Mapping ecosystem services in urban and peri-urban areas. A systematic review

Paulo Pereira , Miguel Inácio , Luis Pinto , Marius Kalinauskas , Katarzyna Bogdzevic , Wenwu Zhao

Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) : 491 -509.

PDF
Geography and Sustainability ›› 2024, Vol. 5 ›› Issue (3) :491 -509. DOI: 10.1016/j.geosus.2024.06.002
Review Article
review-article

Mapping ecosystem services in urban and peri-urban areas. A systematic review

Author information +
History +
PDF

Abstract

Urban and peri-urban ecosystems are subjected to an intense impact. The demand for ecosystem services (ES) is higher in these areas. Nevertheless, despite the anthropogenic pressures, urban and peri-urban ecosystems supply important ES. Mapping is a crucial exercise to understand ES dynamics in these environments better. This work aims to systematically review mapping ES in urban and peri-urban areas studies, following the Preferred Reporting Items for Systematic Reviews and Meta-alpha Methods. A total of 207 studies were selected. The results show increased work between 2011 and 2023, mainly conducted in Europe and China. Most work were developed in urban areas and did not follow an established ES classification. Most studies focused on the ES supply dimension, the regulation and maintenance section. Regarding provisioning ES, most studies focused on Cultivating terrestrial plants for nutrition, regulating and maintaining Atmospheric composition and conditions, and for cultural ES on Physical and experiential interactions with the natural environment. Quantitative methods were mostly applied following Indicator-based (secondary data: biophysical, socio-economic) models. Very few work validated the outputs. Several studies forecasted ES, primarily based on land use changes using CA-Markov approaches. This study provides an overview of the most mapped urban and peri-urban ES globally, the areas where more studies need to be conducted, and the methods developed.

Keywords

Systematic review / Urban and peri-urban areas / Ecosystem services / Mapping / Methods

Cite this article

Download citation ▾
Paulo Pereira, Miguel Inácio, Luis Pinto, Marius Kalinauskas, Katarzyna Bogdzevic, Wenwu Zhao. Mapping ecosystem services in urban and peri-urban areas. A systematic review. Geography and Sustainability, 2024, 5(3): 491-509 DOI:10.1016/j.geosus.2024.06.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Paulo Pereira: Writing – original draft, Validation, Methodology, Conceptualization. Miguel Inácio: Writing – review & editing, Visualization, Methodology, Formal analysis, Data curation. Luis Pinto: Visualization, Formal analysis, Data curation. Marius Kalinauskas: Writing – review & editing. Katarzyna Bogdzevic: Writing – review & editing. Wenwu Zhao: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors appreciate the support Yuliana Shuhani and Manob Das in the initial phase of this work. The study is supported by the project MApping and Forecasting Ecosystem Services in Urban Areas (MAFESUR), funded by the Lithuanian Research Council (Contract: Nr. P-MIP-23–426).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.06.002.

References

[1]

Aburas, M. M., Ho, Y. M., Pradhan, B, Salleh, A. H., Alazaizam, Y. D., 2021. Spatio-temporal simulation of future urban growth trends using an integrated CA-Markov model. Arab. J. Geosci., 14, p. 131. doi: 10.1007/s12517-021-06487-8.

[2]

Admiraal, H, Cornaro, A., 2020. Future cities, resilient cities – the role of underground space in achieving urban resilience. Undergr. Space, 5, pp. 223-228. doi: 10.1016/j.undsp.2019.02.001.

[3]

Ai, J, Sun, X, Feng, L, Li, Y, Zhu, X., 2015. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China. Front. Earth Sci., 9, pp. 531-545. doi: 10.1007/s11707-014-0484-1.

[4]

Ann Diehl, J, Sweeney, E, Wong, B, Sia, C. S., Yao, H, Prabhudesai, M., 2020. Feeding cities: Singapore’s approach to land use planning for urban agriculture. Glob. Food Secur., 26, Article 100377. doi: 10.1016/j.gfs.2020.100377.

[5]

Aroca-Jimenez, E, Bodoque, J. M., Garcia, J. A., 2020. How to construct and validate an Integrated Socio-Economic Vulnerability Index: implementation at regional scale in urban areas prone to flash flooding. Sci. Total Environ., 746, Article 140905. doi: 10.1016/j.scitotenv.2020.140905.

[6]

Aznarez, C, Svenning, J. C., Taveira, G, Baro, F, Pascual, U., 2022. Wildness and habitat quality drive spatial patterns of urban biodiversity. Landsc. Urban Plan., 228, Article 104570. doi: 10.1016/j.landurbplan.2022.104570.

[7]

Bagstad, K. J., Johnson, G. W., Voigt, B, Villa, F., 2013. Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services. Ecosyst. Serv., 4, pp. 117-125. doi: 10.1016/j.ecoser.2012.07.012.

[8]

Baró, F, Palomo, I, Zulian, G, Vizcaino, P, Haase, D, Gómez-Baggethun, E., 2016. Mapping ecosystem service capacity, flow and demand for landscape and urban planning: a case study in the Barcelona metropolitan region. Land Use Policy, 57, pp. 405-417. doi: 10.1016/j.landusepol.2016.06.006.

[9]

Baumeister, C. F., Gerstenberg, T, Plieninger, T, Schraml, U., 2020. Exploring cultural ecosystem service hotspots: linking multiple urban forest features with public participation mapping data. Urban For. Urban Green., 48, Article 126561. doi: 10.1016/j.ufug.2019.126561.

[10]

Beichler, S. A., 2015. Exploring the link between supply and demand of cultural ecosystem services – towards an integrated vulnerability assessment. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag., 11, pp. 250-263. doi: 10.1080/21513732.2015.1059891.

[11]

Behenisch, M, Kruger, T, Jaegar, J. A. G., 2022. Rapid rise in urban sprawl: global hotspots and trends since 1990. PLoS Sustain. Transform., 1, Article e0000034. doi: 10.1371/journal.pstr.0000034.

[12]

Bento-Gonçalves, A, Vieira, A., 2020. Wildfires in the wildland-urban interface: key concepts and evaluation methodologies. Sci. Total Environ., 707, Article 135592. doi: 10.1016/j.scitotenv.2019.135592.

[13]

Berghöfer, A, Schneider, A., 2015. Indicators for Managing Ecosystem Services – Options & Examples. ValuES Project Report. Helmholtz Zentrum für Umweltforschung (UFZ) GmbH, Leipzig, and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Eschborn. Germany, p. 49

[14]

Borden, J. B., Flory, S. L., 2021. Urban evolution of invasive species. Front. Ecol. Environ., 19, pp. 184-191. doi: 10.1002/fee.2295.

[15]

Brown, C, Reyers, B, Ingwall-King, L, Mapendembe, A, Nel, J, O’Farrell, P, Dixon, M, Bowles-Newark, N. J., 2014. Measuring Ecosystem Services: Guidance on Developing Ecosystem Service Indicators. UNEP-WCMC, Cambridge, UK

[16]

Buchhorn, M, Lesiv, M, N-Tsendbazar, E, Herold, M, Bertels, L, Smets, B., 2020. Copernicus global land cover layers—collection 2. Remote Sens., 12, p. 1044. doi: 10.3390/rs12061044.

[17]

Buchholz, S, Gathof, A. K., Grossmann, A. J., Kowarik, I, Fischer, L. K., 2020. Wild bees in urban grasslands: urbanisation, functional diversity and species traits. Landsc. Urban Plan., 196, Article 103731. doi: 10.1016/j.landurbplan.2019.103731.

[18]

Burkhard, B, Kroll, F, Nedkov, S, Müller, F., 2012. Mapping ecosystem service supply, demand and budgets. Ecol. Indic., 21, pp. 17-29. doi: 10.1016/j.ecolind.2011.06.019.

