Extreme weather characteristics and influences on urban ecosystem services in Wuhan Urban Agglomeration

Xin Dai , Lunche Wang , Jie Gong , Zigeng Niu , Qian Cao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100201

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100201 DOI: 10.1016/j.geosus.2024.06.003
Research Article
review-article

Extreme weather characteristics and influences on urban ecosystem services in Wuhan Urban Agglomeration

Author information +
History +
PDF

Abstract

In recent years, there has been a pronounced increase in the frequency of extreme weather events. To comprehensively examine the impact of extreme weather on ecosystem services within the Wuhan Urban Agglomeration (WUA), this study utilized meteorological station data, the Mann-Kendall (MK) test, and the Standardized Precipitation-Evapotranspiration Index (SPEI) to quantify the variation trends in heatwaves (HW) and droughts from 1961 to 2020. Then the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model was employed to evaluate and compare the differences in water yield and climate regulation ecosystem services under various HW, droughts, and HW-drought combination scenarios. The results show that over the past 60 years, the temperature, duration, and frequency of HW have significantly increased in the WUA. Specifically, the highest HW temperature, total HW days, HW frequency, and average HW temperature showed changing trend of +0.17 ℃/decade, +1.4 day/decade, +0.19 event/decade, and +0.07 ℃/decade, respectively. The year 2000 was identified as a mutation year for HW, characterized by increased frequency and heightened severity thereafter. The SPEI value exhibited an insignificant upward trend, with 1980 marked as a mutation year, indicating a decreasing trend in drought occurrences after 1980. Heatwaves have a weakening effect on both water yield and climate regulation services, while drought significantly weakened water yield and had a relatively modest effect on climate regulation. During HW-drought composite period, the average monthly water yield showed a notable discrepancy of 60 mm compared to humid years. Besides, as heatwaves intensify, the area of low aggregation for ecosystem services expands, whereas the area of high aggregation decreases. This study provides a preliminary understanding of the impact of urban extreme weather on urban ecosystem services under changing climatic conditions.

Keywords

Heatwaves / Drought / Ecosystem services / Extreme weather composite events

Cite this article

Download citation ▾
Xin Dai, Lunche Wang, Jie Gong, Zigeng Niu, Qian Cao. Extreme weather characteristics and influences on urban ecosystem services in Wuhan Urban Agglomeration. Geography and Sustainability, 2025, 6(1): 100201 DOI:10.1016/j.geosus.2024.06.003

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

Data will be made available on request.

CRediT authorship contribution statement

Xin Dai: Writing – original draft, Formal analysis. Lunche Wang: Writing – review & editing, Methodology, Funding acquisition, Conceptualization. Jie Gong: Software, Resources. Zigeng Niu: Writing – review & editing, Supervision, Resources. Qian Cao: Writing – review & editing, Project administration, Methodology.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grants No. 42371354, 42375129, 42371115) and the Fundamental Research Funds for National Universities, China University of Geosciences, Wuhan. We thank the China Meteorological Administration (CMA) for providing the climate data.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.06.003.

References

[1]

An, W, Wang, B, Duan, L, Giovanni, C, Yu, G., 2023. Emerging contaminants in the northwest area of the Tai Lake basin, China: spatial autocorrelation analysis for source apportionment and wastewater-based epidemiological analysis. Sci. Total Environ., 865, 161176.

[2]

Anderson, G. B., Bell, M. L., 2011. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 119(2), 210-218.

[3]

Anselin, L., 1995. Local indicators of spatial association—LISA. Geogr. Anal., 27(2), 93-115.

[4]

Baptista, M. D., Livesley, S. J., Parmehr, E. G., Neave, M, Amati, M., 2018. Variation in leaf area density drives the rainfall storage capacity of individual urban tree species. Hydrol. Process., 32(25), 3729-3740.

[5]

Begueria, S, Vicente-Serrano, S. M., Reig, F, Latorre, B., 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol., 34(10), 3001-3023.

[6]

Chalchissa, F. B., Kuris, B. K., 2024. Modelling soil organic carbon dynamics under extreme climate and land use and land cover changes in Western Oromia Regional state, Ethiopia. J. Environ. Manage., 350, 119598.

