A distributed modeling approach to water balance implications from changing land cover dynamics in permafrost environments

Naveed Ahmed , Haishen Lu , Zhongbo Yu , Oluwafemi E. Adeyeri , Muhammad Shahid Iqbal , Jinbin Su

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) : 561 -576.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (4) :561 -576. DOI: 10.1016/j.geosus.2024.06.004
Research Article
review-article

A distributed modeling approach to water balance implications from changing land cover dynamics in permafrost environments

Author information +
History +
PDF

Abstract

There is 78 % permafrost and seasonal frozen soil in the Yangtze River’s Source Region (SRYR), which is situated in the middle of the Qinghai-Xizang Plateau. Three distinct scenarios were developed in the Soil and Water Assessment Tool (SWAT) to model the effects of land cover change (LCC) on various water balance components. Discharge and percolation of groundwater have decreased by mid-December. This demonstrates the seasonal contributions of subsurface water, which diminish when soil freezes. During winter, when surface water inputs are low, groundwater storage becomes even more critical to ensure water supply due to this periodic trend. An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC + permafrost scenario. The water transport and storage phase reached a critical point in August when precipitation, permafrost thawing, and snowmelt caused LATQ to surge. To prevent waterlogging and save water for dry periods, it is necessary to control this peak flow phase. Hydrological processes, permafrost dynamics, and land cover changes in the SRYR are difficult, according to the data. These interactions enhance water circulation throughout the year, recharge of groundwater supplies, surface runoff, and lateral flow. For the region’s water resource management to be effective in sustaining ecohydrology, ensuring appropriate water storage, and alleviating freshwater scarcity, these dynamics must be considered.

Keywords

Cold region / Land cover change / Permafrost hydrology / SWAT model / Source region / Yangtze river

Cite this article

Download citation ▾
Naveed Ahmed, Haishen Lu, Zhongbo Yu, Oluwafemi E. Adeyeri, Muhammad Shahid Iqbal, Jinbin Su. A distributed modeling approach to water balance implications from changing land cover dynamics in permafrost environments. Geography and Sustainability, 2024, 5(4): 561-576 DOI:10.1016/j.geosus.2024.06.004

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability statement

The data used in this study is available with the authors and can be accessed upon request.

CRediT authorship contribution statement

Naveed Ahmed: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Writing – original draft. Haishen Lu: Funding acquisition, Investigation, Supervision, Validation, Visualization, Writing – review & editing. Zhongbo Yu: Funding acquisition, Investigation, Supervision, Validation, Visualization, Writing – review & editing. Oluwafemi E. Adeyeri: Data curation, Formal analysis, Investigation, Visualization, Writing – review & editing. Muhammad Shahid Iqbal: Supervision, Writing – review & editing. Jinbin Su: Funding acquisition, Investigation, Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors are thankful to the Yangtze River Authority and Chinese Meteorological Administration for providing the data used in this study. They are also thankful to the College of Hydrology and Water Resources of Hohai University for providing technical support and resources. The first author also acknowledges the China Post Doctoral Forum for providing the opportunity for this research work. This study was financially supported by the Key Program of the National Natural Science Foundation of China (Grant No. 41830752) and the General Program of the National Natural Science Foundation of China (Grants No. 42101397, 42071033, 41961134003).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.06.004.

References

[1]

Abbaspour, K. C., Johnson, C, Van Genuchten, M. T., 2004. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J., 3(4), 1340-1352.

[2]

Abbaspour, K. C., Rouholahnejad, E, Vaghefi, S, Srinivasan, R, Yang, H, Kløve, B., 2015. A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol., 524, 733-752.

[3]

Abbaspour, K. C., Vaghefi, S. A., Srinivasan, R., 2018. A guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 international SWAT conference. Water 10(1), 6.

[4]

Adeyeri, O. E., Ishola, K. A., 2021. Variability and trends of actual evapotranspiration over West Africa: the role of environmental drivers. Agric. For. Meteorol., 308, 108574.

[5]

Adeyeri, O. E., Laux, P, Arnault, J, Lawin, A. E., Kunstmann, H., 2020. Conceptual hydrological model calibration using multi-objective optimization techniques over the transboundary Komadugu-Yobe basin, Lake Chad Area, West Africa. J. Hydrol. Reg. Stud., 27, 100655.

[6]

Adeyeri, O. E., Laux, P, Lawin, A. E., Arnault, J., 2020. Assessing the impact of human activities and rainfall variability on the river discharge of Komadugu-Yobe Basin, Lake Chad Area. Environ. Earth Sci., 79(6), 143.

