Integrating species diversity, ecosystem services, climate and ecological stability helps to improve spatial representation of protected areas for quadruple win

Hui Dang , Yihe Lü , Xiaofeng Wang , Yunqi Hao , Bojie Fu

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100205

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100205 DOI: 10.1016/j.geosus.2024.06.005
Research Article
review-article

Integrating species diversity, ecosystem services, climate and ecological stability helps to improve spatial representation of protected areas for quadruple win

Author information +
History +
PDF

Abstract

Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to encompass broader considerations such as ecosystem stability, community resilience to climate change, and enhancement of human well-being. Given these multifaceted objectives, it is imperative to judiciously allocate resources to effectively conserve biodiversity by identifying strategically significant areas for conservation, particularly for mountainous areas. In this study, we evaluated the representativeness of the protected area network in the Qinling Mountains concerning species diversity, ecosystem services, climate stability and ecological stability. The results indicate that some of the ecological indicators are spatially correlated with topographic gradient effects. The conservation priority areas predominantly lie in the northern foothills, the southeastern, and southwestern parts of the Qinling Mountain with areas concentrated at altitudes between 1,5002,000 m and slopes between 40°50° as hotspots. The conservation priority areas identified through the framework of inclusive conservation optimization account for 22.9 % of the Qinling Mountain. Existing protected areas comprise only 6.1 % of the Qinling Mountain and 13.18 % of the conservation priority areas. This will play an important role in achieving sustainable development in the region and in meeting the post-2020 biodiversity target. The framework can advance the different objectives of achieving a quadruple win and can also be extended to other regions.

Keywords

Protected areas / Nature conservation / Ecological representation / Qinling Mountains / Spatial planning

Cite this article

Download citation ▾
Hui Dang, Yihe Lü, Xiaofeng Wang, Yunqi Hao, Bojie Fu. Integrating species diversity, ecosystem services, climate and ecological stability helps to improve spatial representation of protected areas for quadruple win. Geography and Sustainability, 2025, 6(1): 100205 DOI:10.1016/j.geosus.2024.06.005

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Hui Dang: Writing – original draft, Software, Methodology. Yihe Lü: Writing – review & editing, Resources, Project administration. Xiaofeng Wang: Resources, Project administration. Yunqi Hao: Software, Data curation. Bojie Fu: Project administration, Funding acquisition, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 72349002).

References

[1]

Antonelli, A, Kissling, W. D., Flantua, S. G. A., Bermúdez, M. A., Mulch, A, Muellner-Riehl, A. N., Kreft, H, Linder, H. P., Badgley, C, Fjeldså, J, Fritz, S. A., Rahbek, C, Herman, F, Hooghiemstra, H, Hoorn, C., 2018. Geological and climatic influences on mountain biodiversity. Nat. Geosci., 11, 718-725.

[2]

Brodie, J. F., Mohd-Azlan, J, Chen, C, Wearn, O. R., Deith, M. C. M., Ball, J. G. C., Slade, E. M., Burslem, D. F. R. P., Teoh, S. W., Williams, P. J., Nguyen, A, Moore, J. H., Goetz, S. J., Burns, P, Jantz, P, Hakkenberg, C. R., Kaszta, Z. M., Cushman, S, Coomes, D, Helmy, O. E., Reynolds, G, Rodríguez, J. P., Jetz, W, Luskin, M. S., 2023. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807-812.

[3]

Bugmann, H. K. M., Bjornsen, F. E., Haeberli, W, Guisan, A, Fagre, D. B., Kaab, A., 2007. Modeling the biophysical impacts of global change in mountain biosphere reserves. Mt. Res. Dev., 27, 66-77.

[4]

Burrough, P. A., McDonell, R. A., 1998. Principles of Geographical Information System. Oxford University Press, New York

[5]

Chauvenet, A. L. M., Watson, J. E. M., Adams, V. M., Marco, M. D., Venter, O, Davis, K. J., Mappin, B, Klein, C. J., Kuempel, C. D., Possingham, H. P., 2020. To achieve big wins for terrestrial conservation, prioritize protection of ecoregions closest to meeting targets. One Earth 2(5), 479-486.

[6]

Chen, P, Czymzik, M, Yu, Z, Aldahan, A, Wang, J, Yi, P, Hou, X, Guo, S, Zheng, M., 2023. Tendency of soil erosion dynamics by coupling radioisotopes and RUSLE model on the Southeastern Tibetan Plateau in response to climate warming and human activity. Catena 223, 106954.

[7]

Doak, D. F., Bakker, V. J., Goldstein, B. E., Hale, B., 2014. What is the future of conservation?. Trends Ecol. Evol., 29(2), 77-81.

