Impact of climate change on rice growth and yield in China: Analysis based on climate year type

Lunche Wang , Danhua Zhong , Xinxin Chen , Zigeng Niu , Qian Cao

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) : 548 -560.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) :548 -560. DOI: 10.1016/j.geosus.2024.06.006
Research Article
review-article

Impact of climate change on rice growth and yield in China: Analysis based on climate year type

Author information +
History +
PDF

Abstract

Climate change threatens China’s rice production, making it crucial to assess the impact of climate change and climate year type (CYT) on rice production across regions to safeguard food security. The impact of climate change under nine CYTs with different combinations of temperature and precipitation on two rice cropping systems, including single rice and double rice (early and late rice) was evaluated. The results indicate that: (1) the Northeast region was expected to undergo the greatest warming of 2.03–2.48 °C, and future climate conditions would be dominated by Warm-Humid, Warm-Normal, and Warm-Dry CYTs across all regions. (2) Climate change would significantly shorten anthesis days after sowing and maturity days after sowing of single rice by 6–12 days and 9–24 days, with little change observed for late rice (< 1 day). Late rice yield suffered more from climate change compared to single and early rice yield, declining by 8.8 %–16.13 %. (3) Different CYTs exhibited varying impacts on rice yields. Yields were projected to decrease by approximately 4.765 % to 18.645 % in Warm-Humid, Warm-Normal, and Warm-Dry CYTs. Conversely, the Northeast region was anticipated to experience an increase in yield. (4) Relationships between rice yield and meteorological factors varied by region, variety, and CYT. Among the nine CYTs, high killing degree days, mean daily temperature, mean solar radiation and warm spell duration index were the main factors influencing changes in rice yield, explaining nearly 80 % of yield change. Our results would help to develop adaptation strategies in different regions and rice cropping systems.

Keywords

Rice / Yield / Climate year type / Climate change / China

Cite this article

Download citation ▾
Lunche Wang, Danhua Zhong, Xinxin Chen, Zigeng Niu, Qian Cao. Impact of climate change on rice growth and yield in China: Analysis based on climate year type. Geography and Sustainability, 2024, 5(4): 548-560 DOI:10.1016/j.geosus.2024.06.006

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Lunche Wang: Writing – review & editing, Investigation, Funding acquisition, Conceptualization. Danhua Zhong: Writing – original draft, Formal analysis, Data curation. Xinxin Chen: Writing – review & editing, Investigation, Data curation. Zigeng Niu: Validation, Supervision, Project administration. Qian Cao: Writing – review & editing, Supervision, Resources.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants No. 42371354, 42375129) and Fundamental Research Funds for National University, China University of Geosciences, Wuhan (Grant No. CUGDCJJ202201).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.06.006.

References

[1]

AghaKouchak, A, Chiang, F, Huning, L. S., Love, C. A., Mallakpour, I, Mazdiyasni, O, Moftakhari, H, Papalexiou, S. M., Ragno, E, Sadegh, M., 2020. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci., 48(1), 519-548.

[2]

Ahmed, M, Stöckle, C. O., Nelson, R, Higgins, S, Ahmad, S, Raza, M. A., 2019. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci. Rep., 9(1), 7813.

[3]

Alejo, L. A., 2020. Assessing the impacts of climate change on aerobic rice production using the DSSAT-CERES-Rice model. J. Water Clim. Change 12(3), 696-708.

[4]

Arunrat, N, Pumijumnong, N, Sereenonchai, S, Chareonwong, U, Wang, C., 2020. Assessment of climate change impact on rice yield and water footprint of large-scale and individual farming in Thailand. Sci. Total Environ., 726, 137864.

[5]

Arunrat, N, Sereenonchai, S, Chaowiwat, W, Wang, C., 2022. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ., 807, 150741.

[6]

Asseng, S, Ewert, F, Martre, P, Rötter, R. P., Lobell, D. B., Cammarano, D, Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J, Basso, B, Biernath, C, Challinor, A. J., De Sanctis, G, Doltra, J, Fereres, E, Garcia-Vila, M, Gayler, S, Hoogenboom, G, Hunt, L. A., Izaurralde, R. C., Jabloun, M, Jones, C. D., Kersebaum, K. C., Koehler, A. K., Müller, C, Naresh Kumar, S, Nendel, C, O'Leary, G, Olesen, J. E., Palosuo, T, Priesack, E, Eyshi Rezaei, E, Ruane, A. C., Semenov, M. A., Shcherbak, I, Stöckle, C, Stratonovitch, P, Streck, T, Supit, I, Tao, F, Thorburn, P. J., Waha, K, Wang, E, Wallach, D, Wolf, J, Zhao, Z, Zhu, Y., 2015. Rising temperatures reduce global wheat production. Nat. Clim. Change 5(2), 143-147.

