Mapping and modelling impacts of tobacco farming on local higher plant diversity: A case study in Yunnan Province, China

Jiacheng Shao , Qingyu Zhang , Jinnan Wang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100212

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100212 DOI: 10.1016/j.geosus.2024.06.009
Research Article
review-article

Mapping and modelling impacts of tobacco farming on local higher plant diversity: A case study in Yunnan Province, China

Author information +
History +
PDF

Abstract

The rapid expansion of tobacco farming poses a significant threat to biodiversity in Yunnan Province, China, a region known for its rich biodiversity. This study aims to understand the trade-offs between tobacco farming and higher plant species diversity, and to identify priority counties for conservation. We employed an integrated approach combining species distribution modeling, GIS overlay analysis, and empirical spatial regression to empirically assess the impact of tobacco farming intensity on biodiversity risk. Our findings reveal a compelling negative spatial correlation between tobacco farming expansion and higher plant species diversity. Specifically, southern counties in Wenshan and Honghe prefectures are major priority areas of conservation that exhibit significant spatial correlations between biodiversity risks and high tobacco farming intensity. Quantitatively, at county level, a 1 % increase in tobacco farming area corresponds to a 0.094 % decrease in endemic higher plant species richness across the entire province. These results underscore the need for targeted and region-specific regulations to mitigate biodiversity loss and promote sustainable development in Yunnan Province. The integrated approach used in this study provides a comprehensive assessment of the tobacco-biodiversity trade-offs, offering actionable insights for policymaking.

Keywords

Biodiversity / Tobacco farming / Maximum entropy / Spatial autoregressive model / Trade-offs

Cite this article

Download citation ▾
Jiacheng Shao, Qingyu Zhang, Jinnan Wang. Mapping and modelling impacts of tobacco farming on local higher plant diversity: A case study in Yunnan Province, China. Geography and Sustainability, 2025, 6(1): 100212 DOI:10.1016/j.geosus.2024.06.009

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jiacheng Shao: Writing – review & editing, Writing – original draft, Visualization, Validation, Supervision, Software, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Qingyu Zhang: Writing – review & editing, Validation, Supervision, Resources, Project administration, Investigation, Funding acquisition, Conceptualization. Jinnan Wang: Writing – review & editing, Validation, Supervision, Resources, Project administration, Investigation, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank Kai Fang for proofreading the article. We would like to thank Fang Yu, Guoxia Ma, Fei Peng, Weishan Yang, Xiafei Zhou and other staff at the Center for Eco-Environmental Accounting, Chinese Academy of Environmental Planning for providing constructive comments on the manuscript. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.06.009.

References

[1]

Amin, A, Choumert, J., 2015. Development and biodiversity conservation in sub-Saharan Africa: a spatial analysis. Econ. Bull., 35(1), 729-744.

[2]

Anselin, L., 2003. Spatial externalities, spatial multipliers, and spatial econometrics. Int. Reg. Sci. Rev., 26 (2) , pp. 153-166. doi: 10.1177/0160017602250972.

[3]

Banzhaf, H. S., Burtraw, D, Criscimagna, S. C., Cosby, B. J., Evans, D. A., Krupnick, A. J., Siikamäki, J. V., 2016. Policy analysis: valuation of ecosystem services in the southern Appalachian Mountains. Environ. Sci. Technol., 50 (6) , pp. 2830-2836. doi: 10.1021/ACS.EST.5B03829/SUPPL_FILE/ES5B03829_SI_001.PDF.

[4]

Challender, D. W. S., Cremona, P. J., Malsch, K, Robinson, J. E., Pavitt, A. T., Scott, J, Hoffmann, R, Joolia, A, Oldfield, T. E. E., Jenkins, R. K. B., Conde, D. A., Hilton-Taylor, C, Hoffmann, M., 2023. Identifying species likely threatened by international trade on the IUCN Red List can inform CITES trade measures. Nat. Ecol. Evol., 7 (8) , pp. 1211-1220. doi: 10.1038/S41559-023-02115-8.

[5]

D'Angelo, J, Palmate, S. S., Descroix, L., 2023. Mitigating risks of hybrid rice use in terrace agriculture. Geogr. Sustain., 4 (1) , pp. 1-5. doi: 10.1016/J.GEOSUS.2022.11.002.