[7]

Adeyeri, O. E., Zhou, W, Ndehedehe, C. E., Wang, X, Ishola, K. A., Laux, P., 2024. Minimizing uncertainties in climate projections and water budget reveals the vulnerability of freshwater to climate change. One Earth 7(1), 72-87.

[8]

Ahmed, N, Wang, G. X., Oluwafemi, A, Munir, S, Hu, Z. Y., Shakoor, A, Imran, M. A., 2020. Temperature trends and elevation dependent warming during 1965–2014 in headwaters of Yangtze River, Qinghai Tibetan Plateau. J. Mt. Sci., 17(3), 556-571.

[9]

Ahmed, N, Wang, G, Booij, M. J., Marhaento, H, Pordhan, F. A., Ali, S, Munir, S, Hashmi, M. Z. U. R., 2022. Variations in hydrological variables using distributed hydrological model in permafrost environment. Ecol. Indic., 145, 109609.

[10]

Ahmed, N, Wang, G, Booij, M. J., Oluwafemi, A, Hashmi, M. Z. U. R., Ali, S, Munir, S., 2020. Climatic variability and periodicity for upstream sub-basins of the Yangtze River, China. Water 12(3), 842.

[11]

Ahmed, N, Wang, G, Booij, M. J., Xiangyang, S, Hussain, F, Nabi, G., 2022. Separation of the impact of landuse/landcover change and climate change on runoff in the upstream area of the Yangtze River, China. Water Resour. Manag., 36(1), 181-201.

[12]

Ahmed, N, Wang, G, , H, Booij, M. J., Marhaento, H, Prodhan, F. A., Ali, S, Ali Imran, M., 2022. Attribution of changes in streamflow to climate change and land cover change in Yangtze River Source Region, China. Water 14(2), 259.

[13]

Anand, J, Gosain, A. K., Khosa, R., 2018. Prediction of land use changes based on land change modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Sci. Total Environ., 644, 503-519.

[14]

Aragaw, H. M., Goel, M. K., Mishra, S. K., 2021. Hydrological responses to human-induced land use/land cover changes in the Gidabo River basin, Ethiopia. Hydrol. Sci. J., 66(4), 640-655.

[15]

Arnold, J. G., Srinivasan, R, Muttiah, R. S., Williams, J. R., 1998. Large area hydrologic modeling and assessment part I: model development. J. Am. Water Resour. Assoc., 34(1), 73-89.

[16]

Bai, X, Zhao, W., 2023. Impacts of climate change and anthropogenic stressors on runoff variations in major river basins in China since 1950. Sci. Total Environ., 898, 165349.

[17]

Bennour, A, Jia, L, Menenti, M, Zheng, C. L., Zeng, Y. L., Barnieh, B. A., Jiang, M., 2023. Assessing impacts of climate variability and land use/land cover change on the water balance components in the Sahel using Earth observations and hydrological modelling. J. Hydrol. Reg. Stud., 47, 101370.

[18]

Beven, K. J., 2000. Uniqueness of place and process representations in hydrological modelling. Hydrol. Earth Syst. Sci., 4(2), 203-213.

[19]

Cai, Y, Zhang, F, Shi, J, Carl Johnson, V, Ahmed, Z, Wang, J, Wang, W., 2023. Enhancing SWAT model with modified method to improve eco-hydrological simulation in arid region. J. Clean. Prod., 403, 136891.

[20]

Chen, Y, Wang, L, Shi, X, Zeng, C, Wang, Y, Wang, G, Qiangba, C, Yue, C, Sun, Z, Renzeng, O, Zhang, F., 2023. Impact of climate change on the hydrological regimes of the midstream section of the Yarlung Tsangpo River basin based on SWAT model. Water 15(4), 685.

[21]

Chen, Y. Z., Faramarzi, M, Gan, T. Y., She, Y. T., 2023. Evaluation and uncertainty assessment of weather data and model calibration on daily streamflow simulation in a large-scale regulated and snow-dominated river basin. J. Hydrol., 617, 129103.

[22]

Chen, Y. Z., She, Y. T., 2023. A hydrologic and river ice modelling framework for assessing ungauged sub-basin streamflow impact in a large cold-region river basin. Hydrol. Sci. J., 68(15), 2121-2140.

[23]

Cheng, X, Chen, L, Sun, R, Kong, P., 2018. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China. Sci. Total Environ., 616, 376-385.

[24]

Dey, P, Mishra, A., 2017. Separating the impacts of climate change and human activities on streamflow: a review of methodologies and critical assumptions. J. Hydrol., 548, 278-290.

[25]

Dibaba, W. T., Demissie, T. A., Miegel, K., 2020. Drivers and implications of land use/land cover dynamics in Finchaa catchment, northwestern Ethiopia. Land 9(4), 113.