[8]

Dobrowski, S. Z., Littlefield, C. E., Lyons, D. S., Hollenberg, C, Carroll, C, Parks, S. A., Abatzoglou, J. T., Hegewisch, K, Gage, J., 2021. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth Environ., 2, 198.

[9]

Doxa, A, Kamarianakis, Y, Mazaris, A. D., 2022. Spatial heterogeneity and temporal stability characterize future climatic refugia in Mediterranean Europe. Glob. Change Biol., 28(7), 2413-2424.

[10]

Du, Q, Sun, Y, Guan, Q, Pan, N, Wang, Q, Ma, Y, Li, H, Liang, L., 2022. Vulnerability of grassland ecosystems to climate change in the Qilian Mountains, northwest China. J. Hydrol., 621, 128305.

[11]

Duncanson, L, Liang, M, Leitold, V, Armston, J, Moorthy, S. M. K., Dubayah, R, Costedoat, S, Enquist, B. J., Fatoyinbo, L, Goetz, S. J., Gonzalez-Roglich, M, Merow, C, Roehrdanz, P. R., Tabor, K, Zvoleff, A., 2023. The effectiveness of global protected areas for climate change mitigation. Nat. Commun., 14, 2908.

[12]

Elsen, P. R., Monahan, W. B., Dougherty, E. R., Merenlender, A. M., 2020. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv., 6(25), eaay0814.

[13]

Fan, X, Xu, W, Zang, Z, Ouyang, Z., 2023. Representativeness of China's protected areas in conserving its diverse terrestrial ecosystems. Ecosyst. Health Sustain., 9, 0029.

[14]

Fu, B, Liu, Y, Meadows, M. E., 2023. Ecological restoration for sustainable development in China. Nat. Sci. Rev., 10(7), nwad033.

[15]

Gao, J, Zou, C, Zhang, K, Xu, M, Wang, Y., 2020. The establishment of Chinese ecological conservation redline and insights into improving international protected areas. J. Environ. Manage., 264, 110505.

[16]

Gatiso, T. T., Kulik, L, Bachmann, M, Bonn, A, Bösch, L, Eirdosh, D, Freytag, A, Hanisch, S, Heurich, M, Sop, T, Wesche, K, Winter, M, Kühl, H. S., 2022. Effectiveness of protected areas influenced by socio-economic context. Nat. Sustain., 5, 861-868.

[17]

Geldmann, J., 2023. Safeguarding biodiversity requires understanding how to manage protected areas cost effectively. One Earth 6(2), 73-76.

[18]

Graham, V, Geldmann, J, Adams, V. M., Negret, P. J., Sinovas, P, Chang, H., 2021. Southeast Asian protected areas are effective in conserving forest cover and forest carbon stocks compared to unprotected areas. Sci. Rep., 11, 23760.

[19]

Grêt-Regamey, A, Weibel, B., 2020. Global assessment of mountain ecosystem services using earth observation data. Ecosyst. Serv., 46, 101213.

[20]

Guerry, A. D., Polasky, S, Lubchenco, J, Chaplin-Kramer, R, Daily, G. C., Griffin, R, Ruckelshaus, M, Bateman, I. J., Duraiappah, A, Elmqvist, T, Feldman, M. W., Folke, C, Hoekstra, J, Kareiva, P. M., Keeler, B. L., Li, S, McKenzie, E, Ouyang, Z, Reyers, B, Ricketts, T. H., Rockström, J, Tallis, H, Vira, B., 2015. Natural capital and ecosystem services informing decisions: from promise to practice. Proc. Natl. Acad. Sci. U.S.A., 112(24), 7348-7355.

[21]

Guo, X, Kapucu, N., 2018. Examining the impacts of disaster resettlement from a livelihood perspective: a case study of Qinling Mountains, China. Disasters 42(2), 251-274.

[22]

Hall, L. S., Krausman, P. R., Morrison, M. L., 1997. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull., 25(1), 173-182.

[23]

Hua, T, Zhao, W, Cherubini, F, Hu, X, Pereira, P., 2022. Strengthening protected areas for climate refugia on the Tibetan Plateau, China. Biol. Conserv., 275, 109781.

[24]

Hutchinson, M. F. 1991. The application of thin plate splines to continent-wide data assimilation. J.D. Jasper (Ed.), Data Assimilation Systems. BMRC Research Report NO.27, Bureau of Meteorology, Melbourne, pp.104-113.

[25]

Izabela, D, Lily, O. R., Joanna, M. S., Jörn, P. W. S., Joseph, A, Alexander, S. A., Pedram, R, Richard, J. H., Dag, L. A., Patricia, B, Carolyn, J. L., Charlotte, G, Anthony, E. A., Nils, C. S., 2021. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv., 7(12), eabc8259.

