. Plant. Sci., 8, 01478.

[54]

Ru, J, Wan, S, Hui, D, Song, J., 2023. Overcompensation of ecosystem productivity following sustained extreme drought in a semiarid grassland. Ecology 104(4), e3997.

[55]

Schwalm, C. R., Anderegg, W. R. L., Michalak, A. M., Fisher, J. B., Biondi, F, Koch, G, Litvak, M, Ogle, K, Shaw, J. D., Wolf, A, Huntzinger, D. N., Schaefer, K, Cook, R, Wei, Y, Fang, Y, Hayes, D, Huang, M, Jain, A, Tian, H., 2017. Global patterns of drought recovery. Nature 548(7666), 202-205.

[56]

Seneviratne, S. I., Corti, T, Davin, E. L., Hirschi, M, Jaeger, E. B., Lehner, I, Orlowsky, B, Teuling, A. J., 2010. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev., 99(3-4), 125-161.

[57]

Shi, Y, Shen, Y, Li, D, Zhang, G, Ding, Y, Hu, R, Kang, E., 2003. Discussion on the present climate change from warm-dry to warm-wet in northwest China. Quat. Sci., 23(2), 152-164.

[58]

Smith, T, Traxl, D, Boers, N., 2022. Empirical evidence for recent global shifts in vegetation resilience. Nat. Clim. Change 12(5), 477-484.

[59]

Tao, J, Xu, T, Dong, J, Yu, X, Jiang, Y, Zhang, Y, Huang, K, Zhu, J, Dong, J, Xu, Y, Wang, S., 2017. Elevation-dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982–2013. Int. J. Climatol., 38(4), 2029-2038.

[60]

Tavakol, A, Rahmani, V, Harrington Jr, J., 2020. Probability of compound climate extremes in a changing climate: a copula-based study of hot, dry, and windy events in the central United States. Environ. Res. Lett., 15(10), 104058.

[61]

Tilman, D., 1995. Biodiversity: population versus ecosystem stability. Ecology 77(2), 350-363.

[62]

Trenberth, K. E., Dai, A, van der Schrier, G, Jones, P. D., Barichivich, J, Briffa, K. R., Sheffield, J., 2013. Global warming and changes in drought. Nat. Clim. Change 4(1), 17-22.

[63]

Tschumi, E, Lienert, S, van der Wiel, K, Joos, F, Zscheischler, J., 2022. The effects of varying drought-heat signatures on terrestrial carbon dynamics and vegetation composition. Biogeosciences 19(7), 1979-1993.

[64]

van der Molen, M. K., Dolman, A. J., Ciais, P, Eglin, T, Gobron, N, Law, B. E., Meir, P, Peters, W, Phillips, O. L., Reichstein, M, Chen, T, Dekker, S. C., Doubková, M, Friedl, M. A., Jung, M, van den Hurk, B. J. J. M., de Jeu, R. A. M., Kruijt, B, Ohta, T, Rebel, K. T., Plummer, S, Seneviratne, S. I., Sitch, S, Teuling, A. J., van der Werf, G. R., Wang, G., 2011. Drought and ecosystem carbon cycling. Agric. For. Meteorol., 151(7), 765-773.

[65]

Vicente-Serrano, S. M., Gouveia, C, Camarero, J. J., Begueria, S, Trigo, R, Lopez-Moreno, J. I., Azorin-Molina, C, Pasho, E, Lorenzo-Lacruz, J, Revuelto, J, Moran-Tejeda, E, Sanchez-Lorenzo, A., 2013. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. U.S.A., 110(1), 52-57.

[66]

von Buttlar, J, Zscheischler, J, Rammig, A, Sippel, S, Reichstein, M, Knohl, A, Jung, M, Menzer, O, Arain, M. A., Buchmann, N, Cescatti, A, Gianelle, D, Kiely, G, Law, B. E., Magliulo, V, Margolis, H, McCaughey, H, Merbold, L, Migliavacca, M, Montagnani, L, Oechel, W, Pavelka, M, Peichl, M, Rambal, S, Raschi, A, Scott, R. L., Vaccari, F. P., van Gorsel, E, Varlagin, A, Wohlfahrt, G, Mahecha, M. D., 2018. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones. Biogeosciences 15(5), 1293-1318.

[67]

Walter, J, Nagy, L, Hein, R, Rascher, U, Beierkuhnlein, C, Willner, E, Jentsch, A., 2011. Do plants remember drought? Hints towards a drought-memory in grasses. Environ. Exp. Bot., 71(1), 34-40.

[68]

Wang, S, Guo, L, He, B, lyu, Y, Li, T., 2020. The stability of Qinghai-Tibet Plateau ecosystem to climate change. Phys. Chem. Earth 115, 102827.

[69]

Wu, C, Zhong, L, Yeh, P. J. F., Gong, Z, Lv, W, Chen, B, Zhou, J, Li, J, Wang, S., 2024. An evaluation framework for quantifying vegetation loss and recovery in response to meteorological drought based on SPEI and NDVI. Sci. Total Environ., 906, 167632.

[70]

Wu, P, Ding, Y, Liu, Y, Li, X., 2019. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China. Int. J. Climatol., 39(14), 5241-5255.

