Household farms facing barriers in indigenous knowledge-based adaptation to extreme climatic events — Evidence from the Huangshui Basin

Hailin Zhang , Jinyan Zhan , Zheng Yang , Huihui Wang , Naikang Xu , Chunyue Bai , Yufei He , Yuhan Cao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100216

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100216 DOI: 10.1016/j.geosus.2024.07.007
Research Article
review-article

Household farms facing barriers in indigenous knowledge-based adaptation to extreme climatic events — Evidence from the Huangshui Basin

Author information +
History +
PDF

Abstract

Global warming has led to the frequent occurrence of extreme climatic events (ECEs) in the ecologically fragile Qinghai-Xizang Plateau. Rural households face strong barriers in adaption, and food production is seriously threatened. Current methods for increasing household adaptability take a holistic point of view, but do not accurately identify groups experiencing different adaptive barriers. To better identify different barriers, this paper examines natural, economic, cognitive, and technical barriers. A total of 17 indicators were selected to comprehensively evaluate the degree of barriers to crops adaptation in response to ECEs. Key factors were further analyzed to identify paths to break down the barriers. The results showed the following. (1) Natural barriers were present at the highest degree, economic barriers appear to be smallest, and the overall barriers were biased towards the lower quartile. 10.82 % of the households with the highest barriers. (2) 67.38 % of households report taking adaptive measures in crops production. The increase of the barriers leads to an increase and then a decrease in the possibility of adaptive behavior. (3) Addressing technical barriers is key to rapidly increasing household adaptive behavior in response to ECEs. The study provides recommendations for local governments to improve household adaptation behavior from two perspectives: short-term and long-term optimization pathways. This study can help governments quickly locate households with different classes of barriers, and propose more targeted adaptation policies. The ultimate goal is to ensure the sustainability of crops production and the well-being of households in northeastern part of the Qinghai-Xizang Plateau.

Keywords

Barrier degree evaluation / Extreme climatic events / Indigenous knowledge / Household adaptive behavior / Qinghai-xizang plateau / Huangshui basin

Cite this article

Download citation ▾
Hailin Zhang, Jinyan Zhan, Zheng Yang, Huihui Wang, Naikang Xu, Chunyue Bai, Yufei He, Yuhan Cao. Household farms facing barriers in indigenous knowledge-based adaptation to extreme climatic events — Evidence from the Huangshui Basin. Geography and Sustainability, 2025, 6(1): 100216 DOI:10.1016/j.geosus.2024.07.007

登录浏览全文

4963

注册一个新账户 忘记密码

Ethical statement

Ethical approval was not required for this study since human participants were ensured following local legislation and institutional requirements. All proceeds of this research were carried out following the Helsinki Declaration principles of human subject investigation. Participation in this survey was anonymous and voluntary, assuring consent of prospective respondents before participation.

CRediT authorship contribution statement

Hailin Zhang: Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Investigation, Conceptualization. Jinyan Zhan: Writing – review & editing, Validation, Supervision, Project administration, Data curation, Conceptualization. Zheng Yang: Writing – review & editing, Data curation. Huihui Wang: Software, Data curation. Naikang Xu: Visualization, Data curation. Chunyue Bai: Writing – review & editing, Data curation. Yufei He: Writing – review & editing, Software. Yuhan Cao: Writing – review & editing, Visualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the Second Scientific Expedition to the Qinghai‒Xizang Plateau (Grant No. 2019QZKK0405–05) and methodological support from the State Key Program of the National Natural Science Foundation of China (Grant No. 72033005) is also appreciated greatly.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.07.007.

References

[1]

Abid, M, Schilling, J, Scheffran, J, Zulfiqar, F., 2016. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ., 547 , pp. 447-460. doi: 10.1016/j.scitotenv.2015.11.125.

[2]

Alizadeh, M. R., Adamowski, J, Inam, A., 2022. Integrated assessment of localized SSP–RCP narratives for climate change adaptation in coupled human-water systems. Sci. Total Environ., 823 , Article 153660. doi: 10.1016/j.scitotenv.2022.153660.

[3]

Altieri, M. A., Nicholls, C. I., 2017. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change, 140 , pp. 33-45. doi: 10.1007/s10584-013-0909-y.

[4]

Alvar-Beltrán, J, Dao, A, Dalla Marta, A, Heureux, A, Sanou, J, Orlandini, S., 2020. Farmers’ perceptions of climate change and agricultural adaptation in Burkina Faso. Atmosphere, 11 , p. 827. doi: 10.3390/atmos11080827.