[26]

Ji, J, Yu, Y, Zhang, Z, Hua, T, Zhu, Y, Zhao, H., 2023. Notable conservation gaps for biodiversity, ecosystem services and climate change adaptation on the Tibetan Plateau, China. Sci. Total Environ., 895, 165032.

[27]

Keersmaecker, W. D., Lhermitte, S, Honnay, O, Farifteh, J, Somers, B, Coppin, P., 2014. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Glob. Change Biol., 20(7), 2149-2161.

[28]

Keppel, G, Niel, K. P. V., Wardell-Johnson, G. W., Yates, C. J., Byrne, M, Mucina, L, Schut, A. G. T., Hopper, S. D., Franklin, S. E., 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr., 21(4), 393-404.

[29]

Kou, Z, Yao, Y, Hu, Y, Zhang, B., 2020. Discussion on position of China's north-south transitional zone by comparative analysis of mountain altitudinal belts. J. Mt. Sci., 17, 1901-1915.

[30]

Li, J, Fu, B, Sun, J, Hong, Z, Zhang, B, Wang, X, Bai, H, Wang, F, Zhao, Z, Cao, X., 2021. Ecological civilization construction at Qinling Mountains in the New Era. J. Nat. Resour., 36(10), 2449-2463.

[31]

Li, Y, Jin, Q, Chen, Z, Yin, B, Li, Y, Liu, J., 2024. Pathways for achieving conservation targets under metacoupled anthropogenic disturbances. J. Environ. Manage., 353, 120227.

[32]

Liu, F, Kang, J, Wu, Y, Yang, D, Meng, Q., 2022. What do we visually focus on in a world heritage site? A case study in the Historic Centre of Prague. Hum. Soc. Sci. Commun., 9, 400.

[33]

Liu, Y, , Y, Zhao, M, Fu, B., 2023. Integrative analysis of biodiversity, ecosystem services, and ecological vulnerability can facilitate improved spatial representation of nature reserves. Sci. Total Environ., 879, 163096.

[34]

Loarie, S. R., Duffy, P. B., Hamilton, H, Asner, G. P., Field, C. B., Ackerly, D. D., 2009. The velocity of climate change. Nature 462, 1052-1055.

[35]

, Y. H., Zhang, L. W., Zeng, Y, Fu, B. J., Whitham, C, Liu, S, Wu, B. F., 2017. Representation of critical natural capital in China. Conserv. Biol., 31(4), 894-902.

[36]

Machac, A., 2023. The geography of climate governs biodiversity. Nature 622, 463-464.

[37]

Mi, C, Ma, L, Yang, M, Li, X, Meiri, S, Roll, U, Oskyrko, O, Pincheira-Donoso, D, Harvey, L, Jablonski, D, Safaei-Mahroo, B, Ghaffari, H, Smid, J, Jarvie, S, Kimani, R. M., Masroor, R, Kazemi, S. M., Nneji, L. M., Fokoua, A. M. T., Taboue, G. C. T., Bauer, A, Nogueira, C, Meirte, D, Chapple, D. G., Das, I, Grismer, L, Avila, L. J., Júnior, M. A. R., Tallowin, O. J. S., Torres-Carvajal, O, Wagner, P, Ron, S. R., Wang, Y, Itescu, Y, Nagy, Z. T., Wilcove, D. S., Liu, X, Du, W., 2023. Global protected areas as refuges for amphibians and reptiles under climate change. Nat. Commun., 14, 1389.

[38]

Mi, X, Feng, G, Hu, Y, Zhang, J, Chen, L, Corlett, R. T., Hughes, A. C., Pimm, S, Schmid, B, Shi, S, Svenning, J. C., Ma, K., 2021. The global significance of biodiversity science in China: an overview. Nat. Sci. Rev., 8(7), nwab032.

[39]

Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-Being: Policy Responses. Findings of the Responses Working Group. Island Press, Washington, D.C.

[40]

Molinos, J. G., Halpern, B. S., Schoeman, D. S., Brown, C. J., Kiessling, W, Moore, P. J., Pandolfi, J. M., Poloczanska, E. S., Richardson, A. J., Burrows, M. T., 2015. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83-88.

[41]

Myers, N, Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.

[42]

Pennekamp, F, Pontarp, M, Tabi, A, Altermatt, F, Alther, R, Choffat, Y, Fronhofer, E. A., Ganesanandamoorthy, P, Garnier, A, Griffiths, J. I., Greene, S, Horgan, K, Massie, T. M., Mächler, E, Palamara, G. M., Seymour, M, Petchey, O. L., 2018. Biodiversity increases and decreases ecosystem stability. Nature 563, 109-112.

[43]

Qi, G, Bai, H, Zhao, T, Meng, Q, Zhang, S., 2021. Sensitivity and areal differentiation of vegetation responses to hydrothermal dynamics on the northern and southern slopes of the Qinling Mountains in Shaanxi province. J. Geogr. Sci., 31, 785-801.