[26]

Du, X. Z., Faramarzi, M, Qi, J. Y., Lei, Q. L., Liu, H. B., 2023. Investigating hydrological transport pathways of dissolved organic carbon in cold region watershed based on a watershed biogeochemical model. Environ. Pollut., 324, 121390.

[27]

Fabre, C, Sauvage, S, Tananaev, N, Noël, G. E., Teisserenc, R, Probst, J. L., Pérez, J. M. S., 2019. Assessment of sediment and organic carbon exports into the Arctic ocean: the case of the Yenisei River basin. Water Res., 158, 118-135.

[28]

Fabre, C, Sauvage, S, Tananaev, N, Srinivasan, R, Teisserenc, R, Sánchez Pérez, J. M., 2017. Using modeling tools to better understand permafrost hydrology. Water 9(6), 418.

[29]

Faramarzi, M, Srinivasan, R, Iravani, M, Bladon, K. D., Abbaspour, K. C., Zehnder, A. J. B., Goss, G. G., 2015. Setting up a hydrological model of Alberta: data discrimination analyses prior to calibration. Environ. Modell. Softw., 74, 48-65.

[30]

Geng, X, Wang, X, Yan, H, Zhang, Q, Jin, G., 2015. Land use/land cover change induced impacts on water supply service in the upper reach of Heihe River basin. Sustainability 7(1), 366-383.

[31]

Ghodichore, N, Dhanya, C. T., Hendricks Franssen, H. J., 2022. Isolating the effects of land use land cover change and inter-decadal climate variations on the water and energy cycles over India, 1981–2010. J. Hydrol., 612, 128267.

[32]

Gong, L, Zhang, X, Pan, G, Zhao, J, Zhao, Y., 2023. Hydrological responses to co-impacts of climate change and land use/cover change based on CMIP6 in the Ganjiang River, Poyang Lake basin. Anthropocene 41, 100368.

[33]

Guo, W, Liu, S, Xu, J, Wu, L, Shangguan, D, Yao, X, Wei, J, Bao, W, Yu, P, Liu, Q., 2015. The second Chinese glacier inventory: data, methods and results. J. Glaciol., 61(226), 357-372.

[34]

Hao, F, Chen, L, Liu, C, Dai, D., 2004. Impact of land use change on runoff and sediment yield. J. Soil Water Conser., 18(3), 5-8.

[35]

Hu, P, Cai, T, Sui, F, Duan, L, Man, X, Cui, X., 2021. Response of runoff to extreme land use change in the permafrost region of Northeastern China. Forests 12(8), 1021.

[36]

Hülsmann, L, Geyer, T, Schweitzer, C, Priess, J, Karthe, D., 2015. The effect of subarctic conditions on water resources: initial results and limitations of the SWAT model applied to the Kharaa River basin in Northern Mongolia. Environ. Earth Sci., 73(2), 581-592.

[37]

Hussainzada, W, Lee, H. S., 2022. Effect of an improved agricultural irrigation scheme with a hydraulic structure for crop cultivation in arid northern Afghanistan using the Soil and Water Assessment Tool (SWAT). Sci. Rep., 12(1), 5186.

[38]

Ishtiaque, A, Shrestha, M, Chhetri, N., 2017. Rapid urban growth in the Kathmandu Valley, Nepal: monitoring land use land cover dynamics of a himalayan city with landsat imageries. Environments 4(4), 72.

[39]

Jia, Y, Zhao, H, Niu, C, Jiang, Y, Gan, H, Xing, Z, Zhao, X, Zhao, Z., 2009. A WebGIS-based system for rainfall-runoff prediction and real-time water resources assessment for Beijing. Comput. Geosci., 35(7), 1517-1528.

[40]

Kaur, B, Shrestha, N. K., Ghimire, U, Paul, P. K., Rudra, R, Goel, P, Daggupati, P., 2023. Future water security under climate change: a perspective of the Grand River Watershed. J. Water Clim. Change 14(5), 1433-1446.

[41]

Koltsida, E, Mamassis, N, Kallioras, A., 2023. Hydrological modeling using the soil and water assessment tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece). Hydrol. Earth Syst. Sci., 27(4), 917-931.

[42]

Law, B. E., Falge, E, Gu, L, Baldocchi, D. D., Bakwin, P, Berbigier, P, Davis, K, Dolman, A. J., Falk, M, Fuentes, J., 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol., 113(1–4), 97-120.

[43]

Legesse, D, Vallet-Coulomb, C, Gasse, F., 2003. Hydrological response of a catchment to climate and land use changes in Tropical Africa: case study South Central Ethiopia. J. Hydrol., 275(1–2), 67-85.