[19]

Buxton, M., 2022. Connecting peri-urban theory with policy: implications for practice. Pereira P., Gomes E., Rocha J. (Eds.), Mapping and Forecasting Land Use: The Present and Future of Planning, Elsevier, The Netherlands, pp. 55-94. doi: 10.1016/B978-0-323-90947-1.00005-3.

[20]

Calderón-Argelich, A, Benetti, S, Anguelovski, I, Connolly, J. J. T., Langemeyer, J, Baró, F., 2021. Tracing and building up environmental justice considerations in the urban ecosystem service literature: a systematic review. Landsc. Urban Plan., 214, Article 104130. doi: 10.1016/j.landurbplan.2021.104130.

[21]

Canelles, Q, Aquile, N, James, P. M. A., Lawler, J, Brotons, L., 2021. Global review on interactions between insect pests and other forest disturbances. Landsc. Ecol., 36, pp. 945-972. doi: 10.1007/s10980-021-01209-7.

[22]

Cao, Y, Cao, Y, Li, G, Tian, Y, Fang, X, Li, Y, Tan, Y., 2020. Linking ecosystem services trade-offs, bundles and hotspot identification with cropland management in the coastal Hangzhou Bay area of China. Land Use Policy, 97, Article 104689. doi: 10.1016/j.landusepol.2020.104689.

[23]

Casado-Arzuaga, I, Onaindia, M, Madariaga, I, Verburg, P. H., 2014. Mapping recreation and aesthetic value of ecosystems in the Bilbao Metropolitan Greenbelt (northern Spain) to support landscape planning. Landsc. Ecol., 29, pp. 1393-1405. doi: 10.1007/s10980-013-9945-2.

[24]

Castan Broto, V, Westman, L. K., 2020. Ten years after Copenhagen: reimagining climate change governance in urban areas. WIREs Clim. Change, 11, p. e643. doi: 10.1002/wcc.643.

[25]

Chatzimentor, A, Apostolopoulou, E, Mazaris, A. D., 2020. A review of green infrastructure research in Europe: challenges and opportunities. Landsc. Urban Plan., 198, Article 103775. doi: 10.1016/j.landurbplan.2020.103775.

[26]

Cheng, X., Van Damme, S., Uyttenhove, P., 2022. Assessing the impact of park renovations on cultural ecosystem services. Land 11, 610. doi: 10.3390/land11050610.

[27]

Chiang, F., Mazdiyasni, O., AghaKouchak, A., 2021. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754. doi: 10.1038/s41467-021-22314-w.

[28]

Cimburova, Z, Pont, M. B., 2021. Location matters. A systematic review of spatial contextual factors mediating ecosystem services of urban trees. Ecoyst. Serv., 50, Article 101296. doi: 10.1016/j.ecoser.2021.101296.

[29]

Cobbinah, P. B., 2021. Urban resilience in climate change hotspot. Land Use Policy, 100, Article 104948. doi: 10.1016/j.landusepol.2020.104948.

[30]

Cochran, F, Daniel, J, Jackson, L, Neale, A., 2020. Earth observation-based ecosystem services indicators for national and subnational reporting of the sustainable development goals. Remote Sens. Environ., 244, Article 111796. doi: 10.1016/j.rse.2020.111796.

[31]

Corada, K, Woodward, H, Alaraj, H, Collins, C. M., de Nazelle, A., 2021. A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas. Environ. Pollut., 269, Article 116104. doi: 10.1016/j.envpol.2020.116104.

[32]

Constanza, R, Arge, R, De Groot, R, Farberk, S, Grasso, M, Hannon, B, Limburg, K, Naeem, S, O’Neill, R. V., Paruelo, J, Raskin, R. G., Suttonkk, P, van den Belt, M., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387, pp. 253-260. doi: 10.1038/387253a0.

[33]

Cortinovis, C, Geneletti, D., 2020. A performance-based planning approach integrating supply and demand of urban ecosystem services. Landsc. Urban Plan., 201, Article 103842. doi: 10.1016/j.landurbplan.2020.103842.

[34]

Cortinovis, C., Geneletti, D., Hedlund, K., 2021. Synthesizing multiple ecosystem service assessments for urban planning: a review of approaches, and recommendations. Landsc. Urban Plan. 213, 104129. doi: 10.1016/j.landurbplan.2021.104129.

[35]

Czúcz, B, Arany, I, Potschin-Young, M, Bereczki, B, Kertész, M, Kiss, M, Aszalós, R, Haines-Young, R., 2018. Where concepts meet the real world: a systematic review of ecosystem service indicators and their classification using CICES. Ecosyst. Serv., 29, pp. 145-157. doi: 10.1016/j.ecoser.2017.11.018.

[36]

Debrie, J., 2023. The city-port relationship in the metropolitan fabric. Aveline-Dubach N. (Ed.), Globalization and Dynamics of Urban Production. Geography and Demography. Socio-Economic Geography of the Fabric of Cities, John Wiley & Sons, pp. 105-122. doi: 10.1002/9781394257492.ch5.

[37]

Diener, A, Mudu, P., 2021. How can vegetation protect us from air pollution? A critical review on green spaces' mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. Sci. Total Environ., 792, Article 148605. doi: 10.1016/j.scitotenv.2021.148605.

[38]

Dmitruk, M, Wrzesień, M, Strzałkowska-Abramek, M, Denisow, B., 2021. Pollen food resources to help pollinators. A study of five Ranunculaceae species in urban forest. Urban For. Urban Green., 60, Article 127051. doi: 10.1016/j.ufug.2021.127051.

[39]

D'Odorico, P, Chiarelli, D. D., Rosa, L, Bini, A, Zilberman, D, Rulli, M. C., 2020. The global value of water in agriculture. Proc. Natl. Acad. Sci. U.S.A., 117, pp. 21985-21993. doi: 10.1073/pnas.2005835117.

[40]

Egerer, M, Liere, H, Lucatero, A, Philpott, S. M., 2020. Plant damage in urban agroecosystems varies with local and landscape factors. Ecosphere, 11, p. e03074. doi: 10.1002/ecs2.3074.

[41]

Egoh, B, Drakou, E, Dunbar, M, Maes, J, Willemen, L., 2012. Indicators for Mapping Ecosystem Services: A Review. JRC73016. EUR 25456 EN. Publications Office of the European Union, Luxembourg

[42]

Elliot, T, Goldstein, B, Gómez-Baggethun, E, Proença, V, Rugani, B., 2022. Ecosystem service deficits of European cities. Sci. Total Environ., 837, Article 155875. doi: 10.1016/j.scitotenv.2022.155875.

[43]

Enssle, F, Kabisch, N., 2020. Urban green spaces for the social interaction, health and well-being of older people — an integrated view of urban ecosystem services and socio-environmental justice. Environ. Sci. Policy, 109, pp. 36-44. doi: 10.1016/j.envsci.2020.04.008.

[44]

Evans, D. L., Falagan, N, Hardman, C. A., Kourmpetli, S, Liu, L, Mead, B. R., Davies, J. A. C., 2022. Ecosystem service delivery by urban agriculture and green infrastructure – a systematic review. Ecosyst. Serv., 54, Article 101405. doi: 10.1016/j.ecoser.2022.101405.

[45]

EU2020.de, 2020. The new Leipzig charter. The transformative power of cities for the common good. https://urbact.eu/sites/default/files/2023-05/new_leipzig_charter_final.pdf.

[46]

European Parliament, 2017. Urban Agriculture in Europe: Patterns, Challenges and Policies. European Parliamentary Research Service.

