Scenario analysis of the Indonesia carbon tax impact on carbon emissions using system dynamics modeling and STIRPAT model

Andewi Rokhmawati , Vita Sarasi , Lailan Tawila Berampu

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) : 577 -587.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) :577 -587. DOI: 10.1016/j.geosus.2024.07.003
Research Article
review-article

Scenario analysis of the Indonesia carbon tax impact on carbon emissions using system dynamics modeling and STIRPAT model

Author information +
History +
PDF

Abstract

This study aims to develop a system dynamic (SD) forecasting model based on the STIRPAT model to forecast the effect of an IDR 30 per kg CO2e carbon tax on carbon emissions, estimate future carbon emissions under ten scenarios, without and with the carbon tax, and estimate the environmental Kuznets curve (EKC) to predict Indonesia’s carbon emission peak. Carbon emission drivers in this study are decomposed into several factors, namely energy structure, energy intensity, industrial structure, GDP per capita, population, and fixed-asset investment. This study included nuclear power utilization starting in 2038. The research gaps addressed by this study compared to previous research are (1) use of the ex-ante approach, (2) inclusion of nuclear power plants, (3) testing the EKC hypothesis, and (4) contribution to government policy. The simulation results show that under the carbon tax, carbon emissions can be reduced by improving renewable energy structures, adjusting industrial structures to green businesses, and emphasizing fixed asset investment more environmentally friendly. Moreover, the result approved the EKC hypothesis. It shows an inverse U-shaped curve between GDP per capita and CO2 emissions in Indonesia. Indonesia’s fastest carbon emission peak is under scenario seven and is expected in 2040. Although an IDR 30 per kg CO2e carbon tax and nuclear power will take decades to reduce carbon emissions, the carbon tax can still be a reference and has advantages to implement. This result can be a good beginning step for Indonesia, which has yet to gain experience with a carbon tax that can be implemented immediately and is helpful to decision-makers in putting into practice sensible measures to attain Indonesia’s carbon emission peaking. This research provides actionable insights internationally on carbon tax policies, nuclear energy adoption, EKC dynamics, global policy implications, and fostering international cooperation for carbon emission reductions.

Keywords

Carbon emissions / Carbon tax / System dynamics / Environmental Kuznets curve / STIRPAT model

Cite this article

Download citation ▾
Andewi Rokhmawati, Vita Sarasi, Lailan Tawila Berampu. Scenario analysis of the Indonesia carbon tax impact on carbon emissions using system dynamics modeling and STIRPAT model. Geography and Sustainability, 2024, 5(4): 577-587 DOI:10.1016/j.geosus.2024.07.003

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Andewi Rokhmawati: Writing – review & editing, Writing – original draft, Supervision, Software, Methodology, Funding acquisition, Formal analysis, Data curation, Conceptualization. Vita Sarasi: Writing – review & editing, Visualization, Validation, Software, Investigation, Data curation. Lailan Tawila Berampu: Visualization, Resources, Project administration, Data curation.

Declaration of competing interests

The authors declare that no competing financial interests or personal relationships influenced the work reported in this paper.

Acknowledgements

Thanks to the anonymous reviewers for the insightful comments. This research is funded by the DRTPM of the Indonesian Ministry of Education and Culture with contract number 15455/UN19.5.1.3/AL04.2023.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.07.003.

References

[1]

Abrell, J, Kosch, M, Rausch, S., 2021. How Effective is Carbon Pricing? Emissions and Cost Impacts of the UK Carbon Tax.

[2]

Alberola, E, Chevallier, J, Chèze, B. T., 2008. Price drivers and structural breaks in European carbon prices 2005–2007. Energy Policy, 36 (2), pp. 787-797. doi: 10.1016/j.enpol.2007.10.029.

[3]

Albino, V, Ardito, L, Dangelico, R. M., Petruzzelli, A. M., 2014. Understanding the development trends of low-carbon energy technologies: a patent analysis. Appl. Energy, 135, pp. 836-854. doi: 10.3390/en8087777.

[4]

Aminuddin, T. A., Machfud, N. A., 2018. Analysis of CO2 emissions from the geothermal power plant and its contribution to the development of electricity generators in Lampung Province. J. Nat. Resour. Environ. Manage., 9 (2), pp. 287-304. doi: 10.29244/jpsl.9.2.289-304.