[44]

Ramel, C, Rey, P, Fernandes, R, Vincent, C, Cardoso, A. R., Broennimann, O, Pellissier, L, Pradervand, J, Ursenbacher, S, Schmidt, B. R., Antoine Guisan, A., 2020. Integrating ecosystem services within spatial biodiversity conservation prioritization in the Alps. Ecosyst. Serv., 45, 101186.

[45]

Renard, K. G., Foster, G. R., Weesies, G. A., Mccool, D. K., Yoder, D. C., 1997. Predicting Soil Erosion by Water: a Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook No. 703. US Department of Agriculture, Washington, D.C

[46]

Resende, F. M., Cimon-Morin, J, Poulin, M, Meyer, L, Joner, D. C., Loyola, R., 2021. The importance of protected areas and Indigenous lands in securing ecosystem services and biodiversity in the Cerrado. Ecosyst. Serv., 49, 101282.

[47]

Schirpke, U, Wang, G, Padoa-Schioppa, E., 2021. Climate change can lead to species migration, vegetation changes, and streamflow changes. Ecosyst. Serv., 49, 101302.

[48]

Sharp, R, Ricketts, T, Guerry, A. D., 2015. InVEST 3.2. 0 Beta User's Guide. The Natural Capital Project. Stanford University, Stanford, CA, USA

[49]

Stralberg, D, Carroll, C, Nielsen, S. E., 2020. Toward a climate-informed North American protected areas network: incorporating climate-change refugia and corridors in conservation planning. Conserv. Lett., 13, 4.

[50]

Tilman, D, Reich, P. B., Knops, J. M. H., 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629-632.

[51]

Vigl, L. E., Marsoner, T, Schirpke, U, Tscholl, S, Candiago, S, Depellegrin, D., 2021. A multi-pressure analysis of ecosystem services for conservation planning. Ecosyst. Serv., 47, 101230.

[52]

Voskamp, A, Fritz, S. A., Köcke, V, Biber, M. F., Brockmeyer, T. N., Bertzky, B, Forrest, M, Goldstein, A, Henderson, S, Hickler, T, Hof, C, Kastner, T, Lang, S, Manning, P, Mascia, M. B., McFadden, I. R., Niamir, A, Noon, M, O'Donnell, B, Opel, M, Schwede, G, West, P, Schenck, C, Böhning-Gaese, K., 2023. Utilizing multi-objective decision support tools for protected area selection. One Earth 6(9), 1143-1156.

[53]

Wilson, K. L., Tittensor, D. P., Worm, B, Lotze, H. K., 2020. Incorporating climate change adaptation into marine protected area planning. Glob. Change Biol., 26(6), 3251-3267.

[54]

Yu, F, Li, C, Yuan, Z, Luo, Y, Yin, Q, Wang, Q, Hao, Z., 2023. How do mountain ecosystem services respond to changes in vegetation and climate? An evidence from the Qinling Mountains, China. Ecol. Indic., 154, 110922.

[55]

Yu, Y, Li, J, Zhou, Z, Ma, X, Zhang, X., 2021. Response of multiple mountain ecosystem services on environmental gradients: how to respond, and where should be priority conservation?. J. Clean. Prod., 278, 123264.

[56]

Zeng, Y, Koh, L. P., Wilcove, D. S., 2022. Gains in biodiversity conservation and ecosystem services from the expansion of the planet's protected areas. Sci. Adv., 8(22), eabl9885.

[57]

Zhang, X, Zhang, B, Yao, Y, Liu, J, Wang, J, Yu, F, Li, J., 2022. Variation model of north-south plant species diversity in the Qinling-Daba Mountains in China. Glob. Ecol. Conserv., 38, e02190.

[58]

Zhang, B., 2019. Ten major scientific issues concerning the study of China's north-south transitional zone. Prog. Geogr., 38(3), 305-311.

[59]

Zhao, F, Liu, J, Zhu, W, Zhang, B, Zhu, L., 2020. Spatial variation of altitudinal belts as dividing index between warm temperate and subtropical zones in the Qinling-Daba Mountains. J. Geogr. Sci., 30, 642-656.

[60]

You, Z, Hu, J, Wei, Q, Li, C, Deng, X, Jiang, Z, Wei, Q., 2018. Pitfall of big databases. Proc. Natl. Acad. Sci. U.S.A., 115(39), E9026-E9028.

[61]

Elsen, P. R., Monahan, W. B., Merenlender, A. M., 2018. Global patterns of protection of elevational gradients in mountain ranges. Proc. Natl. Acad Sci. U.S.A., 115(23), 6004-6009.

PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

/