[47]

Fanfani, D, Duží, D, Mancino, M, Rovai, M., 2022. Multiple evaluation of urban and peri-urban agriculture and its relation to spatial planning: the case of Prato territory (Italy). Sustain. Cities Soc., 79, Article 103636. doi: 10.1016/j.scs.2021.103636.

[48]

Fang, X., Li, J., Ma, Q., 2023. Integrating green infrastructure, ecosystem services and nature-based solutions for urban sustainability: a comprehensive literature review. Sustain. Cities Soc. 98, 104843. doi: 10.1016/j.scs.2023.104843.

[49]

Feld, C. K., Martins da Silva, P, Sousa, J. P., De Bello, F, Bugter, R, Grandin, U, Hering, D, Lavorel, S, Mountford, O, Pardo, I, Pärtel, M, Römbke, J, Sandin, L, Jones, K. B., Harrisson, P., 2009. Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos, 118, pp. 1862-1871. doi: 10.1111/j.1600-0706.2009.17860.x.

[50]

Feng, S, Zhao, W, Yan, J, Xia, F, Pereira, P., 2024. Land degradation neutrality assessment and factors influencing it in China's arid and semiarid regions. Sci. Total Environ., 925, Article 171735. doi: 10.1016/j.scitotenv.2024.171735.

[51]

García-Pardo, K, Moreno-Rangel, D, Domínguez-Amarillo, S, García-Chávez, J. R., 2022. Remote sensing for the assessment of ecosystem services provided by urban vegetation: a review of the methods applied. Urban For. Urban Green., 74, Article 127636. doi: 10.1016/j.ufug.2022.127636.

[52]

Geange, S, Townsend, M, Clark, D, Ellis, J. I., Lohrer, A. M., 2019. Communicating the value of marine conservation using an ecosystem service matrix approach. Ecosyst. Serv., 35, pp. 150-163. doi: 10.1016/j.ecoser.2018.12.004.

[53]

Gomes, E, Inacio, M, Bogdzevič, K, Kalinauskas, M, Karnauskaite, D, Pereira, P., 2021. Future land use and land cover changes and its impacts on terrestrial ecosystem services: a review. Sci. Total Environ., 781, Article 146716. doi: 10.1016/j.scitotenv.2021.146716.

[54]

González-García, A, Palomo, I, González, J. A., García-Díez, V, García-Llorente, M, Montes, C., 2022. Biodiversity and ecosystem services mapping: can it reconcile urban and protected area planning?. Sci. Total Environ., 803, Article 150048. doi: 10.1016/j.scitotenv.2021.150048.

[55]

González-García, A, Palomo, I, González, J. A., López, C. A., Montes, C., 2020. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy, 94, Article 104493. doi: 10.1016/j.landusepol.2020.104493.

[56]

Granger Morgan, M., 2014. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl. Acad. Sci. U.S.A., 111, pp. 7176-7184. doi: 10.1073/pnas.1319946111.

[57]

Green, D, O’Donnell, E, Johnson, M, Slater, L, Thorne, C, Zheng, S, Stirling, R, Chan, F. K. S., Li, L, Boothroyd, R. J., 2021. Green infrastructure: the future of urban flood risk management?. WIREs Water, 8, p. e1560. doi: 10.1002/wat2.1560.

[58]

Grima, N, Jutras-Perreault, M. C., Gobakken, T, Ole Orka, H, Vacik, H., 2023. Systematic review for a set of indicators supporting the common international classification of ecosystem services. Ecol. Indic., 147, Article 109979. doi: 10.1016/j.ecolind.2023.109978.

[59]

Grzyb, T, Kulczyk, S, Derek, M, Woźniak, E., 2021. Using social media to assess recreation across urban green spaces in times of abrupt change. Ecosyst. Serv., 49, Article 101297. doi: 10.1016/j.ecoser.2021.101297.

[60]

Güneralp, B, Reba, M, Hales, B. U., Wentz, E. A., Seto, K. C., 2020. Trends in urban land expansion, density, and land transitions from 1970 to 2010: a global synthesis. Environ. Res. Lett., 15, Article 044015. doi: 10.1088/1748-9326/ab6669.

[61]

Guo, X, Zhang, Y, Guo, D, Lu, W, Xu, H., 2023. How does ecological protection redline policy affect regional land use and ecosystem services?. Environ. Impact Assess. Rev., 100, Article 107062. doi: 10.1016/j.eiar.2023.107062.

[62]

Haines-Young, R, Potschin, M. B., 2018. Common International Classification of Ecosystem Services (CICES) V5.1: Guidance on the Application of the Revised Structure. Fabis Consulting Ltd., Nottingham, UK

[63]

Hajilou, M, Meskhkini, A, Mirehei, M, Ghaedrahmati, S., 2023. Urban sprawl: do its financial and economic benefits outweigh its costs for local governments?. GeoJournal, 88, pp. 2325-2343. doi: 10.1007/s10708-022-10747-9.

[64]

Haase, D, Larondelle, N, Andersson, E, Artmann, M, Borgström, S, Breuste, J, Gomez-Baggethun, E, Gren, A, Hamstead, Z, Hansen, R, Kabisch, N, Kremer, P, Langemeyer, J, Lorance Rall, E, McPhearson, T, Pauleit, S, Qureshi, S, Schwarz, N, Voigt, A, Wurster, D, Elmqvist, T., 2014. A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio, 43, pp. 413-433. doi: 10.1007/s13280-014-0504-0.

[65]

Han, J., 2020. Can urban sprawl be the cause of environmental deterioration? Based on the provincial panel data in China. Environ. Res., 189, Article 109954. doi: 10.1016/j.envres.2020.109954.

[66]

Hawken, S, Rahmat, H, Sepasgozar, S. M. E., Zhang, K., 2021. The SDGs, ecosystem services and cities: a network analysis of current research innovation for implementing urban sustainability. Sustainability, 13, p. 14057. doi: 10.3390/su132414057.

[67]

He, L, Páez, A, Jiao, J, An, P, Lu, C, Mao, W, Long, D., 2020. Ambient population and larceny-theft: a spatial analysis using mobile phone data. ISPRS Int. J. Geo-Inf., 9, p. 342. doi: 10.3390/ijgi9060342.

[68]

Herreros-Cantis, P, McPhearson, T., 2021. Mapping supply of and demand for ecosystem services to assess environmental justice in New York City. Ecol. Appl., 31, p. e02390. doi: 10.1002/eap.2390.

[69]

Hou, Y, Wei, Y, Wu, S, Li, J., 2023. Mapping the social, economic, and ecological impact of floods in Brisbane. Water 2023, 15, p. 3842. doi: 10.3390/w15213842.

[70]

Hu, C, Wright, A. L., He, S., 2022. Public perception and willingness to pay for urban wetland ecosystem services: evidence from China. Wetlands, 42, p. 19. doi: 10.1007/s13157-022-01538-6.

[71]

Inácio, M, Karnauskaitė, D, Baltranaitė, E, Bogdzevič, K, Gomes, E, Pereira, P., 2020. Ecosystem services of the Baltic Sea: an assessment and mapping perspective. Geogr. Sustain., 1, pp. 256-265. doi: 10.1016/j.geosus.2020.11.001.

[72]

Inacio, M, Barcelo, D, Zhao, W, Pereira, P., 2022. Mapping lake ecosystem services: a systematic review. Sci. Total Environ., 847, Article 157561. doi: 10.1016/j.scitotenv.2022.157561.

[73]

Jiang, W., 2017. Ecosystem services research in China: a critical review. Ecosyst. Serv., 26, pp. 10-16. doi: 10.1016/j.ecoser.2017.05.012.