[5]

Andrijevic, M, C-Schleussner, F, Crespo Cuaresma, J, Lissner, T, Muttarak, R, Riahi, K, Theokritoff, E, Thomas, A, Van Maanen, N, Byers, E., 2023. Towards scenario representation of adaptive capacity for global climate change assessments. Nat. Clim. Change, 13 , pp. 778-787. doi: 10.1038/s41558-023-01725-1.

[6]

Biggs, E. M., Bruce, E, Boruff, B, Duncan, J. M. A., Horsley, J, Pauli, N, McNeill, K, Neef, A, Van Ogtrop, F, Curnow, J, Haworth, B, Duce, S, Imanari, Y., 2015. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ. Sci. Policy, 54 , pp. 389-397. doi: 10.1016/j.envsci.2015.08.002.

[7]

Bolan, S, Padhye, L. P., Jasemizad, T, Govarthanan, M, Karmegam, N, Wijesekara, H, Amarasiri, D, Hou, D, Zhou, P, Biswal, B. K., Balasubramanian, R, Wang, H, Siddique, K. H. M., Rinklebe, J, Kirkham, M. B., Bolan, N., 2024. Impacts of climate change on the fate of contaminants through extreme weather events. Sci. Total Environ., 909 , Article 168388. doi: 10.1016/j.scitotenv.2023.168388.

[8]

Budhathoki, N. K., Paton, D, Lassa, J. A., Bhatta, G. D., Zander, K. K., 2020. Heat, cold, and floods: exploring farmers’ motivations to adapt to extreme weather events in the Terai region of Nepal. Nat. Hazards, 103 , pp. 3213-3237. doi: 10.1007/s11069-020-04127-0.

[9]

Cheng, Y, Zhang, K, Chao, L, Shi, W, Feng, J, Li, Y., 2023. A comprehensive drought index based on remote sensing data and nested copulas for monitoring meteorological and agroecological droughts: a case study on the Qinghai-Tibet Plateau. Environ. Model. Softw., 161 , Article 105629. doi: 10.1016/j.envsoft.2023.105629.

[10]

Comoé, H, Siegrist, M., 2015. Relevant drivers of farmers’ decision behavior regarding their adaptation to climate change: a case study of two regions in Côte d'Ivoire. Mitig. Adapt. Strateg. Glob. Change, 20 , pp. 179-199. doi: 10.1007/s11027-013-9486-7.

[11]

Cramer, J. S., 2003. Logit Models from Economics and Other Fields, 1st ed. Cambridge University Press . doi: 10.1017/CBO9780511615412.

[12]

Cui, X, Zhong, Z., 2024. Climate change, cropland adjustments, and food security: evidence from China. J. Dev. Econ., 167 , Article 103245. doi: 10.1016/j.jdeveco.2023.103245.

[13]

Doherty, E, Mellett, S, Norton, D, McDermott, T. K. J., Hora, D. O., Ryan, M., 2021. A discrete choice experiment exploring farmer preferences for insurance against extreme weather events. J. Environ. Manage., 290 , Article 112607. doi: 10.1016/j.jenvman.2021.112607.

[14]

Fahad, S, Wang, J., 2018. Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan. Land Use Policy, 79 , pp. 301-309. doi: 10.1016/j.landusepol.2018.08.018.

[15]

Ge, G, Shi, Z, Yang, X, Hao, Y, Guo, H, Kossi, F, Xin, Z, Wei, W, Zhang, Z, Zhang, X, Liu, Y, Liu, J., 2017. Analysis of precipitation extremes in the Qinghai-Tibetan Plateau, China: spatio-temporal characteristics and topography effects. Atmosphere, 8 , p. 127. doi: 10.3390/atmos8070127.

[16]

Giordano, M, Petropoulos, S. A., Rouphael, Y., 2021. Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture, 11 , p. 463. doi: 10.3390/agriculture11050463.

[17]

Guo, A, Wei, Y, Zhong, F, Wang, P., 2022. How do climate change perception and value cognition affect farmers’ sustainable livelihood capacity? An analysis based on an improved DFID sustainable livelihood framework. Sustain. Prod. Consum., 33 , pp. 636-650. doi: 10.1016/j.spc.2022.08.002.