[7]

Chen, H. Q., Zhao, L, Dong, W, Cheng, L. L., Cai, W. J., Yang, J, Bao, J. Z., Liang, X. Z., Hajat, S, Gong, P, Liang, W. N., Huang, C. R., 2022. Spatiotemporal variation of mortality burden attributable to heatwaves in China, 1979–2020. Sci. Bull., 67(13), 1340-1344.

[8]

Chen, W. X., Chi, G. Q., Li, J. F., 2020. Ecosystem services and their driving forces in the middle reaches of the Yangtze River Urban Agglomerations, China. Int. J. Environ. Res. Public Health 17(10), 3717.

[9]

Chen, X. L., Zhou, T. J., 2018. Relative contributions of external SST forcing and internal atmospheric variability to July-August heat waves over the Yangtze River valley. Clim. Dyn., 51(11–12), 4403-4419.

[10]

Cheng, Q. P., Gao, L, Chen, Y, Liu, M. B., Deng, H. J., Chen, X. W., 2018. Temporal-spatial characteristics of drought in Guizhou Province, China, based on multiple drought indices and historical disaster records. Adv. Meteorol., 2018, 4721269.

[11]

Dai, X, Wang, L, Li, X, Gong, J, Cao, Q., 2023. Characteristics of the extreme precipitation and its impacts on ecosystem services in the Wuhan Urban Agglomeration. Sci. Total Environ., 864, 161045.

[12]

Depietri, Y, Renaud, F. G., Kallis, G., 2012. Heat waves and floods in urban areas: a policy-oriented review of ecosystem services. Sustain. Sci., 7(1), 95-107.

[13]

Faiz, M. A., Zhang, Y. Q., Zhang, X. Z., Ma, N, Aryal, S. K., Ha, T. T. V., Baig, F, Naz, F., 2022. A composite drought index developed for detecting large-scale drought characteristics. J. Hydrol., 605, 127308.

[14]

Fan, J, Qin, P, Shi, R., 2022. Characteristics of compound hot and drought disasters in Hubei under the background of climate change. J. Arid Meteorol., 40(5), 780-790.

[15]

Fang, L. L., Wang, L. C., Chen, W. X., Sun, J, Cao, Q, Wang, S. Q., Wang, L. Z., 2021. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River basins. J. Clean. Prod., 314, 127995.

[16]

Fischer, P. H., Brunekreef, B, Lebret, E., 2004. Air pollution related deaths during the 2003 heat wave in the Netherlands. Atmos. Environ., 38(8), 1083-1085.

[17]

Frolicher, T. L., Fischer, E. M., Gruber, N., 2018. Marine heatwaves under global warming. Nature 560(7718), 360-364.

[18]

Gocic, M, Trajkovic, S., 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Glob. Planet. Change 100, 172-182.

[19]

Han, Q. M., Sun, S, Liu, Z, Xu, W, Shi, P. J., 2022. Accelerated exacerbation of global extreme heatwaves under warming scenarios. Int. J. Climtol., 42(11), 5430-5441.

[20]

He, B. J., Wang, J. S., Liu, H. M., Ulpiani, G., 2021. Localized synergies between heat waves and urban heat islands: implications on human thermal comfort and urban heat management. Environ. Res., 193, 110584.

[21]

Hopke, J. E., 2020. Connecting extreme heat events to climate change: media coverage of heat waves and wildfires. Environ. Commun., 14(4), 492-508.

[22]

IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.

[23]

IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA.

[24]

Jenerette, G. D., Harlan, S. L., Stefanov, W. L., Martin, C. A., 2011. Ecosystem services and urban heat riskscape moderation: water, green spaces, and social inequality in Phoenix, USA. Ecol. Appl., 21(7), 2637-2651.

[25]

Jentsch, A, Kreyling, J, Elmer, M, Gellesch, E, Glaser, B, Grant, K, Hein, R, Lara, M, Mirzae, H, Nadler, S. E., Nagy, L, Otieno, D, Pritsch, K, Rascher, U, Schädler, M, Schloter, M, Singh, B. K., Stadler, J, Walter, J, Wellstein, C, Wöllecke, J, Beierkuhnlein, C., 2011. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J. Ecol., 99(3), 689-702.