[6]

Dasgupta, P., Dasgupta, A., Barrett, S., 2021. Population, ecological footprint and the Sustainable Development Goals. Environ. Resour. Econ. 84 (3), 659–675. doi: 10.1007/s10640-021-00595-5.

[7]

Fahrig, L, Arroyo-Rodríguez, V, Bennett, J. R., Boucher-Lalonde, V, Cazetta, E, Currie, D. J., Eigenbrod, F, Ford, A. T., Harrison, S. P., Jaeger, J. A. G., Koper, N, Martin, A. E, Martin, J-.L, Metzger, J. P., Morrison, P, Rhodes, J. R., Saunders, D. A., Simberloff, D, Smith, A. C., Tischendorf, L, Vellend, M, Watling, J. I., 2019. Is habitat fragmentation bad for biodiversity?. Biol. Conserv., 230 , pp. 179-186. doi: 10.1016/J.BIOCON.2018.12.026.

[8]

Fletcher, R. J., Didham, R. K., Banks-Leite, C, Barlow, J, Ewers, R. M., Rosindell, J, Holt, R. D., Gonzalez, A, Pardini, R, Damschen, E. I., Melo, F. P. L., Ries, L, Prevedello, J. A., Tscharntke, T, Laurance, W. F., Lovejoy, T, Haddad, N. M., 2018. Is habitat fragmentation good for biodiversity?. Biol. Conserv., 226 , pp. 9-15. doi: 10.1016/j.biocon.2018.07.022.

[9]

Frank, E. G., Schlenker, W., 2016. Balancing economic and ecological goals. Science, 353 (2016), pp. 651-652. doi: 10.1126/SCIENCE.AAF9697/SUPPL_FILE/FRANK-SM.PDF.

[10]

Griffith, D. A.Spatially autoregressive models. R. Kitchin, N. Thrift (Eds.), International Encyclopedia of Human Geography, Elsevier Inc. 2009; 396-402.

[11]

Grillos, T., 2017. Economic vs non-material incentives for participation in an in-kind payments for ecosystem services program in Bolivia. Ecol. Econ., 131 , pp. 178-190. doi: 10.1016/j.ecolecon.2016.08.010.

[12]

Hu, S, Yang, Y, Li, A, Liu, K, Mi, C, Shi, R., 2022. Integrating ecosystem services into assessments of sustainable development goals: a case study of the Beijing-Tianjin-Hebei Region, China. Front. Environ. Sci., 10 , Article 897792. doi: 10.3389/FENVS.2022.897792/BIBTEX.

[13]

Hu, T. W., Mao, Z, Shi, J, Chen, W., 2010. The role of taxation in tobacco control and its potential economic impact in China. Tob. Control., 19 (1) , pp. 58-64. doi: 10.1136/TC.2009.031799.

[14]

Huang, Z, Bai, Y, Alatalo, J. M., Yang, Z., 2020. Mapping biodiversity conservation priorities for protected areas: a case study in Xishuangbanna tropical area, China. Biol. Conserv., 249 , Article 108741. doi: 10.1016/J.BIOCON.2020.108741.

[15]

Jayachandran, S, De Laat, J, Lambin, E. F., Stanton, C. Y., Audy, R, Thomas, N. E., 2017. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 273(6348), 267-273.

[16]

Kissell, R, Poserina, J., 2017. 39-67. doi: 10.1016/B978-0-12-805163-4.00002-5.

[17]

Lee, S. I., 2001. Developing a bivariate spatial association measure: an integration of Pearson's r and Moran's I. J. Geogr. Syst., 3 (4) , pp. 369-385. doi: 10.1007/S101090100064/METRICS.

[18]

Leng, W., Mu, R., 2020. Barriers to tobacco control in China: a narrative review. Societies 10 (4), 101. doi: 10.3390/SOC10040101.

[19]

Li, Y., Miao, R., Khanna, M., 2020. Neonicotinoids and decline in bird biodiversity in the United States. Nat. Sustain. 3 (12), 1027–1035. doi: 10.1038/s41893-020-0582-x.

[20]

Li, Y., Deng, H., Dong, R., 2015. Prioritizing protection measures through ecosystem services valuation for the Napahai Wetland, Shangri-La County, Yunnan Province, China. Int. J. Sustain. Dev. World Ecol. 22 (2), 142–150. doi: 10.1080/13504509.2014.926298.

[21]

Liang, Y., Rudik, I., Zou, E., 2022. Economic production and biodiversity in the United States. NEBR Working Paper 29357. National Bureau of Economic Research, Cambridge.