[5]

Andersson, J. J., 2019. Carbon taxes and CO2 emissions: Sweden as a case study. Am. Econ. J.-Econ. Policy, 11 (4), pp. 1-30. doi: 10.1257/pol.20170144.

[6]

Ang, B. W., Goh, T., 2019. Index decomposition analysis for comparing emission scenarios: applications and challenges. Energy Econ., 83, pp. 74-87. doi: 10.1016/j.eneco.2019.06.013.

[7]

Ardito, L, Petruzzelli, A. M., Albino, V., 2016. Investigating the antecedents of general purpose technologies: a patent perspective in the green energy field. J. Eng. Technol. Manage., 39, pp. 81-100. doi: 10.1016/j.jengtecman.2016.02.002.

[8]

Bamisile, O, Wang, X, Adun, H, Ejiyi, C. J., Obiora, S, Huang, Q, Hu, W., 2022. A 2030 and 2050 feasible/sustainable decarbonization perusal for China’s Sichuan Province: a deep carbon neutrality analysis and EnergyPLAN. Energy Convers. Manage., 261, Article 115605. doi: 10.1016/j.enconman.2022.115605.

[9]

Bashmakov, I. A., Nilsson, L. J., Acquaye, A, Bataille, C, Cullen, J. M., Fischedick, M, Geng, Y, Tanaka, K., 2022. IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK

[10]

Bong, C. P. C., Lim, L. Y., Ho, W. S., Lim, J. S., Klemeš, J. J., Towprayoon, S, Ho, C. S., Lee, C. T., 2017. A review on the global warming potential of cleaner composting and mitigation strategies. J. Clean. Prod., 146, pp. 149-157. doi: 10.1016/j.jclepro.2016.07.066.

[11]

Caron, J, Cohen, S. M., Brown, M, Reilly, J. M., 2018. Exploring the impacts of a national US CO2 tax and revenue recycling options with a coupled electricity-economy model. Clim. Change. Econ., 9 (1), Article 1840015. doi: 10.1142/S2010007818400158.

[12]

Chen, J, Xu, C, Cui, L, Huang, S, Song, M., 2019. Driving factors of CO2 emissions and inequality characteristics in China: a combined decomposition approach. Energy Econ., 78, pp. 589-597. doi: 10.1016/j.eneco.2018.12.011.

[13]

De Boer, P, Rodrigues, J. F., 2020. Decomposition analysis: when to use which method?. Econ. Syst. Res., 32 (1), pp. 1-28. doi: 10.1080/09535314.2019.1652571.

[14]

De_Myttenaere, A, Golden, B, Le_Grand, B, Rossi, F., 2016. Mean absolute percentage error for regression models. Neurocomputing, 192, pp. 38-48. doi: 10.1016/j.neucom.2015.12.11.

[15]

Dietz, T, Rosa, E. A., 1997. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. U.S.A., 94 (1), pp. 175-179. doi: 10.1073/pnas.94.1.175.

[16]

Dong, H, Dai, H, Geng, Y, Fujita, T, Liu, Z, Xie, Y, Wu, R, Fujii, M, Masui, T, Tang, L., 2017. Exploring the impact of a carbon tax on China's CO2 reductions and provincial disparities. Renew. Sustain. Energy Rev., 77, pp. 596-603. doi: 10.1016/j.rser.2017.04.044.

[17]

Dussaux, D., 2020. The Joint Effects of Energy Prices and Carbon Taxes on Environmental and Economic Performance: Evidence from the French Manufacturing Sector. OECD Publishing, Paris. . doi: 10.1787/b84b1b7d-en.

[18]

Fitriya, 2021. Pajak Karbon Berlaku! Ini Tarif Carbon Tax Perusahaan di UU HPP.

[19]

Floros, N, Vlachou, A., 2005. Energy demand and energy-related CO2 emissions in Greek manufacturing: assessing the impact of a carbon tax. Energy Econ., 27 (3), pp. 387-413. doi: 10.1016/j.eneco.2004.12.006.

[20]

Gechter, M, Samii, C, Dehejia, R, Pop-Eleches, C., 2018. Evaluating Ex-Ante Counterfactual Predictions Using Ex-Post Causal Inference.

[21]

Gloriant, S., 2018. A quantified assessment of the French’ carbon tax. Paper Presented at the Chaire Economie du Climat, Paris

[22]

González-Torres, M, Pérez-Lombard, L, Coronel, J. F., Maestre, I. R., 2021. Revisiting Kaya identity to define an emissions indicators pyramid. J. Clean. Prod., 317, Article 128328. doi: 10.1016/j.jclepro.2021.128328.