[7]

Asseng, S, Foster, I. A. N., Turner, N. C., 2011. The impact of temperature variability on wheat yields. Glob. Change Biol., 17(2), 997-1012.

[8]

Balkovic, J, van der Velde, M, Skalsky, R, Xiong, W, Folberth, C, Khabarov, N, Smirnov, A, Mueller, N. D., Obersteiner, M., 2014. Global wheat production potentials and management flexibility under the representative concentration pathways. Glob. Planet. Change 122, 107-121.

[9]

Bannayan, M, Kobayashi, K, H-Kim, Y, Lieffering, M, Okada, M, Miura, S., 2005. Modeling the interactive effects of atmospheric CO2 and N on rice growth and yield. Field Crop. Res., 93(2), 237-251.

[10]

Basso, B, Liu, L, Ritchie, J. T. 2016. A comprehensive review of the CERES-Wheat, -Maize and -Rice Models’ performances. D.L. Sparks (Ed.), Advances in Agronomy, Academic Press, pp.27-132.

[11]

Bonelli, L. E., Monzon, J. P., Cerrudo, A, Rizzalli, R. H., Andrade, F. H., 2016. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crop. Res., 198, 215-225.

[12]

Butler, E. E., Huybers, P., 2015. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase. Environ. Res. Lett., 10(3), 034009.

[13]

Cammarano, D, Tian, D., 2018. The effects of projected climate and climate extremes on a winter and summer crop in the southeast USA. Agric. For. Meteorol., 248, 109-118.

[14]

Chen, X, Wang, L, Niu, Z, Zhang, M, Li, C, Li, J., 2020. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agric. For. Meteorol. , Article 107867

[15]

Deng, N, Ling, X, Sun, Y, Zhang, C, Fahad, S, Peng, S, Cui, K, Nie, L, Huang, J., 2015. Influence of temperature and solar radiation on grain yield and quality in irrigated rice system. Eur. J. Agron., 64, 37-46.

[16]

Ding, Y, Wang, W, Song, R, Shao, Q, Jiao, X, Xing, W., 2017. Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China. Agric. Water Manage., 193, 89-101.

[17]

Ding, Y, Wang, W, Zhuang, Q, Luo, Y., 2020. Adaptation of paddy rice in China to climate change: the effects of shifting sowing date on yield and irrigation water requirement. Agric. Water Manage., 228, 105890.

[18]

Dong, H, Huang, S, Fang, W, Leng, G, Wang, H, Ren, K, Zhao, J, Ma, C., 2021. Copula-based non-stationarity detection of the precipitation-temperature dependency structure dynamics and possible driving mechanism. Atmos. Res., 249, 105280.

[19]

Eyring, V, Bony, S, Meehl, G. A., Senior, C. A., Stevens, B, Stouffer, R. J., Taylor, K. E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9(5), 1937-1958.

[20]

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9 (5), 1937–1958.

[21]

Fletcher, A. L., Sinclair, T. R., Allen, L. H., 2007. Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean. Environ. Exp. Bot., 61(2), 145-151.

[22]

Ge, F, Zhu, S, Luo, H, Zhi, X, Wang, H., 2021. Future changes in precipitation extremes over Southeast Asia: insights from CMIP6 multi-model ensemble. Environ. Res. Lett., 16(2), 024013.

[23]

Gidden, M. J., Riahi, K, Smith, S. J., Fujimori, S, Luderer, G, Kriegler, E, van Vuuren, D. P., van den Berg, M, Feng, L, Klein, D, Calvin, K, Doelman, J. C., Frank, S, Fricko, O, Harmsen, M, Hasegawa, T, Havlik, P, Hilaire, J, Hoesly, R, Horing, J, Popp, A, Stehfest, E, Takahashi, K., 2019. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev., 12(4), 1443-1475.

[24]

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L, Lawrence, D, Muir, J. F., Pretty, J, Robinson, S, Thomas, S. M., Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science 327(5967), 812-818.

