Gap dynamics in the U.S. between urban areas in the current trend and in sustainable scenario

Haoyu Wang , Xiuyuan Zhang , Shihong Du , Yuyu Zhou , Donghai Wu , Qian Wang , Lubin Bai , Bo Liu , Shuping Xiong

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100217

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100217 DOI: 10.1016/j.geosus.2024.07.008
Research Article
review-article

Gap dynamics in the U.S. between urban areas in the current trend and in sustainable scenario

Author information +
History +
PDF

Abstract

The gap between the projected urban areas in the current trend (UAC) and those in the sustainable scenario (UAS) is a critical factor in understanding whether cities can fulfill the requirements of sustainable development. However, there is a paucity of knowledge on this cutting-edge topic. Given the extensive and rapid urbanization in the United States (U.S.) over the past two centuries, accurately measuring this gap between UAS and UAC is of critical importance for advancing future sustainable urban development, as well as having significant global implications. This study finds that although the 740 U.S. cities have a large UAC in 2100, these cities will encompass a significant gap from UAC to UAS (approximately 165,000 km²), accounting for 30 % UAC at that time. The study also reveals the spatio-temporal heterogeneity of the gap. The gap initially increases before reaching a inflection point in 2090, and it disparates greatly from −100 % to 240 % at city level. While cities in the Northwestern U.S. maintain UAC that exceeds UAS from 2020 to 2100, cities in other regions shift from UAC that exceeds UAS to UAC that falls short of UAS. Filling the gap without additional urban growth planning could lead to a reduction of crop production ranging from 0.3 % to 3 % and a 0.68 % loss of biomass. Hence, dynamic and forward-looking urban planning is essential for addressing the challenges of sustainable development posed by urbanization, both within the U.S. and globally.

Keywords

Urban areas in the current trend / Urban areas in the sustainable scenario / Urban gap dynamics / Urban sustainability

Cite this article

Download citation ▾
Haoyu Wang, Xiuyuan Zhang, Shihong Du, Yuyu Zhou, Donghai Wu, Qian Wang, Lubin Bai, Bo Liu, Shuping Xiong. Gap dynamics in the U.S. between urban areas in the current trend and in sustainable scenario. Geography and Sustainability, 2025, 6(1): 100217 DOI:10.1016/j.geosus.2024.07.008

登录浏览全文

4963

注册一个新账户 忘记密码

Code availability

The code used in this research can be found at Zenodo (https://doi.org/10.5281/zenodo.8401318)

CRediT authorship contribution statement

Haoyu Wang: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Xiuyuan Zhang: Writing – review & editing, Writing – original draft, Validation, Supervision, Resources, Project administration, Methodology, Funding acquisition, Formal analysis, Conceptualization. Shihong Du: Writing – review & editing, Writing – original draft, Supervision, Resources, Project administration, Investigation, Funding acquisition, Conceptualization. Yuyu Zhou: Writing – original draft, Supervision, Methodology, Formal analysis, Conceptualization. Donghai Wu: Writing – review & editing, Methodology, Formal analysis, Conceptualization. Qian Wang: Methodology, Formal analysis, Data curation. Lubin Bai: Visualization, Formal analysis. Bo Liu: Visualization, Formal analysis. Shuping Xiong: Visualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants No. 42330103, 42271469), and by the Ningbo Science and Technology Bureau (Grant No. 2022Z081).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.07.008.

References

[1]

Acuto, M, Parnell, S, Seto, K. C., 2018. Building a global urban science. Nat. Sustain., 1, 2-4.

[2]

Akbari, H, Menon, S, Rosenfeld, A., 2009. Global cooling: increasing world-wide urban albedos to offset CO2. Clim. Change 94, 275-286.

[3]

Albino, V, Berardi, U, Dangelico, R. M., 2015. Smart cities: definitions, dimensions, performance, and initiatives. J. Urban Technol., 22, 3-21.

[4]

Angel, S, Arango Franco, S, Liu, Y, Blei, A. M., 2020. The shape compactness of urban footprints. Prog. Plann., 139, 100429.