[23]

He, J., 2014. Analysis of CO2 emissions peak: China’s objective and strategy. Chin. J. Popul. Resour. Environ., 12 (3), pp. 189-198. doi: 10.1080/10042857.2014.932266.

[24]

Huo, T, Ma, Y, Yu, T, Cai, W, Liu, B, Ren, H., 2021. Decoupling and decomposition analysis of residential building carbon emissions from residential income: evidence from the provincial level in China. Environ. Impact Assess. Rev., 86, Article 106487. doi: 10.1016/j.eiar.2020.106487.

[25]

Idris, A. M., Sasongko, N. A., Kuntjoro, Y. D., 2022. Energy conversion and conservation technology in facing net zero-emission conditions and supporting national defense. Trends. Renew. Energy., 8 (1), pp. 49-66. doi: 10.17737/tre.2022.8.1.00139.

[26]

IESR, 2020. National Energy General Plan (RUEN): Existing Plan, Current Policies Implication, and Energy Transition Scenario. Institute for Essential Services Reform (IESR).

[27]

IESR, 2024. Civil Society Coalition: 3 Rules Set Back Energy Transition Commitments [Press release]. Institute for Essential Services Reform (IESR).

[28]

Kementerian ESDM, 2021. Cadangan batubara masih 38.84 miliar Ton, Teknologi Bersih Pengelolaannya Terus Didorong [Press release].

[29]

Kementerian ESDM, 2023. Handbook of Energy and Economic Statistics of Indonesia 2022.

[30]

Kementerian LHK, 2022. Enhanced NDC: komitmen Indonesia Untuk Makin Berkontribusi Dalam Menjaga Suhu Global [Press release].

[31]

Kumar, R, Kumar, A, Saikia, P, Singh, V. P., Yadav, S, Yadav, K. K. 2022. Deforestation and forest degradation impact the environment. R.N. Yadava (Ed.), Environmental Degradation: Challenges and Strategies for Mitigation. Water Science and Technology Library, Springer International Publishing, Cham, pp.19-46.

[32]

Lewis, C. D., 1982. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. Butterworth Scientific, London

[33]

Lin, T., Bui, L., 2019. A multi-stakeholder approach to carbon pricing in Canada. J. Sci. Policy Gov. 14 (1). http://www.sciencepolicyjournal.org/uploads/5/4/3/4/5434385/lin___bui_jspg_02_19.pdf.

[34]

Lin, Y, Ma, L, Li, Z, Ni, W., 2023. The carbon reduction potential by improving technical efficiency from energy sources to final services in China: an extended Kaya identity analysis. Energy, 263, Article 125963. doi: 10.1016/j.energy.2022.125963.

[35]

Liu, D, Xiao, B., 2018. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecol. Indic., 93, pp. 647-657. doi: 10.1016/j.ecolind.2018.05.049.

[36]

Liu, H., Zhang, J., Yuan, J., 2022. Can China achieve its climate pledge: a multi-scenario simulation of China’s energy-related CO2 emission pathways based on Kaya identity. Environ. Sci. Pollut. Res. 29 (49), 74480–74499. doi: 10.1007/s11356-022-21044-w.

[37]

Moreno, J. J. M., Pol, A. P., Abad, A. S., Blasco, B. C., 2013. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 25 (4), pp. 500-506. doi: 10.7334/psicothema2013.23.

[38]

Murray, B, Rivers, N., 2015. British Columbia's revenue-neutral carbon tax: a review of the latest “grand experiment” in environmental policy. Energy Policy, 86, pp. 674-683. doi: 10.1016/j.enpol.2015.08.011.

[39]

Nunes, L. J., 2023. The rising threat of atmospheric CO2: a review on the causes, impacts, and mitigation strategies. Environments, 10 (4), p. 66. doi: 10.3390/environments10040066.

[40]

Panayotou, T., 1993. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development. International Labour Organization, Geneva

[41]

Pearse, R., 2017. Pricing Carbon in Australia: Contestation, the State and Market Failure. Routledge

[42]

Pindyck, R. S., 2019. The social cost of carbon revisited. J. Environ. Econ. Manage., 94, pp. 140-160. doi: 10.1016/j.jeem.2019.02.003.