[74]

Jato-Espino, D, Capra-Ribeiro, F, Moscardó, V, Bartolomé del Pino, L. E., Mayor-Vitoria, F, Gallardo, L. O., Carracedo, P, Dietrich, K., 2023. A systematic review on the ecosystem services provided by green infrastructure. Urban For. Urban Green., 86, Article 127998. doi: 10.1016/j.ufug.2023.127998.

[75]

Jansma, J. E., Wertheim-Heck, S. C. O., 2022. Feeding the city: a social practice perspective on planning for agriculture in peri-urban Oosterwold, Almere, the Netherlands. Land Use Policy, 117, Article 106104. doi: 10.1016/j.landusepol.2022.106104.

[76]

Kalinauskas, M, Shuhani, Y, Valença Pinto, L, Inacio, M, Pereira, P., 2024. Mapping ecosystem services in protected areas. A systematic review. Sci. Total Environ., 912, Article 169248. doi: 10.1016/j.scitotenv.2023.169248.

[77]

Kalinauskas, M, Bogdzevič, K, Gomes, E, Inácio, M, Barcelo, D, Zhao, W, Pereira, P., 2023. Mapping and assessment of recreational cultural ecosystem services supply and demand in Vilnius (Lithuania). Sci. Total Environ., 855, Article 158590. doi: 10.1016/j.scitotenv.2022.158590.

[78]

Kim, H, Shoji, Y, Tsuge, T, Aikoh, T, Kuriyama, K., 2021. Understanding recreation demands and visitor characteristics of urban green spaces: a use of the zero-inflated negative binomial model. Urban For. Urban Green., 65, Article 127332. doi: 10.1016/j.ufug.2021.127332.

[79]

Koellner, T, Bonn, A, Arnhold, S, Bagstad, K. J., Fridman, D, Guerra, C, Kastner, T, Kissinger, M, Kleemann, J, Kuhlicke, C, Liu, J, López-Hoffman, L, Marques, A, Wolff, S, Schröter, M., 2019. Guidance for assessing interregional ecosystem service flows. Ecol. Indic., 105, pp. 92-106. doi: 10.1016/j.ecolind.2019.04.046.

[80]

Kosanic, A, Petzold, J., 2020. A systematic review of cultural ecosystem services and human wellbeing. Ecosyst. Serv., 45, Article 101168. doi: 10.1016/j.ecoser.2020.101168.

[81]

Koutsos, T. M., Menexes, G. C., Dordas, C. A., 2019. An efficient framework for conducting systematic literature reviews in agricultural sciences. Sci. Total Environ., 682, pp. 106-117. doi: 10.1016/j.scitotenv.2019.04.354.

[82]

Khan, I, Hou, F, Le, H. P., 2021. The impact of natural resources, energy consumption, and population growth on environmental quality: fresh evidence from the United States of America. Sci. Total Environ., 754, Article 142222. doi: 10.1016/j.scitotenv.2020.142222.

[83]

Kuras, E. R., Warren, P. S., Aloysius Zinda, J, Aronson, M. F. J., Cilliers, S, Goddard, M. A., Nilon, C. H., Winkler, R., 2020. Urban socioeconomic inequality and biodiversity often converge, but not always: a global meta-analysis. Landsc. Urban Plan., 198, Article 103799. doi: 10.1016/j.landurbplan.2020.103799.

[84]

Klaus, V. H., Kiehl, K., 2021. A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl. Ecol., 52, pp. 82-94. doi: 10.1016/j.baae.2021.02.010.

[85]

Lam, T. M., Vaartjes, I, Grobbee, D. E., Karssenberg, K, Lakerveld, J., 2021. Associations between the built environment and obesity: an umbrella review. Int. J. Health Geogr., 20, p. 7. doi: 10.1186/s12942-021-00260-6.

[86]

Langemeyer, J, Wedgwood, D, McPhearson, T, Baro, F, Madsen, A. L., Barton, D. A., 2020. Creating urban green infrastructure where it is needed – a spatial ecosystem service-based decision analysis of green roofs in Barcelona. Sci. Total Environ., 707, Article 135487. doi: 10.1016/j.scitotenv.2019.135487.

[87]

Laurans, Y, Rankovic, A, Bille, R, Pirard, R, Mermet, L., 2013. Use of ecosystem services economic valuation for decision making: questioning a literature blindspot. J. Environ. Manage., 119, pp. 208-219. doi: 10.1016/j.jenvman.2013.01.008.

[88]

Lautenbach, S, Mupepele, A. C., Dormann, C. F., Lee, H, Schmidt, S, Scholte, S. K., Seppelt, R, van Teeffelen, A. A., Verhagen, W, Volk, M., 2019. Blind spots in ecosystem services research and challenges for implementation. Reg. Environ. Change, 19, pp. 2151-2172. doi: 10.1007/s10113-018-1457-9.

[89]

Li, D., Wu, S., Liang, Z., Li, S., 2020a. The impacts of urbanization and climate change on urban vegetation dynamics in China. Urban For. Urban Green. 54, 126764. doi: 10.1016/j.ufug.2020.126764.

[90]

Li, F., Guo, S., Li, D., Li, X., Li, J., Xie, S., 2020b. A multi-criteria spatial approach for mapping urban ecosystem services demand. Ecol. Indic. 112, 106119. doi: 10.1016/j.ecolind.2020.106119.

[91]

Li, L., Collins, A.M., Cheshmehzangi, A., Shun Chan, F.K., 2020c. Identifying enablers and barriers to the implementation of the Green Infrastructure for urban flood management: a comparative analysis of the UK and China. Urban For. Urban Green. 54, 126770. doi: 10.1016/j.ufug.2020.126770.

[92]

Li, J., 2020. Culture and tourism-led peri-urban transformation in China – the case of Shanghai. Cities 99, 102628. doi: 10.1016/j.cities.2020.102628.

[93]

Liu, J.Y., Dou, S.Q., El Housseine Hmeimar, A., 2020a. Cost-effectiveness analysis of different types of payments for ecosystem services: a case in the urban wetland ecosystem. J. Clean. Prod. 249, 119325. doi: 10.1016/j.jclepro.2019.119325.

[94]

Liu, H., Remme, R.P., Hamel, P., Nong, H., Ren, H., 2020b. Supply and demand assessment of urban recreation service and its implication for greenspace planning - a case study on Guangzhou. Landsc. Urban Plan. 203, 103898. doi: 10.1016/j.landurbplan.2020.103898.

[95]

Liu, O. Y., Russo, A., 2021. Assessing the contribution of urban green spaces in green infrastructure strategy planning for urban ecosystem conditions and services. Sustain. Cities Soc., 68, Article 102772. doi: 10.1016/j.scs.2021.102772.

[96]

Liu, L, Wu, J., 2022. Scenario analysis in urban ecosystem services research: progress, prospects, and implications for urban planning and management. Landsc. Urban Plan., 224, Article 104433. doi: 10.1016/j.landurbplan.2022.104433.

[97]

Liu, J, Peng, K, Zuo, C, Li, Q., 2022. Spatiotemporal variation of land-use carbon emissions and its implications for low carbon and ecological civilization strategies: evidence from Xiamen-Zhangzhou-Quanzhou metropolitan circle, China. Sustain. Cities Soc., 86, Article 104083. doi: 10.1016/j.scs.2022.104083.

[98]

Lopez, B, Kennedy, C. B., Field, C, McPhearson, T., 2021. Who benefits from urban green spaces during times of crisis? Perception and use of urban green spaces in New York City during the COVID-19 pandemic. Urban For. Urban Green., 65, Article 127354. doi: 10.1016/j.ufug.2021.127354.