[26]

Jiang, S. J., Lee, X, Wang, J. K., Wang, K. C., 2019. Amplified urban heat islands during heat wave periods. J. Geophys. Res.-Atmos., 124(14), 7797-7812.

[27]

Jiang, W. X., Niu, Z. G., Wang, L. C., Yao, R, Gui, X, Xiang, F. F., Ji, Y. X., 2022. Impacts of drought and climatic factors on vegetation dynamics in the Yellow River basin and Yangtze River basin, China. Remote Sens., 14(4), 930.

[28]

Jiao, D. L., Wang, D. J., Lv, H. Y., 2020. Effects of human activities on hydrological drought patterns in the Yangtze River basin, China. Nat. Hazards 104(1), 1111-1124.

[29]

Koller, E. K., Phoenix, G. K., 2017. Seasonal dynamics of soil and plant nutrients at three environmentally contrasting sites along a sub-Arctic catchment sequence. Polar Biol., 40, 1821-1834.

[30]

Li, C. J., Lu, T, Fu, B. J., Wang, S, Holden, J., 2022. Sustainable city development challenged by extreme weather in a warming world. Geogr. Sustain., 3(2), 114-118.

[31]

Li, L, He, C, Li, J, Zhang, J, Li, J., 2023. The supply and demand of water-related ecosystem services in the Asian water tower and its downstream area. Sci. Total Environ., 887 , Article 164205. doi: 10.1016/j.scitotenv.2023.164205.

[32]

Liao, G, Zhu, Y, Wu, G, Wang, W., 2023. Evolution characteristics of droughts and heat waves in China during the past 60 years. J. Yangtze River Sci. Res. Inst., 40(2), 169-176.

[33]

Lu, C. H., Shen, Y. C., Li, Y. H., Xiang, B, Qin, Y. J., 2022. Role of intraseasonal oscillation in a compound drought and heat event over the middle of the Yangtze River basin during midsummer 2018. J. Meteorol. Res., 36(4), 643-657.

[34]

Lu, Q. A., Zhang, Y. D., Song, B. C., Shao, H, Tian, X. R., Liu, S. R., 2023. The responses of ecological indicators to compound extreme climate indices in Southwestern China. Ecol. Indic., 157, 111253.

[35]

Luo, Q. L., Zhou, J. F., Zhang, Y, Yu, B. L., Zhu, Z. B., 2022. What is the spatiotemporal relationship between urbanization and ecosystem services? A case from 110 cities in the Yangtze River Economic Belt, China. J. Environ. Manage., 321, 115709.

[36]

Ma, Q. Y., Franzke, C. L. E., 2021. The role of transient eddies and diabatic heating in the maintenance of European heat waves: a nonlinear quasi-stationary wave perspective. Clim. Dyn., 56(9–10), 2983-3002.

[37]

Mdaureira, H, Pacheco, M, Sousa, C, Monteiro, A, De'-Donato, F, De-Sario, M., 2021. Evidences on adaptive mechanisms for cardiorespiratory diseases regarding extreme temperatures and air pollution: a comparative systematic review. Geogr. Sustain., 2(3), 182-194.

[38]

Moran, P. A., 1950. Notes on continuous stochastic phenomena. Biometrika 37(1/2), 17-23.

[39]

Nowak, D. J., Greenfield, E. J., Hoehn, R. E., Lapoint, E., 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut., 178, 229-236.

[40]

O’Neil-Dunne, J, MacFaden, S, Royar, A., 2014. A versatile, production-oriented approach to high-resolution tree-canopy mapping in urban and suburban landscapes using GEOBIA and data fusion. Remote Sens., 6(12), 12837-12865.

[41]

Pandey, A. K., Ghosh, A, Rai, K, Fatima, A, Agrawal, M, Agrawal, S. 2019. Abiotic stress in plants: a general outline. M. Hasanuzzaman, K. Nahar, M. Fujita, H. Oku, T. Islam (Eds.), Approaches for Enhancing Abiotic Stress Tolerance in Plants, CRC Press, Boca Raton, pp.1-46.

[42]

Pandey, B, Ghosh, A., 2023. Urban ecosystem services and climate change: a dynamic interplay. Front. Sustain. Cities 5, 1281430.