[22]

Liao, W. C., Wang, X., 2012. Hedonic house prices and spatial quantile regression. J. Hous. Econ., 21 (1) , pp. 16-27. doi: 10.1016/j.jhe.2011.11.001.

[23]

Liu, H, Wang, H, Zhang, Y, Yuan, J, Peng, Y, Li, X, Shi, Y, He, K, Zhang, Q., 2018. Risk assessment, spatial distribution, and source apportionment of heavy metals in Chinese surface soils from a typically tobacco cultivated area. Environ. Sci. Pollut. Res., 25 (17) , pp. 16852-16863. doi: 10.1007/s11356-018-1866-9.

[24]

Luo, M, Xu, Z, Hirsch, T, Aung, T. S., Xu, W, Ji, L, Qin, H, Ma, K., 2021. The use of global biodiversity information facility (GBIF)-mediated data in publications written in Chinese. Glob. Ecol. Conserv., 25 , p. e01406. doi: 10.1016/J.GECCO.2020.E01406.

[25]

Ma, J, Lu, Y, Teng, Y, Tan, C, Ren, W, Cao, X., 2023. Soils and tobacco polycyclic aromatic hydrocarbon characterisation and associated health risk assessment in Qingzhen City, Southwest China. J. Soils Sedi., 23 (1) , pp. 273-287. doi: 10.1007/s11368-022-03284-y.

[26]

Malhi, Y, Wood, D, Baker, T. R., Wright, J, Phillips, O. L., Cochrane, T, Meir, P, Chave, J, Almeida, S, Arroyo, L, Higuchi, N, Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A, Neill, D. A., Vargas, P. N., Pitman, N. C. A., Quesada, C. A., Salomão, R, Silva, J. N. M., Lezama, A. T., Terborgh, J, Martínez, R. V., Vinceti, B., 2006. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Chang. Biol., 12 (7) , pp. 1107-1138. doi: 10.1111/J.1365-2486.2006.01120.X.

[27]

Manley, K, Egoh, B. N., 2022. Mapping and modeling the impact of climate change on recreational ecosystem services using machine learning and big data. Environ. Res. Lett., 17 (5) , Article 054025. doi: 10.1088/1748-9326/ac65a3.

[28]

Masanotti, G. M., Abbafati, E, Petrella, E, Vinciguerra, S, Stracci, F., 2019. Intensive tobacco cultivations, a possible public health risk?. Environ. Sci. Pollut. Res., 26 (12) , pp. 12616-12621. doi: 10.1007/s11356-019-04239-6.

[29]

Nelson, E, Mendoza, G, Regetz, J, Polasky, S, Tallis, H, Cameron, D. R., Chan, K. M. A., Daily, G. C., Goldstein, J, Kareiva, P. M., Lonsdorf, E, Naidoo, R, Ricketts, T. H., Shaw, M. R., 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ., 7 (1) , pp. 4-11. doi: 10.1890/080023.

[30]

Newbold, T, Hudson, L. N., Hill, S. L. L., Contu, S, Lysenko, I, Senior, R. A., Börger, L, Bennett, D. J., Choimes, A, Collen, B, Day, J, De Palma, A, Díaz, S, Echeverria-Londoño, S, Edgar, M. J., Feldman, A, Garon, M, Harrison, M. L. K., Alhusseini, T, Ingram, D. J., Itescu, Y, Kattge, J, Kemp, V, Kirkpatrick, L, Kleyer, M, Correia, D. L. P., Martin, C. D., Meiri, S, Novosolov, M, Pan, Y., 2015. Global effects of land use on local terrestrial biodiversity. Nature, 520 (2015), pp. 45-50. doi: 10.1038/nature14324.

[31]

Nilsson, C, Aradottir, A. L., Hagen, D, Halldórsson, G, Høegh, K, Mitchell, R. J., Raulund-Rasmussen, K, Svavarsdóttir, K, Tolvanen, A, Wilson, S. D., 2016. Evaluating the process of ecological restoration. Ecol. Soc., 21 (1) , p. 41. doi: 10.5751/ES-08289-210141.

[32]

Novotny, T. E., Bialous, S. A., Burt, L, Curtis, C, da Costa, V. L., Iqtidar, S. U., Liu, Y, Pujari, S, D'Espaignet, E. T., 2015. The environmental and health impacts of tobacco agriculture, cigarette manufacture and consumption. Bull. World Health Organ., 93 (12) , pp. 877-880. doi: 10.2471/BLT.15.152744.