[71]

Wu, X, Hao, Z, Hao, F, Zhang, X., 2019. Variations of compound precipitation and temperature extremes in China during 1961–2014. Sci. Total. Environ., 663, 731-737.

[72]

Wu, X, Jiang, D., 2022. Probabilistic impacts of compound dry and hot events on global gross primary production. Environ. Res. Lett., 17(3), 034049.

[73]

Xu, H-J, X-Wang, P, C-Zhao, Y, X-Yang, M., 2018. Diverse responses of vegetation growth to meteorological drought across climate zones and land biomes in northern China from 1981 to 2014. Agric. For. Meteorol., 262, 1-13.

[74]

Yang, K, Wu, H, Qin, J, Lin, C, Tang, W, Chen, Y., 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob. Planet. Change 112, 79-91.

[75]

Yang, Y, Feng, Z, Huang, H. Q., Lin, Y., 2008. Climate-induced changes in crop water balance during 1960–2001 in Northwest China. Agric. Ecosyst. Environ., 127(1-2), 107-118.

[76]

Yao, Y, Fu, B, Liu, Y, Li, Y, Wang, S, Zhan, T, Wang, Y, Gao, D., 2022. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agric. For. Meteorol., 314, 108809.

[77]

Yao, Y, Liu, Y, Zhou, S, Song, J, Fu, B., 2023. Soil moisture determines the recovery time of ecosystems from drought. Glob. Change Biol., 29(13), 3562-3574.

[78]

Yin, J, Gentine, P, Slater, L, Gu, L, Pokhrel, Y, Hanasaki, N, Guo, S, Xiong, L, Schlenker, W., 2023. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustain., 6(3), 259-272.

[79]

Yu, R, Zhai, P., 2020. More frequent and widespread persistent compound drought and heat event observed in China. Sci. Rep., 10(1), 14576.

[80]

Zhang, Y, Hong, S, Liu, D, Piao, S., 2023. Susceptibility of vegetation low-growth to climate extremes on Tibetan Plateau. Agric. For. Meteorol., 331, 109323.

[81]

Zhang, H, Li, Y, Gao, X., 2009. Potential impacts of land-use on climate variability and extremes. Adv. Atmos. Sci., 26(5), 840-854.

[82]

Zhang, Q, Lin, J, Liu, W, Han, L., 2019. Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of Northwest China during the flood season. Sci. China: Earth Sci., 62(12), 2083-2098.

[83]

Zhang, Q, Yang, J, Wang, P, Yu, H, Yue, P, Liu, X, Lin, J, Duan, X, Zhu, B, Yan, X., 2022. Progress and prospect on climate warming and humidification in Northwest China. Chin. Sci. Bull., 68(14), 1814-1828.

[84]

Zhang, Q, Yang, J, Duan, X, Ma, P, Lu, G, Zhu, B, Liu, X, Yue, P, Wang, Y, Liu, W., 2022. The eastward expansion of the climate humidification trend in northwest China and the synergistic influences on the circulation mechanism. Clim. Dyn., 59(7-8), 2481-2497.

[85]

Zhang, M, Dong, B, Schiemann, R, Robson, J., 2023. Summer compound heatwaves over China: projected changes at different global warming levels and related physical processes. Clim. Dyn., 62(3), 1887-1907.

[86]

Zhang, X, Hegerl, G, Zwiers, F. W., Kenyon, J., 2005. Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Clim., 18(11), 1641-1651.

[87]

Zhang, Y, Xiao, X, Zhou, S, Ciais, P, McCarthy, H, Luo, Y., 2016. Canopy and physiological controls of GPP during drought and heat wave. Geophys. Res. Lett., 43(7), 3325-3333.

[88]

Zhu, R, Wu, X, Zhang, W, He, J, Qin, Y, Li, Z, Shen, Y., 2024. Seasonally extreme temperature events accelerate in arid northwestern China during 1979–2018. Atmos. Res., 300, 107230.

[89]

Zhang, S, Yang, Y, Wu, X, Li, X, Shi, F., 2021. Postdrought recovery time across global terrestrial ecosystems. J. Geophys. Res.: Biogeosci., 126(6), e2020JG005699.

[90]

Zhu, H, Jiang, Z, Li, L., 2021. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull., 66(24), 2528-2537.

[91]

Zhu, Z, Piao, S, Myneni, R. B., Huang, M, Zeng, Z, Canadell, J. G., Ciais, P, Sitch, S, Friedlingstein, P, Arneth, A, Cao, C, Cheng, L, Kato, E, Koven, C, Li, Y, Lian, X, Liu, Y, Liu, R, Mao, J, Pan, Y, Peng, S, Peñuelas, J, Poulter, B, M, T. APugh, , Stocker, B. D., Viovy, N, Wang, X, Wang, Y, Xiao, Z, Yang, H, Zaehle, S, Zeng, N., 2016. Greening of the Earth and its drivers. Nat. Clim. Change 6(8), 791-795.

[92]

Zscheischler, J, Westra, S, van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A, AghaKouchak, A, Bresch, D. N., Leonard, M, Wahl, T, Zhang, X., 2018. Future climate risk from compound events. Nat. Clim. Change 8(6), 469-477.

PDF

380

Accesses

0

Citation

Detail

Sections
Recommended

/