[25]

Guo, S, Guo, E, Zhang, Z, Dong, M, Wang, X, Fu, Z, Guan, K, Zhang, W, Zhang, W, Zhao, J, Liu, Z, Zhao, C, Yang, X., 2022. Impacts of mean climate and extreme climate indices on soybean yield and yield components in Northeast China. Sci. Total Environ., 838, 156284.

[26]

Gupta, R, Mishra, A., 2019. Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India. Agric. Syst., 173, 1-11.

[27]

Hettel, G., Maclean, J., Dawe, D., Hardy, B., 2002. Rice Almanac, 3rd edition. CABI.

[28]

Houma, A. A., Kamal, M. R., Mojid, M. A., Abdullah, A. F. B., Wayayok, A., 2021. Climate change impacts on rice yield of a large-scale irrigation scheme in Malaysia. Agric. Water Manage., 252, 106908.

[29]

Huang, J, Liu, Y, Ma, L, Su, F., 2013. Methodology for the assessment and classification of regional vulnerability to natural hazards in China: the application of a DEA model. Nat. Hazards 65(1), 115-134.

[30]

Hussain, T, Gollany, H. T., Mulla, D. J., Ben, Z, Tahir, M, Ata-Ul-Karim, S. T., Liu, K, Maqbool, S, Hussain, N, Duangpan, S., 2023. Assessment and application of EPIC in simulating upland rice productivity, soil water, and nitrogen dynamics under different nitrogen applications and planting windows. Agronomy 13(9), 2379.

[31]

IPCC, 2021. Summary for policymakers. Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel On Climate Change. Cambridge University Press, Cambridge.

[32]

Jones, J. W., Hoogenboom, G, Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U, Gijsman, A. J., Ritchie, J. T., 2003. The DSSAT cropping system model. Eur. J. Agron., 18(3–4), 235-265.

[33]

Kim, H. Y., Ko, J, Kang, S, Tenhunen, J., 2013. Impacts of climate change on paddy rice yield in a temperate climate. Glob. Change Biol., 19(2), 548-562.

[34]

Ko, J, Ahuja, L, Kimball, B, Anapalli, S, Ma, L, Green, T. R., Ruane, A. C., Wall, G. W., Pinter, P, Bader, D. A., 2010. Simulation of free air CO2 enriched wheat growth and interactions with water, nitrogen, and temperature. Agric. For. Meteorol., 150(10), 1331-1346.

[35]

Kobata, T, Uemuki, N., 2004. High temperatures during the grain-filling period do not reduce the potential grain dry matter increase of rice. Agron. J., 96(2), 406-414.

[36]

Kontgis, C, Schneider, A, Ozdogan, M, Kucharik, C, Tri, V. P. D., Duc, N. H., Schatz, J., 2019. Climate change impacts on rice productivity in the Mekong River Delta. Appl. Geogr., 102, 71-83.

[37]

Krishnan, P, Ramakrishnan, B, Reddy, K. R., Reddy, V. R. 2011. Chapter three - high-temperature effects on rice growth, yield, and grain quality. D.L. Sparks (Ed.), Advances in Agronomy, Academic Press, pp.87-206.

[38]

Li, E, Zhao, J, Pullens, J. W. M., Yang, X., 2022. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Sci. Total Environ., 812, 152461.

[39]

Liu, D. L., Zuo, H., 2012. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Clim. Change 115(3–4), 629-666.

[40]

Liu, J, Du, H, Wu, Z, He, H. S., Wang, L, Zong, S., 2016. Recent and future changes in the combination of annual temperature and precipitation throughout China. Int. J. Climatol., 37(2), 821-833.

[41]

Liu, Y, Tang, L, Qiu, X, Liu, B, Chang, X, Liu, L, Zhang, X, Cao, W, Zhu, Y., 2020. Impacts of 1.5 and 2.0°C global warming on rice production across China. Agric. For. Meteorol., 284, 107900.

[42]

Long, S., 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated?. Plant Cell Environ., 14(8), 729-739.

[43]

Long, X-X, Ju, H, J-Wang, D, S-Gong, H, G-Li, Y., 2022. Impact of climate change on wheat yield and quality in the Yellow River Basin under RCP8.5 during 2020–2050. Adv. Clim. Chang. Res., 13(3), 397-407.

[44]

Ludwig, F, Asseng, S., 2010. Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates. Agric. Syst., 103(3), 127-136.

[45]

Lv, Z, Zhu, Y, Liu, X, Ye, H, Tian, Y, Li, F., 2018. Climate change impacts on regional rice production in China. Clim. Change 147(3–4), 523-537.