[44]

Li, J, Liu, D, Wang, T, Li, Y, Wang, S, Yang, Y, Wang, X, Guo, H, Peng, S, Ding, J, Shen, M, Wang, L., 2017. Grassland restoration reduces water yield in the headstream region of Yangtze River. Sci. Rep., 7(1), 2162.

[45]

Li, Q, Wei, X, Zhang, M, Liu, W, Fan, H, Zhou, G, Giles-Hansen, K, Liu, S, Wang, Y., 2017. Forest cover change and water yield in large forested watersheds: a global synthetic assessment. Ecohydrology 10(4), e1838.

[46]

Li, S, Yang, H, Lacayo, M, Liu, J, Lei, G., 2018. Impacts of land-use and land-cover changes on water yield: a case study in Jing-Jin-Ji, China. Sustainability 10(4), 960.

[47]

Liu, S, Wang, F, Wang, X, Luo, H, Wang, L, Zhou, P, Xu, C., 2023. Modeling the impact of climate change on streamflow in glacier/snow-fed northern Tianshan basin. J. Hydrol.: Reg. Stud., 50, 101552.

[48]

Liu, W, Wu, J, Xu, F, Mu, D, Zhang, P., 2024. Modeling the effects of land use/land cover changes on river runoff using SWAT models: a case study of the Danjiang River source area, China. Environ. Res., 242, 117810.

[49]

Liu, Z, Rong, L, Wei, W., 2023. Impacts of land use/cover change on water balance by using the SWAT model in a typical loess hilly watershed of China. Geogr. Sustain., 4(1), 19-28.

[50]

Mao, J, Fu, W, Shi, X, Ricciuto, D. M., Fisher, J. B., Dickinson, R. E., Wei, Y, Shem, W, Piao, S, Wang, K., 2015. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ. Res. Lett., 10(9), 094008.

[51]

Marhaento, H, Booij, M. J., Ahmed, N., 2021. Quantifying relative contribution of land use change and climate change to streamflow alteration in the Bengawan Solo River, Indonesia. Hydrol. Sci. J., 66(6), 1059-1068.

[52]

Marhaento, H, Booij, M. J., Hoekstra, A. Y., 2017. Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia. Hydrol. Res., 48(4), 1143-1155.

[53]

Marhaento, H, Booij, M. J., Rientjes, T. H. M., Hoekstra, A. Y., 2017. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrol. Process., 31(11), 2029-2040.

[54]

Nie, N, Li, T, Miao, Y, Zhang, W, Gao, H, He, H, Zhao, D, Liu, M., 2023. Asymmetry of blue and green water changes in the Yangtze river basin, China, examined by multi-water-variable calibrated SWAT model. J. Hydrol., 625, 130099.

[55]

Nie, N, Zhang, W, Liu, M, Chen, H, Zhao, D., 2021. Separating the impacts of climate variability, land-use change and large reservoir operations on streamflow in the Yangtze River basin, China, using a hydrological modeling approach. Int. J. Digit. Earth 14(2), 231-249.

[56]

Polong, F, Deng, K. D., Pham, Q. B., Linh, N. T. T., Abba, S. I., Ahmed, A. N., Anh, D. T., Khedher, K. M., El-Shafie, A., 2023. Separation and attribution of impacts of changes in land use and climate on hydrological processes. Theor. Appl. Climatol., 151(3–4), 1337-1353.

[57]

Shan, W, Wang, Y, Guo, Y, Zhang, C, Liu, S, Qiu, L., 2023. Impacts of climate change on permafrost and hydrological processes in Northeast China. Sustainability 15(6), 4974.

[58]

Sharma, A, Patel, P. L., Sharma, P. J., 2022. Influence of climate and land-use changes on the sensitivity of SWAT model parameters and water availability in a semi-arid river basin. Catena 215, 106298.

[59]

Shrestha, N. K., Wang, J., 2018. Current and future hot-spots and hot-moments of nitrous oxide emission in a cold climate river basin. Environ. Pollut., 239, 648-660.

[60]

Song, L, Zhuang, Q, Yin, Y, Zhu, X, Wu, S., 2017. Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environ. Res. Lett., 12(1), 014011.

[61]

Srivastava, A, Kumari, N, Maza, M., 2020. Hydrological response to agricultural land use heterogeneity using variable infiltration capacity model. Water Resour. Manag., 34(12), 3779-3794.

[62]

Uniyal, B, Kosatica, E, Koellner, T., 2023. Spatial and temporal variability of climate change impacts on ecosystem services in small agricultural catchments using the Soil and Water Assessment Tool (SWAT). Sci. Total Environ., 875, 162520.