[43]

Polloni-Silva, E, Silveira, N, Ferraz, D, de Mello, D. S., Moralles, H. F., 2021. The drivers of energy-related CO2 emissions in Brazil: a regional application of the STIRPAT model. Environ. Sci. Pollut. Res., 28 (37), pp. 51745-51762. doi: 10.1007/s11356-021-14097-w.

[44]

Rogelj, J, Schaeffer, M, Meinshausen, M, Knutti, R, Alcamo, J, Riahi, K, Hare, W., 2015. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett., 10 (10), Article 105007. doi: 10.1088/1748-9326/10/10/105007.

[45]

Rokhmawati, A., 2020. The nexus between the type of energy consumed, CO2 emissions, and carbon-related costs. Int. J. Energy Econ. Policy, 10 (4), pp. 172-183. doi: 10.32479/ijeep.9246.

[46]

Rokhmawati, A., 2021. Comparison of power plant portfolios under the no energy mix and national energy mix targets using the mean-variance model. Energy Rep., 7, pp. 4850-4861. doi: 10.1016/j.egyr.2021.07.13.

[47]

Rokhmawati, A., 2023. The effects of carbon taxes on firms’ carbon emission: simulation model in Indonesia. The 4th Borobudur International Symposium on Science and Technology 2022 (BIS-STE 2022), Magelang

[48]

Rokhmawati, A, Sugiyono, A, Efni, Y, Wasnury, R., 2023. Quantifying social costs of coal-fired power plant generation. Geogr. Sustain., 4 (1), pp. 39-48. doi: 10.1016/j.geosus.2022.12.004.

[49]

Setiawan, V. N., 2022. Emisi Puncak karbon RI Diprediksi Terjadi Tahun 2035.

[50]

Wang, Y, Guo, C. H., Chen, X. J., Jia, L. Q., Guo, X. N., Chen, R. S., Zhang, M. S., Chen, Z. Y., Wang, H. D., 2021. Carbon peak and carbon neutrality in China: goals, implementation path, and prospects. China Geol., 4 (4), pp. 720-746. doi: 10.31035/cg2021083.

[51]

Wei, J, Huang, K, Yang, S, Li, Y, Hu, T, Zhang, Y., 2017. Driving forces analysis of energy-related carbon dioxide (CO2) emissions in Beijing: an input-output structural decomposition analysis. J. Clean. Prod., 163, pp. 58-68. doi: 10.1016/j.jclepro.2016.05.086.

[52]

World Bank, 2022. Carbon Pricing Dashboard.

[53]

Xiao, M, Peng, X., 2023. Decomposition of carbon emission influencing factors and research on emission reduction performance of energy consumption in China. Front. Environ. Sci., 10, Article 1096650. doi: 10.3389/fenvs.2022.1096650.

[54]

Yang, X, Li, Y, Zhang, X, Nan, F, Yang, A., 2022. Prediction of carbon emission peak and selection of development path in Gansu Province based on the constructed STIRPAT model. Acad. J. Environ. Earth Sci., 4 (7), pp. 56-61. doi: 10.25236/AJEE.2022.040710.

[55]

York, R, Rosa, E. A., Dietz, T., 2003. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ., 46 (3), pp. 351-365. doi: 10.1016/S0921-8009(03)00188-5.

[56]

Yuan, X, Su, C. W., Umar, M, Shao, X, ŢLobon, O. R., 2022. The race to zero emissions: can renewable energy be the path to carbon neutrality?. Environ. Manage., 308, Article 114648. doi: 10.1016/j.jenvman.2022.114648.

[57]

Zhang, Y, Shuai, C, Bian, J, Chen, X, Wu, Y, Shen, L., 2019. Socioeconomic factors of PM2. 5 concentrations in 152 Chinese cities: decomposition analysis using LMDI. J. Clean. Prod., 218, pp. 96-107. doi: 10.1016/j.jclepro.2019.01.322.

[58]

Zhang, Y, Zhang, Y, Zhang, Y, Gong, C, Kong, Y., 2022. Analysis of the carbon emission driving factors and prediction of a carbon peak scenario—a case study of Xi'an city. Heliyon, 8 (11) . doi: 10.1016/j.heliyon.2022.e11753.

[59]

Zhu, B., Su, B., Li, Y., 2018. Input-output and structural decomposition analysis of India’s carbon emissions and intensity. Appl. Energy 230, 1545–1556. doi: 10.1016/j.apenergy.2018.09.026.

PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

/