[99]

López-Bueno, J. A., Navas-Martín, M. A., Linares, C, Mirón, I. J., Luna, M. Y., Sánchez-Martínez, G, Culqui, D, Díaz, J., 2021. Analysis of the impact of heat waves on daily mortality in urban and rural areas in Madrid. Environ. Res., 195, Article 110892. doi: 10.1016/j.envres.2021.110892.

[100]

Lourdes, K. T., Gibbins, C. N., Hamel, P, Sanusi, R, Azhar, B, Lechner, A. M., 2021. A review of urban ecosystem services research in Southeast Asia. Land, 10, p. 40. doi: 10.3390/land10010040.

[101]

Luederitz, C, Brink, W, Gralla, F, Hermelingmeier, V, Meyer, M, Niven, L, Panzer, L, Partelow, S, Rau, A. L., Sasaki, R, Abson, D. J., Lang, D. J., Wamsler, C, von Wehrden, H., 2015. A review of urban ecosystem services: six key challenges for future research. Ecosyst. Serv., 14, pp. 98-112. doi: 10.1016/j.ecoser.2015.05.001.

[102]

Luehr, G, Glaros, A, Si, Z, Scott, S., 2019. Urban agriculture in Chinese cities: practices, motivations and challenges. Thorthon A. (Ed.), Urban Food Democracy and Governance in North and South. International Political Economy Series, Palgrave Macmillan, Cham, pp. 291-309. doi: 10.1007/978-3-030-17187-2_17.

[103]

Lwasa, S, Mugagga, F, Wahab, B, Simon, D, Connors, J, Griffith, C., 2014. Urban and peri-urban agriculture and forestry: transcending poverty alleviation to climate change mitigation and adaptation. Urban Clim., 7, pp. 92-106. doi: 10.1016/j.uclim.2013.10.007.

[104]

Maes, J, Liquete, C, Teller, A, Erhard, M, Paracchini, M. L., Barredo, J. I., Grizzetti, B, Cardoso, A, Somma, F, Petersen, J. H., Meiner, A, Gelabert, E. R., Zal, N, Kristensen, P, Bastrup-Birk, A, Biala, K, Piroddi, C, Egoh, B, Degeorges, P, Fiorina, C, Santos-Martín, F, Naruševičius, V, Verboven, J, Pereira, H. M., Bengtsson, J, Gocheva, K, Marta-Pedroso, C, Snäll, T, Estreguil, C, San-Miguel-Ayanz, J, Pérez-Soba, M, Grêt-Regamey, A, Lillebø, A. I., Abdul Malak, D, Condé, S, Moen, J, Czúcz, B, Drakou, E. G., Zulian, G, Lavalle, C., 2016. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv., 17, pp. 14-23. doi: 10.1016/j.ecoser.2015.10.023.

[105]

Magura, T, Ferrante, M, Lovei, G. L., 2020. Only habitat specialists become smaller with advancing urbanization. Glob. Ecol. Biogeogr., 29, pp. 1978-1987. doi: 10.1111/geb.13168.

[106]

Mahumane, G, Mulder, P., 2022. Urbanization of energy poverty? The case of Mozambique. Renew. Sust. Energ. Rev., 159, Article 112089. doi: 10.1016/j.rser.2022.112089.

[107]

Mairota, P, Cafarelli, C, Didham, R. K., Lovergine, F. P., Lucas, R. M., Nagendra, H, Rocchini, D, Tarantino, C., 2015. Challenges and opportunities in harnessing satellite remote-sensing for biodiversity monitoring. Ecol. Inform., 30, pp. 207-214. doi: 10.1016/j.ecoinf.2015.08.006.

[108]

Mandle, L, Shields-Estrada, A, Chaplin-Kramer, R, Mitchell, M. G. E., Bremer, L. L., Gourevitch, J. D., Hawthorne, P, Johnson, J. A., Robinson, B. E., Smith, J. R., Sonter, L. J., Verutes, G. M., Vogl, A. L., Daily, G. C., Ricketts, T. H., 2021. Increasing decision relevance of ecosystem service science. Nat. Sustain., 4, pp. 161-169. doi: 10.1038/s41893-020-00625-y.

[109]

Marando, F, Heris, M. P., Zulian, G, Udias, A, Mentaschi, L, Chrysoulakis, N, Parastatidis, D, Maes, J., 2022. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc., 77, Article 103564. doi: 10.1016/j.scs.2021.103564.

[110]

Marquès, M, Bangash, R. B., Kumar, V, Sharp, R, Schuhmacher, M., 2013. The impact of climate change on water provision under a low flow regime: a case study of the ecosystems services in the Francoli River basin. J. Hazard. Mater., 263, pp. 224-232. doi: 10.1016/j.jhazmat.2013.07.049.

[111]

Marselle, M. R., Lindley, S. J., Cook, P. A., Bonn, A., 2021. Biodiversity and health in the urban environment. Curr. Environ. Health Rep., 8, pp. 146-156. doi: 10.1007/s40572-021-00313-9.

[112]

Maund, P. R., Irvine, K, Dallimer, M, Fish, R, Austen, G. E., Davies, Z. G., 2020. Do ecosystem service frameworks represent people's values?. Ecosyst. Serv., 46, Article 101221. doi: 10.1016/j.ecoser.2020.101221.

[113]

McPhearson, T, Kremer, P, Hamstead, Z. O., 2013. Mapping ecosystem services in New York City: applying a social–ecological approach in urban vacant land. Ecosyst. Serv., 5, pp. 11-26. doi: 10.1016/j.ecoser.2013.06.005.

[114]

Meixler, M. S., Piana, M. R., Henry, A., 2023. Modeling present and future ecosystem services and environmental justice within an urban-coastal watershed. Landsc. Urban Plan., 232, Article 104659. doi: 10.1016/j.landurbplan.2022.104659.

[115]

Meng, F, Guo, J, Guo, Z, Lee, J. C. K., Liu, G., 2021. Urban ecological transition: the practice of ecological civilization construction in China. Sci. Total Environ., 755, Article 142633. doi: 10.1016/j.scitotenv.2020.142633.

[116]

Mengist, W, Soromessa, T., 2019. Assessment of forest ecosystem service research trends and methodological approaches at global level: a meta-analysis. Environ. Syst. Res., 8, p. 22. doi: 10.1186/s40068-019-0150-4.

[117]

Mengist, W., Soromessa, T., Legese, G., 2020. Ecosystem services research in mountainous regions: a systematic literature review on current knowledge and research gaps. Sci. Total Environ. 702, 134581. doi: 10.1016/j.scitotenv.2019.134581.

[118]

Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, D.C.

[119]

Minixhofer, P, Stangl, R., 2021. Green infrastructures and the consideration of their soil-related ecosystem services in urban areas — a systematic literature review. Sustainability, 13, p. 3322. doi: 10.3390/su13063322.

[120]

Møller Francis, L, Bergen Jensen, M., 2017. Benefits of green roofs: a systematic review of the evidence for three ecosystem services. Urban For. Urban Green., 28, pp. 167-176. doi: 10.1016/j.ufug.2017.10.015.

[121]

Montanarella, L, Panagos, P., 2021. The relevance of sustainable soil management within the European Green Deal. Land Use Policy, 100, Article 104950. doi: 10.1016/j.landusepol.2020.104950.

[122]

Muñoz-Pacheco, C. B., Villaseñor, N. R., 2022. Urban ecosystem services in South America: a systematic review. Sustainability, 14, p. 10751. doi: 10.3390/su141710751.

[123]

Nesbitt, L, Hotte, N, Barron, S, Cowan, J, Sheppard, S. R. J., 2017. The social and economic value of cultural ecosystem services provided by urban forests in North America: a review and suggestions for future research. Urban For. Urban Green., 25, pp. 103-111. doi: 10.1016/j.ufug.2017.05.005.