[18]

Hounkpè, J, Badou, D. F., Ahouansou, D. M. M., Totin, E, Sintondji, L. O. C., 2022. Assessing observed and projected flood vulnerability under climate change using multi-modeling statistical approaches in the Ouémé River Basin, Benin (West Africa). Reg. Environ. Change, 22 , p. 112. doi: 10.1007/s10113-022-01957-5.

[19]

Huang, J, Jiang, J, Wang, J, Hou, L., 2014. Crop diversification in coping with extreme weather events in China. J. Integr. Agric., 13 , pp. 677-686. doi: 10.1016/S2095-3119(13)60700-5.

[20]

Jägermeyr, J, Müller, C, Ruane, A. C., Elliott, J, Balkovic, J, Castillo, O, Faye, B, Foster, I, Folberth, C, Franke, J. A., Fuchs, K, Guarin, J. R., Heinke, J, Hoogenboom, G, Iizumi, T, Jain, A. K., Kelly, D, Khabarov, N, Lange, S, T-Lin, S, Liu, W, Mialyk, O, Minoli, S, Moyer, E. J., Okada, M, Phillips, M, Porter, C, Rabin, S. S., Scheer, C, Schneider, J. M., Schyns, J. F., Skalsky, R, Smerald, A, Stella, T, Stephens, H, Webber, H, Zabel, F, Rosenzweig, C., 2021. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food, 2 , pp. 873-885. doi: 10.1038/s43016-021-00400-y.

[21]

Kaur, G, Singh, G, Motavalli, P. P., Nelson, K. A., Orlowski, J. M., Golden, B. R., 2020. Impacts and management strategies for crop production in waterlogged or flooded soils: a review. Agron. J., 112 , pp. 1475-1501. doi: 10.1002/agj2.20093.

[22]

Kebede, A. S., Nicholls, R. J., Clarke, D, Savin, C, Harrison, P. A., 2021. Integrated assessment of the food-water-land-ecosystems nexus in Europe: implications for sustainability. Sci. Total Environ., 768 , Article 144461. doi: 10.1016/j.scitotenv.2020.144461.

[23]

Khan, S. J., Deere, D, Leusch, F. D. L., Humpage, A, Jenkins, M, Cunliffe, D., 2015. Extreme weather events: should drinking water quality management systems adapt to changing risk profiles?. Water Res., 85 , pp. 124-136. doi: 10.1016/j.watres.2015.08.018.

[24]

Krishnamurthy, P. K., 2012. Disaster-induced migration: assessing the impact of extreme weather events on livelihoods. Environ. Hazards, 11 , pp. 96-111. doi: 10.1080/17477891.2011.609879.

[25]

Kunawotor, M. E., Bokpin, G. A., Asuming, P. O., Amoateng, K. A., 2022. The implications of climate change and extreme weather events for fiscal balance and fiscal policy in Africa. J. Soc. Econ. Dev., 24 , pp. 470-492. doi: 10.1007/s40847-022-00180-6.

[26]

Li, M, Huo, X, Peng, C, Qiu, H, Shangguan, Z, Chang, C, Huai, J., 2017. Complementary livelihood capital as a means to enhance adaptive capacity: a case of the Loess Plateau, China. Glob. Environ. Change, 47 , pp. 143-152. doi: 10.1016/j.gloenvcha.2017.10.004.

[27]

Li, X., Cao, Z., Shi, X., 2022. How do farmer’s disaster experiences influence their climate change perception and adaptation? Clim. Dev. 14, 523–536. doi: 10.1080/17565529.2021.1949572.

[28]

Liu, K, Harrison, M. T., Yan, H, Liu, D. L., Meinke, H, Hoogenboom, G, Wang, B, Peng, B, Guan, K, Jaegermeyr, J, Wang, E, Zhang, F, Yin, X, Archontoulis, S, Nie, L, Badea, A, Man, J, Wallach, D, Zhao, J, Benjumea, A. B., Fahad, S, Tian, X, Wang, W, Tao, F, Zhang, Z, Rötter, R, Yuan, Y, Zhu, M, Dai, P, Nie, J, Yang, Y, Zhang, Y, Zhou, M., 2023. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun., 14 , p. 765. doi: 10.1038/s41467-023-36129-4.

[29]

Lohmann, P. M., Kontoleon, A., 2023. Do flood and heatwave experiences shape climate opinion? Causal evidence from flooding and heatwaves in England and Wales. Environ. Resour. Econ., 86 , pp. 263-304. doi: 10.1007/s10640-023-00796-0.