[33]

OECD, 2019. Biodiversity: finance and the economic and business case for action: executive summary and synthesis. A Report Prepared by the OECD for the French G7 Presidency and the G7 Environment Ministers’ Meeting 5–6 May 2019.

[34]

Ohara, K., 2022. Climate Change in the Anthropocene. Elsevier Inc. . doi: 10.1016/C2019-0-00507-9.

[35]

Olson, D. M., Dinerstein, E., 2002. The global 200: priority ecoregions for global conservation. Ann. Mo. Bot. Gard., 89 (2) , pp. 199-224. doi: 10.2307/3298564.

[36]

Pan, Y, Wu, J, Zhang, Y, Zhang, X, Yu, C., 2021. Simultaneous enhancement of ecosystem services and poverty reduction through adjustments to subsidy policies relating to grassland use in Tibet, China. Ecosyst. Serv., 48 , Article 101254. doi: 10.1016/J.ECOSER.2021.101254.

[37]

Pandit, S. N., Maitland, B. M., Pandit, L. K., Poesch, M. S., Enders, E. C., 2017. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: carmine shiner (Notropis percobromus). Sci. Total Environ., 598 , pp. 1-11. doi: 10.1016/J.SCITOTENV.2017.03.228.

[38]

Phillips, S. J., Anderson, R. P., Schapire, R. E., 2006. Schapire. Maximum entropy modeling of species geographic distributions. Ecol. Model., 190 (3–4) , pp. 231-259. doi: 10.1016/J.ECOLMODEL.2005.03.026.

[39]

Phillips, S. J., Anderson, R. P., Dudík, M, Schapire, R. E., Blair, M. E., 2017. Opening the black box: an open-source release of Maxent. Ecography, 40 (7) , pp. 887-893. doi: 10.1111/ECOG.03049.

[40]

Plumptre, A. J., Ayebare, S, Behangana, M, Forrest, T. G., Hatanga, P, Kabuye, C, Kirunda, B, Kityo, R, Mugabe, H, Namaganda, M, Nampindo, S, Nangendo, G, Nkuutu, D. N., Pomeroy, D, Tushabe, H, Prinsloo, S., 2019. Conservation of vertebrates and plants in Uganda: identifying key biodiversity areas and other sites of national importance. Conserv. Sci. Pract., 1 (2) , p. e7. doi: 10.1111/CSP2.7.

[41]

Poggio, L., Simonetti, E., Gimona, A., 2018. Enhancing the WorldClim data set for national and regional applications. Sci. Total Environ. 625, 1628–1643. doi: 10.1016/J.SCITOTENV.2017.12.258.

[42]

Porter, A. L., Connolly, T, Heikes, R. G., Park, C. Y., 1981. Misleading indicators: the limitations of multiple linear regression in formulation of policy recommendations. Policy Sci., 13 (4) , pp. 397-418. doi: 10.1007/BF00146959/METRICS.

[43]

Proshad, R, Zhang, D, Uddin, M, Wu, Y., 2020. Presence of cadmium and lead in tobacco and soil with ecological and human health risks in Sichuan province, China. Environ. Sci. Pollut. Res., 27 (15) , pp. 18355-18370. doi: 10.1007/s11356-020-08160-1.

[44]

Qian, L. S., Chen, J. H., Deng, T, Sun, H., 2020. Plant diversity in Yunnan: current status and future directions. Plant Divers., 42 (4) , pp. 281-291. doi: 10.1016/j.pld.2020.07.006.

[45]

Rosa-Schleich, J, Loos, J, Mußhoff, O, Tscharntke, T., 2019. Ecological-economic trade-offs of diversified farming systems – a review. Ecol. Econ., 160 , pp. 251-263. doi: 10.1016/J.ECOLECON.2019.03.002.

[46]

Rossi, F, Breidenbach, J, Puliti, S, Astrup, R, Talbot, B., 2019. Assessing harvested sites in a forested boreal mountain catchment through global forest watch. Remote Sens., 11 (5) , p. 543. doi: 10.3390/RS11050543.

[47]

Runting, R. K., Bryan, B. A., Dee, L. E., Maseyk, F. J. F., Mandle, L, Hamel, P, Wilson, K. A., Yetka, K, Possingham, H. P., Rhodes, J. R., 2017. Possingham, J.R. Rhodes. Incorporating climate change into ecosystem service assessments and decisions: a review. Glob. Change Biol., 23 (1) , pp. 28-41. doi: 10.1111/GCB.13457.