[124]

Nicholls, E, Ely, A, Basu, P, Goulson, D., 2020. The contribution of small-scale food production in urban areas to the sustainable development goals: a review and case study. Sustain. Sci., 15, pp. 1585-1599. doi: 10.1007/s11625-020-00792-z.

[125]

Nigussie, S., Liu, L., Yeshitela, K., 2021. Towards improving food security in urban and peri-urban areas in Ethiopia through map analysis for planning. Urban For. Urban Green. 58, 126967. doi: 10.1016/j.ufug.2020.126967.

[126]

OECD, 2018. Rethinking Urban Sprawl: Moving Towards Sustainable Cities. OECD Publishing, Paris doi: 10.1787/9789264189881-en.

[127]

Ochoa, V, Urbina-Cardona, N., 2017. Tools for spatially modeling ecosystem services: publication trends, conceptual reflections and future challenges. Ecosyst. Serv., 26, 155-169.

[128]

Opitz, Y, Berges, R, Piorr, A, Krikser, T., 2016. Contributing to food security in urban areas: differences between urban agriculture and peri-urban agriculture in the Global North. Agric. Human Values, 33, pp. 342-358. doi: 10.1007/s10460-015-9610-2.

[129]

Orgiazzi, A, Ballabio, C, Panagos, P, Jones, A, Fernández-Ugalde, O., 2017. LUCAS soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci., 69 (1), pp. 140-153. doi: 10.1111/ejss.12499.

[130]

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I, Hoffmann, T. C., Mulrow, C. D., Shamseer, L, Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R, Glanville, J, Grimshaw, J. M., Hróbjartsson, A, Lalu, M. M., Li, T, Loder, E. W., Mayo-Wilson, E, McDonald, S, McGuinness, L. A., Stewart, L. A., Thomas, J, Tricco, A. C., Welch, V. A., Whiting, P, Moher, D., 2021. The PRISMS 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, p. n71. doi: 10.1136/bmj.n71.

[131]

Parron, L. M., Cardoso Fidalgo, E. C., Polli Luz, E, Matoso Campanha, M, Dias Turetta, A. P., Gomes Pedreira, B. C. C., Bardy Prado, R., 2019. Research on ecosystem services in Brazil: a systematic review. Rev. Ambient. Água, 14 (3), p. e2263. doi: 10.4136/ambi-agua.2263.

[132]

Paudel, S, States, S. L., 2023. Urban green spaces and sustainability: exploring the ecosystem services and disservices of grassy lawns versus floral meadows. Urban For. Urban Green., 84, Article 127932. doi: 10.1016/j.ufug.2023.127932.

[133]

Payen, P, Evans, D. L., Falagan, N, Hardman, C. A., Kourmpetli, S, Liu, L, Marshall, R, Mead, B. R., Davies, J. A. C., 2022. Mead, J.A.C. Davies. How much food can we grow in urban areas? Food production and crop yields of urban agriculture: a meta-analysis. Earths Future, 10, Article e2022EF002748. doi: 10.1029/2022EF002748.

[134]

Pereira, P., Brevik, E., Trevisani, E., 2018. Mapping the environment. Sci. Total Environ. 610-611, 17–23. doi: 10.1016/j.scitotenv.2017.08.001.

[135]

Pereira, P., Kalinauskas, M., Das, M., Bogdzevi č, K., Inacio, M., Barcelo, D., 2022a. Mapping and assessment of flood regulation supply and demand in Vilnius (Lithuania). In: Ferreira, C., Pereira, P. (Eds.), Urban Soil and Water Degradation. Advances in Chemical Pollution, Environmental Management and Protection. Elsevier, pp. 113–133. doi: 10.1016/bs.apmp.2022.10.015.

[136]

Pereira, P., Inacio, P., Kalinauskas, M., Bogdzevic, K., Bogunovic, I., Zhao, W., 2022b. Land-use changes and ecosystem services. In: Pereira, P., Gomes, E., Rocha, J. (Eds.), Mapping and Forecasting Land Use: The Present and Future of Planning. Elsevier, The Netherlands, pp. 1–27. doi: 10.1016/B978-0-323-90947-1.00007-7.

[137]

Pereira, P., Inacio, M., Karnauskaite, D., Bogdzevi č, K., Gomes, E., Kalinauskas, M., Barcelo, D., 2022c. Nature based solutions impacts on urban environment chemistry: air, soil and water. In: Ferreira, C.S.S., Kalantari, Z., Hartmann, T., Pereira, P. (Eds.), Nature-Based Solutions for Flood Mitigation: Environmental and Socio-Economic Aspects. Springer, pp. 79–137. doi: 10.1007/698_2021_760.

[138]

Pereira, P., Yin, C., Hua, T., 2023. Nature-based Solutions, ecosystem services, disservices and impacts on wellbeing in urban environments. Curr. Opin. Environ. Health 33, 100465. doi: 10.1016/j.coesh.2023.100465.

[139]

Perevochtchikova, M, De la Mora-De la Mora, G, Hernández Flores, J. A., Marín, W, Langle Flores, A, Ramos Bueno, A, Rojo Negrete, I. A., 2019. Systematic review of integrated studies on functional and thematic ecosystem services in Latin America, 1992–2017. Ecosyst. Serv., 36, Article 100900. doi: 10.1016/j.ecoser.2019.100900.

[140]

Pinto, L. V., Inacio, M, Ferreira, C. S. S., Ferreira, A, Pereira, P., 2022. Ecosystem services and well-being dimensions related to urban green spaces – a systematic review. Sustain. Cities. Soc., 85, Article 104072. doi: 10.1016/j.scs.2022.104072.

[141]

Pittock, J., Cork, S., Maynard, S., 2012. The state of the application of ecosystems services in Australia. Ecosyst. Serv. 1, 111–120. doi: 10.1016/j.ecoser.2012.07.010.

[142]

Plant, R, Ryan, P., 2013. Ecosystem services as a practicable concept for natural resource management: some lessons from Australia. Ecosyst. People, 9, pp. 44-53. doi: 10.1080/21513732.2012.737372.

[143]

Pueffel, C, Haase, D, Priess, J. A., 2018. Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosyst. Serv., 30, pp. 73-85. doi: 10.1016/j.ecoser.2018.01.011.

[144]

Puente-Sotomayor, F., Mustafa, A., Teller, J., 2021. Landslide susceptibility mapping of urban areas: logistic regression and sensitivity analysis applied to Quito. Ecuador. Geoenviron. Disasters 8, 19. doi: 10.1186/s40677-021-00184-0.

[145]

Pulighe, G., Fava, F., Lupia, F., 2016. Insights and opportunities from mapping ecosystem services of urban green spaces and potentials in planning. Ecosyst. Serv. 22, 1–10. doi: 10.1016/j.ecoser.2016.09.004.

[146]

Qi, Y, Lian, X, Wang, H, Zhang, J, Yang, R., 2020. Dynamic mechanism between human activities and ecosystem services: a case study of Qinghai lake watershed, China. Ecol. Indic., 117, Article 106528. doi: 10.1016/j.ecolind.2020.106528.

[147]

Ramirez-Lopez, L, Wadoux, M. J. C., Franceschini, M. H. D., Terra, F. S., Marques, K. P. P., Sayao, V. M., Demattê, J. A. M., 2019. Robust soil mapping at the farm scale with vis–NIR spectroscopy. Eur. J. Soil Sci., 70, pp. 378-393. doi: 10.1111/ejss.12752.

[148]

Ranjbari, M, Shams Esfandabadi, Z, Zanetti, M. C., Aghbashlo, M, Peng, W, Quatraro, F, Tabatabaei, M., 2021. Three pillars of sustainability in the wake of COVID-19: a systematic review and future research agenda for sustainable development. J. Clean. Prod., 297, Article 126660. doi: 10.1016/j.jclepro.2021.126660.