[46]

Mathur, S, Agrawal, D, Jajoo, A., 2014. Photosynthesis: response to high temperature stress. J. Photochem. Photobiol. B., 137, 116-126.

[47]

McGrath, J. M., Lobell, D. B., 2011. An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years. Glob. Change Biol., 17(8), 2689-2696.

[48]

McNaughton, K. G., Jarvis, P. G., 1991. Effects of spatial scale on stomatal control of transpiration. Agicr. For. Meteorol., 54(2), 279-302.

[49]

Mei, C, Liu, J, Chen, M. T., Wang, H, Li, M, Yu, Y., 2018. Multi-decadal spatial and temporal changes of extreme precipitation patterns in northern China (Jing-Jin-Ji district, 1960–2013). Quat. Int., 476, 1-13.

[50]

Minoli, S, Jägermeyr, J, Asseng, S, Urfels, A, Müller, C., 2022. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun., 13(1), 7079.

[51]

Moreno-Cadena, P, Hoogenboom, G, Cock, J. H., Ramirez-Villegas, J, Pypers, P, Kreye, C, Tariku, M, Ezui, K. S., Becerra Lopez-Lavalle, L. A., Asseng, S., 2021. Modeling growth, development and yield of cassava: a review. Field Crop. Res., 267, 108140.

[52]

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S, Kainuma, M, Kram, T, Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N, Riahi, K, Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., Wilbanks, T. J., 2010. The next generation of scenarios for climate change research and assessment. Nature 463(7282), 747-756.

[53]

Muthayya, S, Sugimoto, J. D., Montgomery, S, Maberly, G. F., 2014. An overview of global rice production, supply, trade, and consumption. Ann. N.Y. Acad. Sci., 1324(1), 7-14.

[54]

NBCS, 2022. China Statistical Yearbook. China Statistics Press, Beijing.

[55]

Nendel, C, Reckling, M, Debaeke, P, Schulz, S, Berg-Mohnicke, M, Constantin, J, Fronzek, S, Hoffmann, M, Jakšić, S, K-Kersebaum, C, Klimek-Kopyra, A, Raynal, H, Schoving, C, Stella, T, Battisti, R., 2023. Future area expansion outweighs increasing drought risk for soybean in Europe. Glob. Change Biol., 29(5), 1340-1358.

[56]

O'Neill, B. C., Tebaldi, C, van Vuuren, D. P., Eyring, V, Friedlingstein, P, Hurtt, G, Knutti, R, Kriegler, E, Lamarque, J. F., Lowe, J, Meehl, G. A., Moss, R, Riahi, K, Sanderson, B. M., 2016. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9(9), 3461-3482.

[57]

Pang, Y, Chen, C, Guo, X, Xu, F., 2021. Analysis of annual climate types and potential yield for single cropping rice in Southwest China during 1961–2015. J. Nat. Res., 36(2), 476-489.

[58]

Peng, S, Huang, J, Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X, Centeno, G. S., Khush, G. S., Cassman, K. G., 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A., 101(27), 9971-9975.

[59]

Peng, T, Zhao, L, Zhang, L, Shen, X, Ding, Y, Wang, J, Li, Q, Liu, Y, Hu, Y, Ling, J, Li, Z, Huang, C., 2023. Changes in temperature-precipitation compound extreme events in China during the past 119 years. Earth Space Sci., 10(8), e2022EA002777.

[60]

Prasad, P. V. V., Boote, K. J., Allen, L. H., Sheehy, J. E., Thomas, J. M. G., 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop. Res., 95(2–3), 398-411.

[61]

Prescott, J. A., 1940. Evaporation from a water surface in relation to solar radiation. Trans. R. Soc. S. Aust., 64, 114-118.

[62]

Pu, L, Zhang, S, Yang, J, Chang, L, Xiao, X., 2020. Assessing the impact of climate changes on the potential yields of maize and paddy rice in Northeast China by 2050. Theor. Appl. Climatol., 140(1), 167-182.

[63]

Rao, A. V. M. S., Shanker, A. K., Rao, V. U. M., Rao, V. N., Singh, A. K., Kumari, P, Singh, C. B., Verma, P. K., Kumar, P. V., Bapuji Rao, B, Dhakar, R, Chandran, M. A. S., Naidu, C. V., Chaudhary, J. L., Rao, C. S., Venkateshwarlu, B., 2016. Predicting irrigated and rainfed rice yield under projected climate change scenarios in the eastern region of India. Environ. Model. Assess., 21(1), 17-30.