[63]

Wang, L, Zhao, L, Zhou, H, Liu, S, Liu, G, Zou, D, Du, E, Hu, G, Wang, C., 2023. Quantification of water released by thawing permafrost in the source region of the Yangtze River on the Tibetan Plateau by InSAR monitoring. Water Resour. Res., 59(12), e2023WR034451.

[64]

Wang, Q, Cai, X, Tang, J, Yang, L, Wang, J, Xu, Y., 2023. Climate feedbacks associated with land-use and land-cover change on hydrological extremes over the Yangtze River Delta Region, China. J. Hydrol., 623, 129855.

[65]

Wang, Y, Zhang, Y, Chiew, F. H., McVicar, T. R., Zhang, L, Li, H, Qin, G., 2017. Contrasting runoff trends between dry and wet parts of eastern Tibetan Plateau. Sci. Rep., 7(1), 15458.

[66]

Weber, A, Fohrer, N, Möller, D., 2001. Long-term land use changes in a mesoscale watershed due to socio-economic factors — effects on landscape structures and functions. Ecol. Model., 140(1), 125-140.

[67]

Woo, M. K., Winter, T. C., 1993. The role of permafrost and seasonal frost in the hydrology of northern wetlands in North America. J. Hydrol., 141(1–4), 5-31.

[68]

Woo, M. K., Marsh, P, Pomeroy, J. W., 2000. Snow, frozen soils and permafrost hydrology in Canada, 1995–1998. Hydrol. Process., 14(9), 1591-1611.

[69]

Wu, J, Miao, C, Zheng, H, Duan, Q, Lei, X, Li, H., 2018. Meteorological and hydrological drought on the Loess Plateau, China: evolutionary characteristics, impact, and propagation. J. Geophys. Res. Atmos., 123(20), 11.

[70]

Xu, F, Zhao, L, Jia, Y, Niu, C, Liu, X, Liu, H., 2022. Evaluation of water conservation function of Beijiang River basin in Nanling Mountains, China, based on WEP-L model. Ecol. Indic., 134, 108383.

[71]

Yang, L, Chen, W, Pan, S, Zeng, J, Yuan, Y, Gu, T., 2023. Spatial relationship between land urbanization and ecosystem health in the Yangtze River basin, China. Environ. Monit. Assess., 195(8), 957.

[72]

Zare, M, Azam, S, Sauchyn, D., 2022. A modified SWAT model to simulate soil water content and soil temperature in cold regions: a case study of the south Saskatchewan River basin in Canada. Sustainability 14(17), 10804.

[73]

Zhang, Y. Q., Ge, J. N., Qi, J. Y., Liu, H. P., Zhang, X. L., Marek, G. W., Yuan, C. C., Ding, B. B., Feng, P. Y., Liu, D. L., Srinivasan, R, Chen, Y., 2023. Evaluating the effects of single and integrated extreme climate events on hydrology in the Liao River basin, China using a modified SWAT-BSR model. J. Hydrol., 623, 129772.

[74]

Zhao, D, Wu, S., 2019. Projected changes in permafrost active layer thickness over the Qinghai-Tibet Plateau under climate change. Water Resour. Res., 55(9), 7860-7875.

[75]

Zhao, H, Li, H, Xuan, Y, Li, C, Ni, H., 2022. Improvement of the SWAT model for snowmelt runoff simulation in seasonal snowmelt area using remote sensing data. Remote Sens., 14(22), 5823.

[76]

Zheng, Q, Hao, L, Huang, X, Sun, L, Sun, G., 2020. Effects of urbanization on watershed evapotranspiration and its components in southern China. Water 12(3), 645.

[77]

Zhou, J. T., Wang, X. F., Ma, J. H., Jia, Z. X., Wang, X. X., Zhang, X. R., Feng, X. M., Sun, Z. C., Tu, Y, Yao, W. J., 2023. An approach to select optimum inputs for hydrological modeling to improve simulation accuracy in data-scarce regions. J. Hydrol. Reg. Stud., 47, 101447.

[78]

Zhu, P, Zhang, G, Wang, H, Zhang, B, Wang, X., 2020. Land surface roughness affected by vegetation restoration age and types on the Loess Plateau of China. Geoderma 366, 114240.

[79]

Zhu, Z, Fu, C, Wu, H, Wu, H, Cao, Y, Xia, Y., 2023. Decoding the hundred-year water level changes of the largest Saline Lake in China: a joint lake-basin modeling study based on a revised SWAT+. J. Hydrol. Reg. Stud., 49, 101521.

PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

/