Trees support functional soils in a dryland agricultural area

Jingyi Ding , David J. Eldridge

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) : 588 -596.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) :588 -596. DOI: 10.1016/j.geosus.2024.08.001
Research Article
review-article

Trees support functional soils in a dryland agricultural area

Author information +
History +
PDF

Abstract

Trees provide multiple ecosystem services such as carbon sequestration, hydrological regulation and habitat for arboreal animals. However, they are often removed to support agricultural enterprises. Despite the importance of tree remnants, we know relatively little about how soils differ across sites of varying condition. Here, we describe a study where we examined the relative effects of trees, compared with unvegetated interspaces, on soil functions in remnant patches at sites in good and poor condition in two eucalypt communities in an irrigation area in eastern Australia. We found that, in general, carbon and nutrient cycling were relatively greater beneath trees, and in surface soils, but there were no clear trends in relation to site condition. The values of most soil attributes (e.g., soluble and exchangeable cations, nitrogen, phosphorus) were greater beneath trees, indicating strong fertile island effects in both communities. Overall, our study confirms the importance of trees in remnant patches in agricultural landscapes, particularly those in sites of poor condition. It also suggests that soil processes may still be relatively intact, even in sites in poor condition. Our study reinforces the need to protect trees in remnant woodland reserves to maintain critical ecosystem functions related to nutrient retention. These remnants are important for achieving sustainable management of agricultural systems.

Keywords

Condition / Eucalyptus / Fertile islands / Soil function / Trees / Woodlands

Cite this article

Download citation ▾
Jingyi Ding, David J. Eldridge. Trees support functional soils in a dryland agricultural area. Geography and Sustainability, 2024, 5(4): 588-596 DOI:10.1016/j.geosus.2024.08.001

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jingyi Ding: Writing – review & editing, Writing – original draft, Formal analysis. David J. Eldridge: Writing – review & editing, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Lilian Parker, Rob Kelly, Louise Harrison and Karen McCann, formerly of Murrumbidgee Irrigation, for supporting this work and encouraging us to publish the results. John Naimo and James Val assisted with field work. We are grateful to the contributing landholders for allowing us access to their properties. Andres Sutton produced Fig. 1(a). Jingyi Ding is supported by the Fundamental Research Funds for the Central Universities of China and David Eldridge by the Hermon Slade Foundation.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.08.001.

References

[1]

Amiotti, N. M., Zalba, P, Sanchez, L. F., Peinemann, N., 2000. The impact of single trees on properties of loess-derived grassland soils in Argentina. Ecology 81, 3283-3290.

[2]

Anderson, M. J., Gorley, R. N., Clarke, K. R., 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, Plymouth Marine Laboratory, Plymouth, UK, p. 214

[3]

Armas, C, Ordiales, R, Pugnaire, F. I., 2004. Measuring plant interactions: a new comparative index. Ecology 85, 2682-2686.

[4]

Barnes, P, Wilson, B. R., Reid, N, Lockwood, P, Koen, T, Lamb, D., 2011. Litter and associated nutrient pools extend beyond the canopy of scattered eucalypt trees in temperate pastures. Plant Soil 345, 339-352.

[5]

Bowman, G. M., Hutka, J. 2002. Particle size analysis. N. McKenzie, K. Coughlan, H. Cresswell (Eds.), Soil Physical Measurement and Interpretation for Land Evaluation, CSIRO Publishing, Victoria, pp.224-239.

[6]

Dorrough, J, Moxham, C., 2005. Eucalypt establishment in agricultural landscapes and implications for landscape-scale restoration. Biol. Conserv., 123, 55-66.

[7]

Cadavid-Florez, L, Laborde, J, Mclean, D. J., 2020. Isolated trees and small woody patches greatly contribute to connectivity in highly fragmented tropical landscapes. Landsc. Urban Plan., 196, 103745.

[8]

Catelotti, K, Kingsford, R. T., Bino, G, Bacon, P., 2015. Inundation requirements for persistence and recovery of river red gums (Eucalyptus camaldulensis) in semi-arid Australia. Biol. Conserv., 184, 346-356.

[9]

Chen, L, Liu, C, Zhang, L, Zou, R, Zhang, Z., 2017. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Sci. Rep., 7, 3206.

[10]

Colloff, M. J., Pullen, K. R., Cunningham, S. A., 2010. Restoration of an ecosystem function to revegetation communities: the role of invertebrate macropores in enhancing soil water infiltration. Restor. Ecol., 18, 65-72.