[30]

López-Feldman, A, González, E., 2024. Extreme weather events and pro-environmental behavior: evidence from a climate change vulnerable country. Appl. Econ. Lett., 31 , pp. 465-469. doi: 10.1080/13504851.2022.2138810.

[31]

Lucas, C. H., Booth, K. I., Garcia, C., 2021. Insuring homes against extreme weather events: a systematic review of the research. Clim. Change, 165 , p. 61. doi: 10.1007/s10584-021-03093-1.

[32]

Luo, X., Jia, B., Lai, X., 2020. Contributions of climate change, land use change and CO2 to changes in the gross primary productivity of the Tibetan Plateau. Atmos. Ocean. Sci. Lett. 13, 8–15. doi: 10.1080/16742834.2020.1695515.

[33]

Malhi, G. S., Kaur, M, Kaushik, P., 2021. Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability, 13 , p. 1318. doi: 10.3390/su13031318.

[34]

Mirza, M., 2003. Climate change and extreme weather events: can developing countries adapt?. Clim. Policy, 3 , pp. 233-248. doi: 10.1016/S1469-3062(03)00052-4.

[35]

Ojo, T. O., Baiyegunhi, L. J. S., 2020. Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria. Land Use Policy, 95 , Article 103946. doi: 10.1016/j.landusepol.2019.04.007.

[36]

Okolie, C. C., Danso-Abbeam, G, Groupson-Paul, O, Ogundeji, A. A., 2022. Climate-smart agriculture amidst climate change to enhance agricultural production: a bibliometric analysis. Land, 12 , p. 50. doi: 10.3390/land12010050.

[37]

Orlane, R, Coline, P, Michaël, P, O-Valérie, S., 2024. Valérie. Farm buildings and agri-food transitions in Southern France: mapping dynamics using a stakeholder-based diagnosis. Geogr. Sustain., 5 , pp. 108-120. doi: 10.1016/j.geosus.2023.10.003.

[38]

Pandey, V. P., Babel, M. S., Shrestha, S, Kazama, F., 2011. A framework to assess adaptive capacity of the water resources system in Nepalese river basins. Ecol. Indic., 11 , pp. 480-488. doi: 10.1016/j.ecolind.2010.07.003.

[39]

Petzold, J, Hawxwell, T, Jantke, K, Gonçalves Gresse, E, Mirbach, C, Ajibade, I, Bhadwal, S, Bowen, K, Fischer, A. P., Joe, E. T., Kirchhoff, C. J., Mach, K. J., Reckien, D, Segnon, A. C., Singh, C, Ulibarri, N, Campbell, D, Cremin, E, Färber, L, Hegde, G, Jeong, J, Nunbogu, A. M., Pradhan, H. K., Schröder, L. S., Shah, M. A. R., Reese, P, Sultana, F, Tello, C, Xu, J, Garschagen, M., 2023. A global assessment of actors and their roles in climate change adaptation. Nat. Clim. Change, 13 , pp. 1250-1257. doi: 10.1038/s41558-023-01824-z.

[40]

Quandt, A., 2018. Measuring livelihood resilience: the household livelihood resilience approach (HLRA). World Dev., 107 , pp. 253-263. doi: 10.1016/j.worlddev.2018.02.024.

[41]

Rosa, L., 2022. Adapting agriculture to climate change via sustainable irrigation: biophysical potentials and feedbacks. Environ. Res. Lett., 17 , Article 063008. doi: 10.1088/1748-9326/ac7408.

[42]

Rüttenauer, T., 2023. More talk, no action? The link between exposure to extreme weather events, climate change belief and pro-environmental behaviour. Eur. Soc. . doi: 10.1080/14616696.2023.2277281.

[43]

Shi, F, Zhou, B, Zhou, H, Zhang, H, Li, H, Li, R, Guo, Z, Gao, X., 2022. Spatial autocorrelation analysis of land use and ecosystem service value in the Huangshui River Basin at the grid scale. Plants, 11 , p. 2294. doi: 10.3390/plants11172294.

[44]

Shi, X, Sun, L, Chen, X, Wang, L., 2019. Farmers’ perceived efficacy of adaptive behaviors to climate change in the Loess Plateau, China. Sci. Total Environ., 697 , Article 134217. doi: 10.1016/j.scitotenv.2019.134217.