[5]

Bai, Y, Wong, C. P., Jiang, B, Hughes, A. C., Wang, M, Wang, Q., 2018. Developing China's ecological redline policy using ecosystem services assessments for land use planning. Nat. Commun., 9, 3034.

[6]

Bettencourt, L. M. A., Lobo, J, Helbing, D, Kühnert, C, West, G. B., 2007. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. U.S.A., 104, 7301-7306.

[7]

Carlino, G, Kerr, W. R. 2015. Chapter 6 - Agglomeration and innovation. G. Duranton, J.V. Henderson, W.C. Strange (Eds.), Handbook of Regional and Urban Economics, Elsevier, pp.349-404.

[8]

Chauvin, J. P., Glaeser, E, Ma, Y, Tobio, K., 2017. What is different about urbanization in rich and poor countries? Cities in Brazil, China, India and the United States. J. Urban Econ., 98, 17-49.

[9]

Chen, C, Park, T, Wang, X, Piao, S, Xu, B, Chaturvedi, R. K., Fuchs, R, Brovkin, V, Ciais, P, Fensholt, R, Tømmervik, H, Bala, G, Zhu, Z, Nemani, R. R., Myneni, R. B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2, 122-129.

[10]

Chen, G, Li, X, Liu, X, Chen, Y, Liang, X, Leng, J, Xu, X, Liao, W, Qiu, Ya, Wu, Q, Huang, K., 2020. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun., 11, 537.

[11]

Chen, J, Gao, M, Cheng, S, Hou, W, Song, M, Liu, X, Liu, Y., 2022. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 9, 202.

[12]

Chen, H, Jia, B, Lau, S. S. Y., 2008. Sustainable urban form for Chinese compact cities: challenges of a rapid urbanized economy. Habitat Int., 32, 28-40.

[13]

Chen, Y, Li, X, Liu, X, Ai, B., 2014. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci., 28, 234-255.

[14]

Dellink, R, Chateau, J, Lanzi, E, Magné, B., 2017. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Change 42, 200-214.

[15]

Fan, P. 2022. Urban population dynamics. P. Fan (Ed.), The Great Urban Transition: Landscape and Environmental Changes from Siberia, Shanghai, to Saigon, Springer International Publishing, Cham, pp.53-74.

[16]

Feng, G, Tao, H, Zhuosen, W, Bardan, G, Yanmin, S, Jeffrey, G. M., Crystal, S, Christopher, W., 2014. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products. J. Appl. Remote Sens., 8, 083532.

[17]

Friedl, M., Gray, J., Sulla-Menashe, D., 2022. MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500 m SIN Grid. Land Processes Distributed Active Archive Center (LP DAAC), NASA.

[18]

Fu, X, Cheng, J, Peng, L, Zhou, M, Tong, D, Mauzerall, D. L., 2024. Co-benefits of transport demand reductions from compact urban development in Chinese cities. Nat. Sustain., 7, 294-304.

[19]

Gao, J, O'Neill, B. C., 2020. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun., 11, 2302.

[20]

Gong, P, Li, X, Wang, J, Bai, Y, Chen, B, Hu, T, Liu, X, Xu, B, Yang, J, Zhang, W, Zhou, Y., 2020. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ., 236, 111510.

[21]

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J, Bai, X, Briggs, J. M., 2008. Global change and the ecology of cities. Science 319, 756-760.

[22]

Güneralp, B, Zhou, Y, Ürge-Vorsatz, D, Gupta, M, Yu, S, Patel, P. L., Fragkias, M, Li, X, Seto, K. C., 2017. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl. Acad. Sci. U.S.A., 114, 8945-8950.

[23]

Hallegatte, S, Przyluski, V, Vogt-Schilb, A., 2011. Building world narratives for climate change impact, adaptation and vulnerability analyses. Nat. Clim. Change., 1, 151-155.

[24]

He, Q, Zeng, C, Xie, P, Tan, S, Wu, J., 2019. Comparison of urban growth patterns and changes between three urban agglomerations in China and three metropolises in the USA from 1995 to 2015. Sustain. Cities Soc., 50, 101649.

[25]

Henderson, J. V., 2010. Cities and development. J. Reg. Sci., 50, 515-540.