[11]

Commonwealth Environmental Water Office, 2020. Water Management Plan 2020-21. Commonwealth of Australia.

[12]

de Soyza, A. G., Whitford, W. G., Martinez-Meza, E, Van Zee, J. W., 1997. Variation in creosotebush (Larrea tridentata) canopy morphology in relation to habitat, soil fertility and associated annual plant communities. Am. Midl. Nat., 137, 13-26.

[13]

Dean, W. R. J., Milton, S. J., Jeltsch, F., 1999. Large trees, fertile islands, and birds in arid savanna. J. Arid Environ., 41, 61-78.

[14]

Delgado-Baquerizo, M, Maestre, F. T., Eldridge, D. J., Bowker, M. A., Jeffries, T. C., Singh, B. K., 2018. Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: observational evidence from three continents. New Phytol., 220, 824-835.

[15]

Delnevo, N, van Etten, E. J., Byrne, M, Petraglia, A, Carbognani, M, Stock, W. D., 2020. Habitat fragmentation restricts insect pollinators and pollen quality in a threatened Proteaceae species. Biol. Conserv., 252, 108824.

[16]

Eldridge, D. J., 2002. Condition and biodiversity of vegetation remnants in the Murrumbidgee Irrigation Area. A baseline survey and recommendations for future monitoring, Murrumbidgee Irrigation, Griffith, p. 2002

[17]

Ding, J, Eldridge, D. J., 2020. The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant Soil 459, 173-183.

[18]

Eldridge, D. J., Freudenberger, D., 2005. Ecosystem wicks: woodland trees enhance water infiltration in a fragmented agricultural landscape in eastern Australia. Austral. Ecol., 30, 336-347.

[19]

Eldridge, D. J., Rath, D., 2002. Hip holes: kangaroo (Macropus spp.) resting sites modify the physical and chemical environment of woodland soils. Austral. Ecol., 27, 527-536.

[20]

Eldridge, D. J., Reed, S, Travers, S. K., Bowker, M. A., Maestre, F. T., Ding, J, Havrilla, C, Rodriguez-Caballero, E, Barger, N, Weber, B, Antoninka, A, Belnap, J, Chaudhary, B, Faist, A, Ferrenberg, S, Huber-Sannwald, E, Malam Issa, O, Zhao, Y., 2020. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Change Biol., 26, 6003-6014.

[21]

Eldridge, D. J., Wong, V. N., 2005. Clumped and isolated trees influence soil nutrient levels in an Australian temperate box wood land. Plant Soil 270, 331-342.

[22]

Eldridge, D. J., Freudenberger, D, Koen, T. B., 2006. Diversity and abundance of biological soil crust taxa in relation to fine and coarse-scale disturbances in a grassy eucalypt woodland in eastern Australia. Plant Soil 281, 255-268.

[23]

Eldridge, D. J., Koen, T. B., Harrison, L., 2007. Plant composition of three woodland communities of variable condition in the western Riverina, New South Wales, Australia. Cunninghamia 10, 189-198.

[24]

Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Ann. Rev. Ecol. Evol. Syst., 34, 487-515.

[25]

Firn, J, Erskine, P. D., Lamb, D., 2007. Woody species diversity influences productivity and soil nutrient availability in tropical plantations. Oecologia 154, 521-533.

[26]

Gibson-Roy, P., 2023. Limitations and successes for grassy community restoration: an Australian perspective. Glob. Ecol. Conserv., 47, p. e02644. doi: 10.1016/j.gecco.2023.e02644.

[27]

Jobbágy, E. G., Jackson, R. B., 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53, 51-77.

[28]

Jones, D. L., Willett, V. B., 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem., 38, 991-999.

[29]

Kath, J, Reardon-Smith, K, Le Brocque, A. F., Dyer, F. J., Dafny, E, Fritz, L, Batterham, M., 2014. Groundwater decline and tree change in floodplain landscapes: identifying non-linear threshold responses in canopy condition. Glob. Ecol. Conserv., 2, 148-160.

[30]

Kyle, G, Duncan, D. H., 2012. Arresting the rate of land clearing: change in woody native vegetation cover in a changing agricultural landscape. Landsc. Urban Plan., 106, 165-173.