[43]

Ratcliffe, H, Kendig, A, Vacek, S, Carlson, D, Ahlering, M, Dee, L. E., 2024. Extreme precipitation promotes invasion in managed grasslands. Ecology 105(1), e4190.

[44]

Risbey, J. S., O'Kane, T. J., Monselesan, D. P., Franzke, C. L. E., Horenko, I., 2018. On the dynamics of austral heat waves. J. Geophys. Res.-Atoms., 123(1), 38-57.

[45]

Rötzer, T, Moser-Reischl, A, Rahman, M. A., Hartmann, C, Paeth, H, Pauleit, S, Pretzsch, H., 2021. Urban tree growth and ecosystem services under extreme drought. Agric. For. Meteorol., 308-309, 108532

[46]

Sánchez-García, C, Francos, M., 2022. Human-environmental interaction with extreme hydrological events and climate change scenarios as background. Geogr. Sustain., 3(3), 232-236.

[47]

Shiva, J. S., Chandler, D. G., Kunkel, K. E., 2019. Localized changes in heat wave properties across the United States. Earths Future 7(3), 300-319.

[48]

Sura, P., 2011. A general perspective of extreme events in weather and climate. Atmos. Res., 101(1–2), 1-21.

[49]

Terrado, M, Acuna, V, Ennaanay, D, Tallis, H, Sabater, S., 2014. Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. Ecol. Indic., 37, 199-209.

[50]

Wang, C. H., Wang, Z. H., Wang, C. Y., Myint, S. W., 2019. Environmental cooling provided by urban trees under extreme heat and cold waves in US cities. Remote Sens. Environ., 227, 28-43.

[51]

Wang, J. Q., Chen, S. Q., Wang, M., 2019. How do spatial patterns impact regulation of water-related ecosystem services? Insights from a new town development in the Yangtze River Delta, China. Sustainability 11(7), 2010.

[52]

Ward, K, Lauf, S, Kleinschmit, B, Endlicher, W. 2016. Heat waves and urban heat islands in Europe: a review of relevant drivers. Sci. Total Environ., 569-570, pp.527-539.

[53]

Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S, Griffis, R, Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Munoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R, Staudinger, M. D., Sutton-Grier, A. E., Thompson, L, Vose, J, Weltzinn, J. F., Whyte, K. P., 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ., 733, 137782.

[54]

Wetz, M. S., Yoskowitz, D. W., 2013. An ‘extreme’ future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology. Mar. Pollut. Bull., 69(1), 7-18.

[55]

Wu, X, Wang, L, Yao, R, Luo, M, Wang, S, Wang, L., 2020. Quantitatively evaluating the effect of urbanization on heat waves in China. Sci. Total Environ., 731, 138857.

[56]

Wu, Y. F., Sun, J. X., Blanchette, M, Rousseau, A. N., Xu, Y. J., Hu, B. T., Zhang, G. X., 2023. Wetland mitigation functions on hydrological droughts: from drought characteristics to propagation of meteorological droughts to hydrological droughts. J. Hydrol., 617, 128971.

[57]

Yu, J. X., Zhou, H, Huang, J. J., Yuan, Y. B., 2022. Prediction of multi-scale meteorological drought characteristics over the Yangtze River basin based on CMIP6. Water 14(19), 2996.

[58]

Zampieri, M, Ceglar, A, Dentener, F, Toreti, A., 2017. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett., 12(6), 064008.

[59]

Zeng, Z, Wu, W, Li, Z, Zhou, Y, Guo, Y, Huang, H., 2019. Agricultural drought risk assessment in Southwest China. Water 11(5), 1064.

[60]

Zhang, D. Q., Chen, L. J., Yuan, Y, Zuo, J. Q., Ke, Z. J., 2023. Why was the heat wave in the Yangtze River valley abnormally intensified in late summer 2022?. Environ. Res. Lett., 18(3), 034014.

[61]

Zhang, L, Hickel, K, Dawes, W. R., Chiew, F. H. S., Western, A. W., Briggs, P. R., 2004. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res., 40(2), W02502.

[62]

Zhou, S, Yu, B, Zhang, Y., 2023. Global concurrent climate extremes exacerbated by anthropogenic climate change. Sci. Adv., 9(10), eabo1638.

PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

/