[45]

Shikuku, K. M., Winowiecki, L, Twyman, J, Eitzinger, A, Perez, J. G., Mwongera, C, Läderach, P., 2017. Smallholder farmers’ attitudes and determinants of adaptation to climate risks in East Africa. Clim. Risk Manag., 16 , pp. 234-245. doi: 10.1016/j.crm.2017.03.001.

[46]

Song, C., Oxley, L., Ma, H., 2018. What determines irrigation efficiency when farmers face extreme weather events? A field survey of the major wheat producing regions in China. J. Integr. Agric. 17, 1888–1899. doi: 10.1016/S2095-3119(18)62006-4.

[47]

Sreya, P. S., Parayil, C, Aswathy, N, Bonny, B. P., Aiswarya, T. P., Nameer, P. O., 2021. Economic vulnerability of small-scale coastal households to extreme weather events in Southern India. Mar. Policy, 131 , Article 104608. doi: 10.1016/j.marpol.2021.104608.

[48]

Teng, Y, Zhan, J, Liu, S, Agyemanga, F. B., Li, Z, Wang, C, Liu, W., 2022. Integrating ecological and social vulnerability assessment in Qinghai Province, China. Phys. Chem. Earth, 126 , Article 103115. doi: 10.1016/j.pce.2022.103115.

[49]

Timlin, D., Paff, K., Han, E., 2024. The role of crop simulation modeling in assessing potential climate change impacts. Agrosyst. Geosci. Environ. 7, e20453. doi: 10.1002/agg2.20453.

[50]

Trinh, T. Q., Rañola, R. F., Camacho, L. D., Simelton, E., 2018. Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam. Land Use Policy, 70 , pp. 224-231. doi: 10.1016/j.landusepol.2017.10.023.

[51]

Wang, J, Dai, C., 2022. Identifying the spatial–temporal pattern of cropland's non-grain production and its effects on food security in China. Foods, 11 , p. 3494. doi: 10.3390/foods11213494.

[52]

Wang, W, Zhao, X, Cao, J, Li, H, Zhang, Q., 2020. Barriers and requirements to climate change adaptation of mountainous rural communities in developing countries: the case of the eastern Qinghai-Tibetan Plateau of China. Land Use Policy, 95 , Article 104354. doi: 10.1016/j.landusepol.2019.104354.

[53]

Wang, Y, Sun, W, Huai, B, Wang, Y, Ji, K, Yang, X, Du, W, Qin, X, Wang, L., 2024. Comparison and evaluation of the performance of reanalysis datasets for compound extreme temperature and precipitation events in the Qilian Mountains. Atmos. Res., 304 , Article 107375. doi: 10.1016/j.atmosres.2024.107375.

[54]

Yan, H, Harrison, M. T., Liu, K, Wang, B, Feng, P, Fahad, S, Meinke, H, Yang, R, Liu, D. L., Archontoulis, S, Huber, I, Tian, X, Man, J, Zhang, Y, Zhou, M., 2022. Crop traits enabling yield gains under more frequent extreme climatic events. Sci. Total Environ., 808 , Article 152170. doi: 10.1016/j.scitotenv.2021.152170.

[55]

Yeni, F, Alpas, H., 2017. Vulnerability of global food production to extreme climatic events. Food Res. Int., 96 , pp. 27-39. doi: 10.1016/j.foodres.2017.03.020.

[56]

Yin, H, Sun, Y, Donat, M. G., 2019. Changes in temperature extremes on the Tibetan Plateau and their attribution. Environ. Res. Lett., 14 , Article 124015. doi: 10.1088/1748-9326/ab503c.

[57]

Yuan, N, Feng, Y, Liang, S, Wang, G, Yin, T, Yan, D, Wu, P, Kuang, X, Wan, L., 2022. Spatial gathering characteristics of drought in the Qinghai-Tibet Plateau. Front. Environ. Sci., 10 , Article 1008886. doi: 10.3389/fenvs.2022.1008886.

[58]

Zhang, G., Zhang, Q., Yang, X., Fang, R., Wu, H., Li, C., 2023a. Living environment shaped residents’ willingness to pay for ecosystem services in Yangtze River Middle Reaches Megalopolis, China. Geogr. Sustain. 4, 213–221. doi: 10.1016/j.geosus.2023.03.007.

[59]

Zhang, R., Wang, Y., Lyu, J., Sun, Z., 2023b. Uncovering the hidden risks: a bibliometric investigation of farmers’ vulnerability to climate change. Agriculture 13, 1799. doi: 10.3390/agriculture13091799.

PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

/