[48]

Schisterman, E. F., Vexler, A, Whitcomb, B. W., Liu, A., 2006. The limitations due to exposure detection limits for regression models. Am. J. Epidemiol., 163 (4) , pp. 374-383. doi: 10.1093/AJE/KWJ039.

[49]

Shiferaw, H., Kassawmar, T., Zeleke, G., 2022. Above and belowground woody-biomass and carbon stock estimations at Kunzila watershed, Northwest Ethiopia. Trees For. People 7, 100204. doi: 10.1016/J.TFP.2022.100204.

[50]

Condro, A. A., Tsuyuki, S., 2024. Projected impacts of climate change and anthropogenic effects on habitat distribution of endangered Javan Hawk-Eagle in Indonesia. Geogr. Sustain., 5 (2) , pp. 241-250. doi: 10.1016/J.GEOSUS.2024.01.009.

[51]

Tevie, J, Grimsrud, K. M., Berrens, R. P., 2011. Testing the environmental Kuznets curve hypothesis for biodiversity risk in the US: a spatial econometric approach. Sustainability, 3 (11) , pp. 2182-2199. doi: 10.3390/SU3112182.

[52]

Wallbank, L. A., MacKenzie, R, Beggs, P. J., 2017. Environmental impacts of tobacco product waste: international and Australian policy responses. Ambio, 46 (3) , pp. 361-370. doi: 10.1007/S13280-016-0851-0.

[53]

Wang, J, Wu, R, He, D, Yang, F, Hu, P, Lin, S, Wu, W, Diao, Y, Guo, Y., 2018. Spatial relationship between climatic diversity and biodiversity conservation value. Conserv. Biol., 32 (6) , pp. 1266-1277. doi: 10.1111/COBI.13147.

[54]

Ward, M. D., Gleditsch, K. S., 2019. Spatial Regression Models. (2nd ed.), SAGE Publications, Thousand Oaks

[55]

World Health Organization, 2021. Tobacco and Its Environmental Impact: An Overview. World Health Organization, Geneva.

[56]

Xu, W, Xiao, Y, Zhang, J, Yang, W, Zhang, L, Hull, V, Wang, Z, Zheng, H, Liu, J, Polasky, S, Jiang, L, Xiao, Y, Shi, X, Rao, E, Lu, F, Wang, X, Daily, G. C., Ouyang, Z., 2017. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U.S.A., 114 (7) , pp. 1601-1606. doi: 10.1073/pnas.1620503114.

[57]

Yamagata, Y, Murakami, D, Yoshida, T, Seya, H, Kuroda, S., 2016. Value of urban views in a bay city: Hedonic analysis with the spatial multilevel additive regression (SMAR) model. Landsc. Urban Plan., 151 , pp. 89-102. doi: 10.1016/J.LANDURBPLAN.2016.02.008.

[58]

Yang, T, Barnett, R, Rockett, I. R. H., Yang, X. Y., Wu, D, Zheng, W, Li, L., 2015. The impact of regional economic reliance on the tobacco industry on current smoking in China. Health Place, 33 , pp. 159-171. doi: 10.1016/J.HEALTHPLACE.2014.12.015.

[59]

Zheng, H, Wang, L, Peng, W, Zhang, C, Li, C, Robinson, B. E., Wu, X, Kong, L, Li, R, Xiao, Y, Xu, W, Ouyang, Z, Daily, G. C., 2019. Realizing the values of natural capital for inclusive, sustainable development: informing China's new ecological development strategy. Proc. Natl. Acad. Sci. U.S.A., 116 (17) , pp. 8623-8628. doi: 10.1073/pnas.181950111.

[60]

Zhu, L, Hughes, A. C., Zhao, X. Q., Zhou, L. J., Ma, K. P., Shen, X. L., Li, S, Liu, M. Z., Xu, W. B., Watson, J. E. M., 2021. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv., 7 (35) , p. eabe4261. doi: 10.1126/sciadv.abe4261.

[61]

Zomer, R. J., Xu, J, Wang, M, Trabucco, A, Li, Z., 2015. Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biol. Conserv., 184 , pp. 335-345. doi: 10.1016/j.biocon.2015.01.031.

PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

/