[26]

Jiang, B, Yin, J, Liu, Q., 2015. Zipf's law for all the natural cities around the world. Int. J. Geogr. Inf. Sci., 29, 498-522.

[27]

Jiang, L, O'Neill, B. C., Zoraghein, H, Dahlke, S., 2020. Population scenarios for U.S. states consistent with shared socioeconomic pathways. Environ. Res. Lett., 15, 094097.

[28]

Jiao, L., 2015. Urban land density function: a new method to characterize urban expansion. Landsc. Urban Plan., 139, 26-39.

[29]

Johnson, M. T. J., Munshi-South, J., 2017. Evolution of life in urban environments. Science 358, 8327.

[30]

Jones, C, Kammen, D. M., 2014. Spatial distribution of U.S. household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environ. Sci. Technol., 48, 895-902.

[31]

Kc, S, Lutz, W., 2017. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181-192.

[32]

Klopp, J. M., Petretta, D. L., 2017. The urban sustainable development goal: indicators, complexity and the politics of measuring cities. Cities 63, 92-97.

[33]

Kriegler, E, Edmonds, J, Hallegatte, S, Ebi, K. L., Kram, T, Riahi, K, Winkler, H, van Vuuren, D. P., 2014. A new scenario framework for climate change research: the concept of shared climate policy assumptions. Clim. Change 122, 401-414.

[34]

Kriegler, E, O'Neill, B. C., Hallegatte, S, Kram, T, Lempert, R. J., Moss, R. H., Wilbanks, T., 2012. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Glob. Environ. Change 22, 807-822.

[35]

Lambin, E. F., Meyfroidt, P., 2011. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. U.S.A., 108, 3465-3472.

[36]

Laursen, L., 2012. How future urban sprawl maps out. Nature . doi: 10.1038/nature.2012.11426.

[37]

Leimbach, M, Kriegler, E, Roming, N, Schwanitz, J., 2017. Future growth patterns of world regions – a GDP scenario approach. Glob. Environ. Change 42, 215-225.

[38]

Leyk, S, Uhl, J. H., 2018. HISDAC-US, historical settlement data compilation for the conterminous United States over 200 years. Sci. Data 5, 180175.

[39]

Leyk, S, Uhl, J. H., Connor, D. S., Braswell, A. E., Mietkiewicz, N, Balch, J. K., Gutmann, M., 2020. Two centuries of settlement and urban development in the United States. Sci. Adv., 6, 2937.

[40]

Li, X, Gong, P, Zhou, Y, Wang, J, Bai, Y, Chen, B, Hu, T, Xiao, Y, Xu, B, Yang, J, Liu, X, Cai, W, Huang, H, Wu, T, Wang, X, Lin, P, Li, X, Chen, J, He, C, Li, X, Yu, L, Clinton, N, Zhu, Z., 2020. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett., 15, 094044.

[41]

Li, X, Zhou, Y, Eom, J, Yu, S, Asrar, G. R., 2019. Projecting global urban area growth through 2100 based on historical time series data and future shared socioeconomic pathways. Earths Future 7, 351-362.

[42]

Li, X, Zhou, Y, Hejazi, M, Wise, M, Vernon, C, Iyer, G, Chen, W., 2021. Global urban growth between 1870 and 2100 from integrated high resolution mapped data and urban dynamic modeling. Commun. Earth Environ., 2, 201.

[43]

Liu, X, Huang, Y, Xu, X, Li, X, Li, X, Ciais, P, Lin, P, Gong, K, Ziegler, A. D., Chen, A, Gong, P, Chen, J, Hu, G, Chen, Y, Wang, S, Wu, Q, Huang, K, Estes, L, Zeng, Z., 2020. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain., 3, 564-570.

[44]

Liu, X, Liang, X, Li, X, Xu, X, Ou, J, Chen, Y, Li, S, Wang, S, Pei, F., 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan., 168, 94-116.

[45]

Liu, X, Wang, M., 2016. How polycentric is urban China and why? A case study of 318 cities. Landsc. Urban Plan., 151, 10-20.

[46]

Lutz, W, Kc, S., 2011. Global human capital: integrating education and population. Science 333, 587-592.