[64]

Ray, D. K., Gerber, J. S., MacDonald, G. K., West, P. C., 2015. Climate variation explains a third of global crop yield variability. Nat. Commun., 6(1), 5989.

[65]

Saud, S, Wang, D, Fahad, S, Alharby, H. F., Bamagoos, A. A., Mjrashi, A, Alabdallah, N. M., AlZahrani, S. S., AbdElgawad, H, Adnan, M, Sayyed, R. Z., Ali, S, Hassan, S., 2022. Comprehensive impacts of climate change on rice production and adaptive strategies in China. Front. Microbiol., 13, 926059.

[66]

Sheng, Y, Song, L., 2019. Agricultural production and food consumption in China: a long-term projection. China Econ. Rev., 53, 15-29.

[67]

Shi, Y, Shen, Y, Kang, E, Li, D, Ding, Y, Zhang, G, Hu, R., 2007. Recent and future climate change in Northwest China. Clim. Change 80(3), 379-393.

[68]

Siddik, M. A., Zhang, J, Chen, J, Qian, H, Jiang, Y, Raheem, Ak, Deng, A, Song, Z, Zheng, C, Zhang, W., 2019. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period. Eur. J. Agron., 106, 30-38.

[69]

Song, Y, Wang, C, Linderholm, H. W., Fu, Y, Cai, W, Xu, J, Zhuang, L, Wu, M, Shi, Y, Wang, G, Chen, D., 2022. The negative impact of increasing temperatures on rice yields in southern China. Sci. Total Environ., 820, 153262.

[70]

Soulouknga, M. H., Falama, R. Z., Ajayi, O. O., Doka, S. Y., Kofané, T. C., 2017. Determination of a suitable solar radiation model for the sites of Chad. Energy Power Eng., 9(12), 703-722.

[71]

Sun, Q, Zhao, Y, Zhang, Y, Chen, S, Ying, Q, Lv, Z, Che, X, Wang, D., 2022. Heat stress may cause a significant reduction of rice yield in China under future climate scenarios. Sci. Total Environ., 818, 151746.

[72]

Szabó, B, Weynants, M, Weber, T. K. D., 2021. Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2). Geosci. Model Dev., 14(1), 151-175.

[73]

Tack, J, Singh, R. K., Nalley, L. L., Viraktamath, B. C., Krishnamurthy, S. L., Lyman, N, Jagadish, K. S. V., 2015. High vapor pressure deficit drives salt-stress-induced rice yield losses in India. Glob. Change Biol., 21(4), 1668-1678.

[74]

Tao, F, Zhang, Z, Xiao, D, Zhang, S, Rötter, R. P., Shi, W, Liu, Y, Wang, M, Liu, F, Zhang, H.Responses of wheat growth and yield to climate change in different climate zones of China, 1981–2009. Agric. For. Meteorol. 2014; 91-104.

[75]

Tao, F. L., Zhang, Z, Shi, W. J., Liu, Y. J., Xiao, D. P., Zhang, S, Zhu, Z, Wang, M, Liu, F. S., 2013. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981–2009 in China, and late rice was just opposite. Glob. Change Biol., 19(10), 3200-3209.

[76]

Teixeira, E. I., Fischer, G, van Velthuizen, H, Walter, C, Ewert, F., 2013. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol., 170, 206-215.

[77]

Tingem, M, Rivington, M, Colls, J., 2008. Climate variability and maize production in Cameroon: simulating the effects of extreme dry and wet years. Singap. J. Trop. Geogr., 29(3), 357-370.

[78]

Tubiello, F. N, Soussana, J-.F, Howden, S. M., 2007. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. U.S.A., 104(50), 19686-19690.

[79]

Wallach, D, Nissanka, S. P., Karunaratne, A. S., Weerakoon, W, Thorburn, P. J., Boote, K. J., Jones, J. W., 2017. Accounting for both parameter and model structure uncertainty in crop model predictions of phenology: a case study on rice. Eur. J. Agron., 88, 53-62.

[80]

Wang, P, Zhang, Z, Chen, Y, Wei, X, Feng, B, Tao, F., 2015. How much yield loss has been caused by extreme temperature stress to the irrigated rice production in China?. Clim. Change 134(4), 635-650.

[81]

Wanthanaporn, U, Supit, I, Chaowiwat, W, Hutjes, R. W. A., 2024. Skill of rice yields forecasting over Mainland Southeast Asia using the ECMWF SEAS5 ensemble prediction system and the WOFOST crop model. Agric. For. Meteorol., 351, 110001.