[149]

Razzaghi Asl, S, Pearsall, H., 2022. How do different modes of governance support ecosystem services/disservices in small-scale urban green infrastructure? A systematic review. Land, 11, p. 1247. doi: 10.3390/land11081247.

[150]

Rosini, C, Revelli, R., 2020. A scoring matrix method for integrated evaluation of water-related ecosystem services provided by urban parks. Environ. Manage., 66, pp. 756-769. doi: 10.1007/s00267-020-01369-3.

[151]

Ruiz Agudelo, C. A., Hurtado Bastos, S. L., Parrado Moreno, C. A., 2020. Modeling interactions among multiple ecosystem services. A critical review. Ecol. Modell., 429, Article 109103. doi: 10.1016/j.ecolmodel.2020.109103.

[152]

Selbig, W. R., Loheide II, S. P., Shuster, W, Scharenbroch, B. C., Coville, R. C., Kruegler, J, Avery, J, Haefner, R, Nowak, D., 2022. Quantifying the stormwater runoff volume reduction benefits of urban street tree canopy. Sci. Total Environ., 806, Article 151296. doi: 10.1016/j.scitotenv.2021.151296.

[153]

Schägner, J. P., Brander, L, Maes, J, Hartje, V., 2013. Mapping ecosystem services' values: current practice and future prospects. Ecosyst. Serv., 4, pp. 33-46. doi: 10.1016/j.ecoser.2013.02.003.

[154]

Sharifi, A, Khavarian-Garmsir, A., 2020. The COVID-19 pandemic: impacts on cities and major lessons for urban planning, design, and management. Sci. Total Environ., 749, Article 142391. doi: 10.1016/j.scitotenv.2020.142391.

[155]

Shi, T., Shi, D., Zhou, L., Fang, R., 2020a. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 115, 106418. doi: 10.1016/j.ecolind.2020.106418.

[156]

Shi, D., Song, J., Huang, J., Zhuang, C., Guo, R., Gao, Y., 2020b. Synergistic cooling effects (SCEs) of urban green-blue spaces on local thermal environment: a case study in Chongqing, China. Sustain. Cities Soc. 55, 102065. doi: 10.1016/j.scs.2020. 102065.

[157]

Sicard, P, Agathokleous, E, De Marco, A, Paoletti, E, Calatayud, V., 2021. Urban population exposure to air pollution in Europe over the last decades. Environ. Sci. Eur., 33, p. 28. doi: 10.1186/s12302-020-00450-2.

[158]

Singh, G. G., Sinner, J, Ellis, J, Kandlikar, M, Halpern, B. S., Satterfield, T, Chan, K. M. A., 2017. Mechanisms and risk of cumulative impacts to coastal ecosystem services: an expert elicitation approach. J. Environ. Manage., 199, pp. 229-241. doi: 10.1016/j.jenvman.2017.05.032.

[159]

Song, Y, Yang, T, Li, Z, Zhang, X, Zhang, M., 2020. Research on the direct and indirect effects of environmental regulation on environmental pollution: empirical evidence from 253 prefecture-level cities in China. J. Clean. Prod., 269, Article 122425. doi: 10.1016/j.jclepro.2020.122425.

[160]

Stroud, S., Peacock, J., Hassall, C., 2022. Vegetation-based ecosystem service delivery in urban landscapes: a systematic review. Basic Appl. Ecol. 61, 82–101. doi: 10.1016/j.baae.2022.02.007.

[161]

Schwarz, N, Moretti, M, Bugalho, M. N., Davies, Z. G., Haase, D, Hack, J, Hof, A, Melero, Y, Pett, T, Knapp, S., 2017. Understanding biodiversity-ecosystem service relationships in urban areas: a comprehensive literature review. Ecosyst. Serv., 27, pp. 161-171. doi: 10.1016/j.ecoser.2017.08.014.

[162]

Stoycheva, V, Geneletti, D., 2023. A review of regulating ecosystem services in the context of urban planning. J. Bulg. Geogr. Soc., 48, pp. 27-42. doi: 10.3897/jbgs.e93499.

[163]

Tamiminia, H, Salehi, B, Mahdianpari, M, Quackenbush, L, Adeli, S, Brisco, B., 2020. Google Earth Engine for geo-big data applications: a meta-analysis and systematic review. ISPRS-J. Photogramm. Remote Sens., 164, pp. 152-170. doi: 10.1016/j.isprsjprs.2020.04.001.

[164]

Tapia, C, Randall, L, Wang, S, Borges, L. A., 2021. Monitoring the contribution of urban agriculture to urban sustainability: an indicator-based framework. Sustain. Cities. Soc., 74, Article 103130. doi: 10.1016/j.scs.2021.103130.

[165]

Tardieu, L, Hamel, P, Viguie, V, Coste, L, Levrel, H., 2021. Are soil sealing indicators sufficient to guide urban planning? Insights from an ecosystem services assessment in the Paris metropolitan area. Environ. Res. Lett., 16, Article 104019. doi: 10.1088/1748-9326/ac24d0.

[166]

TEEB, 2010. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB. Progress Press, Malta.

[167]

Tavares, P. A., Beltrão, N, Guimarães, U. S., Teodoro, A, Gonçalves, P., 2019. Urban ecosystem services quantification through remote sensing approach: a systematic review. Environments, 6, p. 51. doi: 10.3390/environments6050051.

[168]

Tang, F, Fu, M, Wang, L, Zhang, P., 2020. Land-use change in Changli County, China: predicting its spatio-temporal evolution in habitat quality. Ecol. Indic., 117, Article 106719. doi: 10.1016/j.ecolind.2020.106719.

[169]

Thorn, J. P. R., Aleu, R. B., Wijesinghe, A, Mdongwe, M, Marchant, R. A., Shackelton, S., 2021. Mainstreaming nature-based solutions for climate resilient infrastructure in peri-urban sub-Saharan Africa. Landsc. Urban Plan., 216, Article 104235. doi: 10.1016/j.landurbplan.2021.104235.

[170]

Tuholske, C, Andam, K, Blekking, J, Evans, T, Caylor, K., 2020. Comparing measures of urban food security in Accra, Ghana. Food Secur., 12, pp. 417-431. doi: 10.1007/s12571-020-01011-4.

[171]

Trottet, A, George, C, Drillet, G, Lauro, F. M., 2022. Aquaculture in coastal urbanized areas: a comparative review of the challenges posed by Harmful Algal Blooms. Crit. Rev. Environ. Sci. Technol., 52, pp. 2888-2929. doi: 10.1080/10643389.2021.1897372.

[172]

United Nations, Department of Economic and Social Affairs, Population Division, 2019. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). United Nations, New York.

[173]

van Dijk, C. E., Zock, P, Baliatsas, C, Smit, L. A. M., Borlée, F, Spreeuwenberg, P, Heederik, D, Yzermans, C. J., 2017. Health conditions in rural areas with high livestock density: analysis of seven consecutive years. Environ. Pollut., 222, pp. 374-382. doi: 10.1016/j.envpol.2016.12.023.

[174]

Vardhan Mishra, S, Gayen, A, Haque, S. M., 2020. COVID-19 and urban vulnerability in India. Habitat Int., 103, Article 102230. doi: 10.1016/j.habitatint.2020.102230.

[175]

Viana, C. M., Freire, D, Abrantes, P, Rocha, J, Pereira, P., 2022. Agricultural land systems importance for supporting food security and sustainable development goals: a systematic review. Sci. Total Environ., 806, Article 150718. doi: 10.1016/j.scitotenv.2021.150718.