[47]

Lutz, W, Sanderson, W, Scherbov, S., 2008. The coming acceleration of global population ageing. Nature 451, 716-719.

[48]

Mace, G. M., Barrett, M, Burgess, N. D., Cornell, S. E., Freeman, R, Grooten, M, Purvis, A., 2018. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain., 1, 448-451.

[49]

McDonald, R. I., Mansur, A. V., Ascensão, F, Colbert, Ml, Crossman, K, Elmqvist, T, Gonzalez, A, Güneralp, B, Haase, D, Hamann, M, Hillel, O, Huang, K, Kahnt, B, Maddox, D, Pacheco, A, Pereira, H. M., Seto, K. C., Simkin, R, Walsh, B, Werner, A. S., Ziter, C., 2020. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain., 3, 16-24.

[50]

McPhearson, T, Parnell, S, Simon, D, Gaffney, O, Elmqvist, T, Bai, X, Roberts, D, Revi, A., 2016. Scientists must have a say in the future of cities. Nature 538, 165-166.

[51]

Montgomery, M. R., 2008. The urban transformation of the developing world. Science 319, 761-764.

[52]

Mulligan, G. F., 2013. Revisiting the urbanization curve. Cities 32, 113-122.

[53]

Oliver, T. H., Isaac, N. J. B., August, T. A., Woodcock, B. A., Roy, D. B., Bullock, J. M., 2015. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun., 6, 10122.

[54]

Olson, D. M., Dinerstein, E, Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I, Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y, Lamoreux, J. F., Wettengel, W. W., Hedao, P, Kassem, K. R., 2001. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933-938.

[55]

Ouyang, Z, Sciusco, P, Jiao, T, Feron, S, Lei, C, Li, F, John, R, Fan, P, Li, X, Williams, C. A., Chen, G, Wang, C, Chen, J., 2022. Albedo changes caused by future urbanization contribute to global warming. Nat. Commun., 13, 3800.

[56]

Portney, K., 2005. Civic engagement and sustainable cities in the United States. Public Adm. Rev., 65, 579-591.

[57]

UN-HABITAT, 2006. Meeting Development Goals in Small Urban Centres: Water and Sanitation in the World’s Cities 2006. United Nations Human Settlements Programme (UN-HABITAT).

[58]

Quegan, S, Le Toan, T, Chave, J, Dall, J, J-Exbrayat, F, Minh, D. H. T., Lomas, M, D'Alessandro, M. M., Paillou, P, Papathanassiou, K, Rocca, F, Saatchi, S, Scipal, K, Shugart, H, Smallman, T. L., Soja, M. J., Tebaldini, S, Ulander, L, Villard, L, Williams, M., 2019. The European Space Agency BIOMASS mission: measuring forest above-ground biomass from space. Remote Sens. Environ., 227, 44-60.

[59]

Ren, C, Zhou, X, Wang, C, Guo, Y, Diao, Y, Shen, S, Reis, S, Li, W, Xu, J, Gu, B., 2023. Ageing threatens sustainability of smallholder farming in China. Nature 616, 96-103.

[60]

Ren, Q, He, C, Huang, Q, Shi, P, Zhang, D, Güneralp, B., 2022. Impacts of urban expansion on natural habitats in global drylands. Nat. Sustain., 5, 869-878.

[61]

Riahi, K, van Vuuren, D. P., Kriegler, E, Edmonds, J, O'Neill, B. C., Fujimori, S, Bauer, N, Calvin, K, Dellink, R, Fricko, O, Lutz, W, Popp, A, Cuaresma, J. C., Kc, S, Leimbach, M, Jiang, L, Kram, T, Rao, S, Emmerling, J, Ebi, K, Hasegawa, T, Havlik, P, Humpenöder, F, Da Silva, L. A., Smith, S, Stehfest, E, Bosetti, V, Eom, J, Gernaat, D, Masui, T, Rogelj, J, Strefler, J, Drouet, L, Krey, V, Luderer, G, Harmsen, M, Takahashi, K, Baumstark, L, Doelman, J. C., Kainuma, M, Klimont, Z, Marangoni, G, Lotze-Campen, H, Obersteiner, M, Tabeau, A, Tavoni, M., 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153-168.