[31]

Lumsden, L. F., Bennett, A. F., 2005. Scattered trees in rural landscapes: foraging habitat for insectivorous bats in south-eastern Australia. Biol. Conserv., 122, 205-222.

[32]

Maestre, F. T., Quero, J. L., Gotelli, N. J., Escudero, A, Ochoa, V, Delgado-Baquerizo, M, García-Gómez, M, Bowker, M. A., Soliveres, S, Escolar, C, García-Palacios, P, Berdugo, M, Valencia, E, Gozalo, B, Gallardo, A, Aguilera, L, Arredondo, T, Blones, J, Boeken, B, Bran, D, Conceição, A. A., Cabrera, O, Chaieb, M, Derak, M, Eldridge, D. J., Espinosa, C. I., Florentino, A, Gaitán, J, Gabriel Gatica, M, Ghiloufi, W, Gómez-González, S, Gutiérrez, J. R., Hernández, R. M., Huang, X, Huber-Sannwald, E, Jankju, M, Miriti, M, Monerris, J, Mau, R. L., Morici, E, Naseri, K, Ospina, A, Polo, V, Prina, A, Pucheta, E, Ramírez-Collantes, D. A., Romão, R, Tighe, M, Torres-Díaz, C, Val, J, Veiga, J. P., Wang, D, Zaady, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214-218.

[33]

Nadrowski, K, Wirth, C, Scherer-Lorenzen, M., 2010. Is forest diversity driving ecosystem function and service?. Curr. Opin. Environ. Sustain., 2, 75-79.

[34]

Nelson, D. W., Sommers, L. E. 1982. Total carbon, organic carbon and organic matter. A.L. Page, R.H. Miller, D.R. Keeney (Eds.), Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, Second Edition, Soil Science Society of America, USA, pp.539-558.

[35]

Ochoa-Hueso, R, Eldridge, D. J., Delgado-Baquerizo, M, Soliveres, S, Bowker, M. A., Gross, N, Le Bagousse-Pinguet, Y, Quero, J. L., García-Gómez, M, Valencia, E, Arredondo, T, Beinticinco, L, Bran, D, Cea, A, Coaguila, D, Dougill, A. J., Espinosa, C. I., Gaitán, J, Guuroh, R. T., Guzman, E, Gutiérrez, J. R., Hernández, R. M., Huber-Sannwald, E, Jeffries, T, Linstädter, A, Mau, R. L., Monerris, J, Prina, A. O., Pucheta, E, Stavi, I, Thomas, A. D., Zaady, E, Singh, B. K., Maestre, F. T., 2018. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol., 106, 242-253.

[36]

Prober, S. M., Thiele, K. R., Lunt, I. D., 2002. Identifying ecological barriers to restoration in temperate grassy woodlands: soil changes associated with different degradation states. Aust. J. Bot., 50, 699-712.

[37]

Prober, S. M., Gosper, C. R., Gilfedder, L, Harwood, T, hiele, K. R., Williams, K, Yates, C. J. 2017. Temperate eucalypt woodlands. D.A. Keith (Ed.), Australian Vegetation, Cambridge University Press, Cambridge, pp.410-437.

[38]

R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

[39]

Rhoades, C. C., 1997. Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agroforest. Syst., 35, 71-74.

[40]

Robinson, D, Traill, B. J., 1996. Conserving woodland birds in the wheat and sheep belts of southern Australia. RAOU Conservation Statement No. 10 (Birds Australia, Melbourne), RAOU Conservation Committee

[41]

Smith, R, Tongway, D. J., Tighe, M. K., Reid, N., 2015. When does organic carbon induce aggregate stability in vertosols?. Agric. Ecosyst. Environ., 201, 92-100.

[42]

Tongway, D. J., Ludwig, J. A., 1994. Small-scale resource heterogeneity in semi-arid landscapes. Pac. Conserv. Biol., 1, 201-208.

[43]

Vesk, P. A., Morris, W. K., McCallum, W, Apted, R, Miles, C., 2016. Processes of woodland eucalypt regeneration: lessons from the bush returns trial. Proc. Royal Soc. Vic., 128, 54-63.

[44]

Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B., Samson-Liebig, S. E., 2002. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Altern. Agric., 18, 1-15.

[45]

Yates, C. J., Hobbs, R. J., 1997. Temperate Eucalypt woodlands: a review of their status, processes threatening their persistence and techniques for restoration. Aust. J. Bot., 45, 949-973.

PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

/