[176]

Vargas, L, Ruiz, D, Gómez-Navarro, C, Ramiez, W, Hernandez, O. L., 2023. Mapping potential surpluses, deficits, and mismatches of ecosystem services supply and demand for urban areas. Urban Ecosyst., 26, pp. 701-711. doi: 10.1007/s11252-022-01312-w.

[177]

Wang, R., Bai, Y., Altalo, J.M., Yang, Z., Yang, Z., Yang, W., Guo, G., 2021a. Impacts of rapid urbanization on ecosystem services under different scenarios – a case study in Dianchi Lake Basin, China. Ecol. Indic. 130, 108102. doi: 10.1016/j.ecolind.2021.108102.

[178]

Wang, S, Bai, X, Zhang, X, Reis, S, Chen, D, Xu, J, Gu, B., 2021. Urbanization can benefit agricultural production with large-scale farming in China. Nat. Food, 2, pp. 183-191. doi: 10.1038/s43016-021-00228-6.

[179]

Wang, J., Chen, S., Wang, M., 2019. How do spatial patterns impact regulation of waterrelated ecosystem services? Insights from a new town development in the Yangtze River Delta, China. Sustainability 11, 2010. doi: 10.3390/su11072010.

[180]

Wang, Y, Bakker, F, de Groot, R, Wörtche, H., 2014. Effect of ecosystem services provided by urban green infrastructure on indoor environment: a literature review. Build. Environ., 77, pp. 88-100. doi: 10.1016/j.buildenv.2014.03.021.

[181]

Washbourne, C. L., Goddard, M. A., Le Provost, G, Manning, D. A. C., Manning, P., 2020. Trade-offs and synergies in the ecosystem service demand of urban brownfield stakeholders. Ecosyst. Serv., 42, Article 101074. doi: 10.1016/j.ecoser.2020.101074.

[182]

Wheeler, A. P., Steenbeek, A. P., 2021. Mapping the risk terrain for crime using machine learning. J. Quant. Criminol., 37, pp. 445-480. doi: 10.1007/s10940-020-09457-7.

[183]

Wu, Y, Huang, Z, Han, D, Qiu, X, Pan, Y., 2023. Evolution of urban ecosystem service value and a scenario analysis based on land utilization changes: a case study of Hangzhou, China. Sustainability, 15, p. 8274. doi: 10.3390/su15108274.

[184]

Wunder, S, Bodle, R., 2019. Achieving land degradation neutrality in Germany: implementation process and design of a land use change based indicator. Environ. Sci. Policy, 92, pp. 46-55. doi: 10.1016/j.envsci.2018.09.022.

[185]

Yang, Y., Song, G., Lu, S., 2020. Study on the ecological protection redline (EPR) demarcation process and the ecosystem service value (ESV) of the EPR zone: a case study on the city of Qiqihaer in China. Ecol. Indic. 109, 105754. doi: 10.1016/j.ecolind.2019.105754.

[186]

Yang, J, Huang, C, Zhang, Z, Wang, L., 2014. The temporal trend of urban green coverage in major Chinese cities between 1990 and 20doi: 10. Urban For. Urban Green., 13, pp. 19-27, 10.1016/j.ufug.2013.10.002.

[187]

Yao, L, Li, T, Xu, M, Xu, Y., 2020. How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: an urban heat island study in Beijing, China. Urban For. Urban Green., 52, Article 126704. doi: 10.1016/j.ufug.2020.126704.

[188]

Yi, X., Throsby, D., Gao, S., 2021. Cultural policy and investment in China: do they realize the government’s cultural objectives? J. Policy Model. 43, 416–432. doi: 10.1016/j.jpolmod.2020.09.003.

[189]

Xing, Y, Hernandez Nopsa, J. F., Andersen, K. F., Andrade-Piedra, J. L., Beed, F. D., Blomme, G, Carvajal-Yepes, M, Coyne, D. L., Cuellar, W. J., Forbes, G. A., Kreuze, J. F., Kroschel, J, Kumar, P. L., Legg, J. P., parker, M, Schulte-Geldermann, E, Sharma, K, Garrett, K. A., 2020. Global cropland connectivity: a risk factor for invasion and saturation by emerging pathogens and pests. Bioscience, 70, pp. 744-758. doi: 10.1093/biosci/biaa067.

[190]

Xiong, Z, Wang, Y., 2022. Cross-scalling approach for water-flow-regulating ecosystem services: a trial in Bochum. Land, 11, p. 740. doi: 10.3390/land11050740.

[191]

Xu, H, Zhao, G., 2021. Assessing the value of urban green infrastructure ecosystem services for high-density urban management and development: case from the capital core area of Beijing, China. Sustainability, 13, p. 12115. doi: 10.3390/su132112115.

[192]

Xue, B, Han, B, Gou, X, Yang, H, Thomas, H, Stückrad, S., 2023. Understanding ecological civilization in China: from political context to science. Ambio, 52, pp. 1895-1909. doi: 10.1007/s13280-023-01897-2.

[193]

Zhang, Z., Peng, J., Xu, Z., Wang, X., Meersmans, J., 2021a. Ecosystem services supply and demand response to urbanization: a case study of the Pearl River Delta, China. Ecosyst. Serv. 49, 101274. doi: 10.1016/j.ecoser.2021.101274.

[194]

Zhang, H., Liu, L., Zeng, Y., Liu, M., Bi, J., Ji, J.S., 2021b. Effect of heatwaves and greenness on mortality among Chinese older adults. Environ. Pollut. 290, 118009. doi: 10.1016/j.envpol.2021.118009.

[195]

Zhang, Y., Yu, P., Tian, Y., Chen, H., Chen, Y., 2023a. Exploring the impact of integrated spatial function zones on land use dynamics and ecosystem services tradeoffs based on a future land use simulation (FLUS) model. Ecol. Indic. 150, 110246. doi: 10.1016/j.ecolind.2023.110246.

[196]

Zhang, M., Fan, S., Li, X., Li, K., Xing, X., Hao, P., Dong, L., 2023b. How urban riparian corridors affect the diversity of spontaneous herbaceous plants as pollination and dispersal routes - a case of the Wenyu River- North Canal in Beijing, China. Ecol. Indic. 146, 109869. doi: 10.1016/j.ecolind.2023.109869.

[197]

Zhao, C., Sander, H.A., Hendrix, S.D., 2019a. Wild bees and urban agriculture: assessing pollinator supply and demand across urban landscapes. Urban Ecosyst. 22, 455–470. doi: 10.1007/s11252-019-0826-6.

[198]

Zhao, M., He, Z., Du, J., Chen, L., Lin, P., Fang, S., 2019b. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 98, 29–38. doi: 10.1016/j.ecolind.2018.10.052.

[199]

Zhao, Y., Liu, Z., Wu, J., 2020. Grassland ecosystem services: a systematic review of research advances and future directions. Landsc. Ecol. 35, 793–814. doi: 10.1007/s10980-020-00980-3.

[200]

Zhao, C, Sander, H. A., 2018. Assessing the sensitivity of urban ecosystem service maps to input spatial data resolution and method choice. Landsc. Urban Plan., 175, pp. 11-12. doi: 10.1016/j.landurbplan.2018.03.007.

[201]

Zhu, Z, Chan, F. K. S., Li, G, Xu, M, Feng, M, Zhu, Y. G., 2024. Implementing urban agriculture as nature-based solutions in China: challenges and global lessons. Soil Environ. Health, 2, Article 100063. doi: 10.1016/j.seh.2024.100063.

[202]

Zhu, J, Xu, C., 2021. Sina microblog sentiment in Beijing city parks as measure of demand for urban green space during the COVID-19. Urban For. Urban Green., 58, Article 126913. doi: 10.1016/j.ufug.2020.126913.

PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

/