[62]

Sallis, J. F., Bull, F, Burdett, R, Frank, L. D., Griffiths, P, Giles-Corti, B, Stevenson, M., 2016. Use of science to guide city planning policy and practice: how to achieve healthy and sustainable future cities. Lancet 388, 2936-2947.

[63]

Seto, K. C., Golden, J. S., Alberti, M, Turner, B. L., 2017. Sustainability in an urbanizing planet. Proc. Natl. Acad. Sci. U.S.A., 114, 8935-8938.

[64]

Seto, K. C., Reenberg, A, Boone, C. G., Fragkias, M, Haase, D, Langanke, T, Marcotullio, P, Munroe, D. K., Olah, B, Simon, D., 2012. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. U.S.A., 109, 7687-7692.

[65]

Singh, S, Singh, G, Singh, S, Misra, S. C., 2024. Understanding green procurement dynamics: an assessment framework for public sector organizations. J. Environ. Manage., 351, 119756.

[66]

Stokes, E. C., Seto, K. C., 2019. Characterizing and measuring urban landscapes for sustainability. Environ. Res. Lett., 14, 045002.

[67]

Sun, L, Chen, J, Li, Q, Huang, D., 2020. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun., 11, 5366.

[68]

Sun, R, Chen, L., 2012. How can urban water bodies be designed for climate adaptation?. Landsc. Urban Plan., 105, 27-33.

[69]

Tang, W, Mai, L, Li, M., 2023. Green innovation and resource efficiency to meet net-zero emission. Resour. Policy 86, 104231.

[70]

Tucker, M. A., Böhning-Gaese, K, Fagan, W. F., Fryxell, J. M., Van Moorter, B, Alberts, S. C., Ali, A. H., Allen, A. M., Attias, N, Avgar, T, Bartlam-Brooks, H, Bayarbaatar, B, Belant, J. L., Bertassoni, A, Beyer, D, Bidner, L, van Beest, F. M., Blake, S, Blaum, N, Bracis, C, Brown, D, de Bruyn, P. J. N., Cagnacci, F, Calabrese, J. M., Camilo-Alves, C, Chamaillé-Jammes, S, Chiaradia, A, Davidson, S. C., Dennis, T, DeStefano, S, Diefenbach, D, Douglas-Hamilton, I, Fennessy, J, Fichtel, C, Fiedler, W, Fischer, C, Fischhoff, I, Fleming, C. H., Ford, A. T., Fritz, S. A., Gehr, B, Goheen, J. R., Gurarie, E, Hebblewhite, M, Heurich, M, Hewison, A. J. M., Hof, C, Hurme, E, Isbell, L. A., Janssen, R, Jeltsch, F, Kaczensky, P, Kane, A, Kappeler, P. M., Kauffman, M, Kays, R, Kimuyu, D, Koch, F, Kranstauber, B, LaPoint, S, Leimgruber, P, Linnell, J. D. C., López-López, P, Markham, A. C., Mattisson, J, Medici, E. P., Mellone, U, Merrill, E, de Miranda Mourão, G, Morato, R. G., Morellet, N, Morrison, T. A., Díaz-Muñoz, S. L., Mysterud, A, Nandintsetseg, D, Nathan, R, Niamir, A, Odden, J, O'Hara, R. B., Oliveira-Santos, L. G. R., Olson, K. A., Patterson, B. D., Cunha de Paula, R, Pedrotti, L, Reineking, B, Rimmler, M, Rogers, T. L., Rolandsen, C. M., Rosenberry, C. S., Rubenstein, D. I., Safi, K, Saïd, S, Sapir, N, Sawyer, H, Schmidt, N. M., Selva, N, Sergiel, A, Shiilegdamba, E, Silva, J. P., Singh, N, Solberg, E. J., Spiegel, O, Strand, O, Sundaresan, S, Ullmann, W, Voigt, U, Wall, J, Wattles, D, Wikelski, M, Wilmers, C. C., Wilson, J. W., Wittemyer, G, Zięba, F, Zwijacz-Kozica, T, Mueller, T., 2018. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466-469.

[71]

Usman, M, Hammar, N., 2021. Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries. Environ. Sci. Pollut. Res., 28, 15519-15536.