[82]

Wassmann, R, Jagadish, S. V. K., Heuer, S, Ismail, A, Redona, E, Serraj, R, Singh, R. K., Howell, G, Pathak, H, Sumfleth, K. 2009. Chapter 2 Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. D.L. Sparks (Ed.), Advances in Agronomy, Academic Press, pp.59-122.

[83]

Wu, W, Fang, Q, Ge, Q, Zhou, M, Lin, Y., 2014. CERES-Rice model-based simulations of climate change impacts on rice yields and efficacy of adaptive options in Northeast China. Crop Pasture Sci., 65(12), 1267-1277.

[84]

Xiong, W, Holman, I, Conway, D, Lin, E, Li, Y., 2008. A crop model cross calibration for use in regional climate impacts studies. Ecol. Model., 213(3–4), 365-380.

[85]

Yang, C, Liu, C, Liu, Y, Gao, Y, Xing, X, Ma, X., 2024. Prediction of drought trigger thresholds for future winter wheat yield losses in China based on the DSSAT-CERES-Wheat model and Copula conditional probabilities. Agric. Water Manage., 299, 108881.

[86]

Yang, W, Peng, S, Dionisio-Sese, M. L., Laza, R. C., Visperas, R. M., 2008. Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grown tropical irrigated rice. Field Crops Res., 105(3), 221-227.

[87]

Yu, Y, Zhang, W, Huang, Y., 2014. Impact assessment of climate change, carbon dioxide fertilization and constant growing season on rice yields in China. Clim. Change 124(4), 763-775.

[88]

Zhan, P, Zhu, W, Zhang, T, Li, N., 2023. Regional inequalities of future climate change impact on rice (Oryza sativa L.) yield in China. Sci. Total Environ., 898, 165495.

[89]

Zhang, D-Q, Zhang, L. U., Yang, J, G-Feng, L., 2010. The impact of temperature and precipitation variation on drought in China in last 50 years. Acta Phys. Sin., 59(1), 655-663.

[90]

Zhang, H, Zhou, G. S., Liu, D. L., Wang, B, Xiao, D. P., He, L., 2019. Climate-associated rice yield change in the Northeast China Plain: a simulation analysis based on CMIP5 multi-model ensemble projection. Sci. Total Environ., 666, 126-138.

[91]

Zhang, L, Zhang, Z, Tao, F, Luo, Y, Zhang, J, Cao, J., 2022. Adapting to climate change precisely through cultivars renewal for rice production across China: when, where, and what cultivars will be required?. Agric. For. Meteorol., 316, 108856.

[92]

Zhang, L, Zhang, Z, Zhang, J, Luo, Y, Tao, F., 2022. Response of rice phenology to climate warming weakened across China during 1981–2018: did climatic or anthropogenic factors play a role?. Environ. Res. Lett., 17(6), 064029.

[93]

Zhang, S, Tao, F, Zhang, Z., 2017. Spatial and temporal changes in vapor pressure deficit and their impacts on crop yields in China during 1980–2008. J. Meteorol. Res., 31(4), 800-808.

[94]

Zhang, T, Yang, X, Wang, H, Li, Y, Ye, Q., 2014. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis. Glob. Change Biol., 20(4), 1289-1298.

[95]

Zhang, Z, Li, Y, Chen, X, Wang, Y, Niu, B, Liu, D. L., He, J, Pulatov, B, Hassan, I, Meng, Q., 2023. Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future. Agric. Syst., 205, 103581.

[96]

Zhao, J, Yang, X, Dai, S, Lv, S, Wang, J., 2015. Increased utilization of lengthening growing season and warming temperatures by adjusting sowing dates and cultivar selection for spring maize in Northeast China. Eur. J. Agron., 67, 12-19.

[97]

Zhou, M, Wang, H., 2015. Potential impact of future climate change on crop yield in northeastern China. Adv. Atmos. Sci., 32(7), 889-897.

[98]

Zhu, G, Liu, Z, Qiao, S, Zhang, Z, Huang, Q, Su, Z, Yang, X., 2022. How could observed sowing dates contribute to maize potential yield under climate change in Northeast China based on APSIM model. Eur. J. Agron., 136, 126511.

[99]

Zotarelli, L, Dukes, M. D., Romero, C. C., Migliaccio, K. W., Kelly, T. R., 2015. Step By Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). University of Florida, Institute of Food and Agricultural Sciences (IFAS)

PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

/