[72]

van Vliet, J., 2019. Direct and indirect loss of natural area from urban expansion. Nat. Sustain., 2, 755-763.

[73]

van Vuuren, D. P., Carter, T. R., 2014. Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim. Change 122, 415-429.

[74]

van Vuuren, D. P., Edmonds, J, Kainuma, M, Riahi, K, Thomson, A, Hibbard, K, Hurtt, G. C., Kram, T, Krey, V, J-Lamarque, F, Masui, T, Meinshausen, M, Nakicenovic, N, Smith, S. J., Rose, S. K., 2011. The representative concentration pathways: an overview. Clim. Change 109, 5.

[75]

Verma, P, Raghubanshi, A. S., 2018. Urban sustainability indicators: challenges and opportunities. Ecol. Indic., 93, 282-291.

[76]

Wachsmuth, D, Cohen, D. A., Angelo, H., 2016. Expand the frontiers of urban sustainability. Nature 536, 391-393.

[77]

Wang, H, Bai, L, Xiong, S, Du, S, Zhang, X., 2024. Unveiling urban area growth dynamics: insights from a comprehensive study of urban area growth curves. Int. J. Digit. Earth., 17, 1-27.

[78]

Wang, T, Sun, F., 2022. Global gridded GDP data set consistent with the shared socioeconomic pathways. Sci. Data 9, 221.

[79]

Ward, P. J., Jongman, B, Aerts, J. C. J. H., Bates, P. D., Botzen, W. J. W., Diaz Loaiza, A, Hallegatte, S, Kind, J. M., Kwadijk, J, Scussolini, P, Winsemius, H. C., 2017. A global framework for future costs and benefits of river-flood protection in urban areas. Nat. Clim. Change 7, 642-646.

[80]

Wei, Y. D., Ewing, R., 2018. Urban expansion, sprawl and inequality. Landsc. Urban Plan., 177, 259-265.

[81]

Xu, C, Haase, D, Su, M, Yang, Z., 2019. The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: population density vs physical compactness. Appl. Energy 254, 113671.

[82]

Xu, G, Jiao, L, Yuan, M, Dong, T, Zhang, B, Du, C., 2019. How does urban population density decline over time? An exponential model for Chinese cities with international comparisons. Landsc. Urban Plan., 183, 59-67.

[83]

Xu, G, Zhou, Z, Jiao, L, Zhao, R., 2020. Compact urban form and expansion pattern slow down the decline in urban densities: a global perspective. Land Use Policy 94, 104563.

[84]

Xue, K, Yu, K, Zhang, H., 2023. Accessibility analysis and optimization strategy of urban green space in Qingdao City Center, China. Ecol. Indic., 156, 111087.

[85]

Yang, X. J., 2013. China's rapid urbanization. Science 342, 310.

[86]

Yang, Y, Wu, J, Wang, Y, Huang, Q, He, C., 2021. Quantifying spatiotemporal patterns of shrinking cities in urbanizing China: a novel approach based on time-series nighttime light data. Cities 118, 103346.

[87]

You, L, Wood, S, Wood-Sichra, U, Wu, W., 2014. Generating global crop distribution maps: from census to grid. Agric. Syst., 127, 53-60.

[88]

Zhang, X, Du, S, Zhou, Y, Xu, Y., 2022. Extracting physical urban areas of 81 major Chinese cities from high-resolution land uses. Cities 131, 104061.

[89]

Zhou, Y, Li, X, Asrar, G. R., Smith, S. J., Imhoff, M., 2018. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ., 219, 206-220.

[90]

Zhou, Y, Li, X, Chen, W, Meng, L, Wu, Q, Gong, P, Seto, K. C., 2022. Satellite mapping of urban built-up heights reveals extreme infrastructure gaps and inequalities in the Global South. Proc. Natl. Acad. Sci. U.S.A., 119, e2214813119.

[91]

Zhu, Z, Zhou, Y, Seto, K. C., Stokes, E. C., Deng, C, Pickett, S. T. A., Taubenböck, H., 2019. Understanding an urbanizing planet: strategic directions for remote sensing. Remote Sens. Environ., 228, 164-182.

PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

/