Essential contribution of habitats in non-protected areas to climate-driven species migration in China

Jie Su , Fanhua Kong , Haiwei Yin , Michael E. Meadows , Liding Chen , Hong S. He , Hui Sun , Zhenya Li , Kejing Zhou , Bin Chen

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100203

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100203 DOI: 10.1016/j.geosus.2024.05.006
Research Article
review-article

Essential contribution of habitats in non-protected areas to climate-driven species migration in China

Author information +
History +
PDF

Abstract

Given the reality of climate-driven migration, the net effectiveness of existing spatially fixed protected areas (PAs) to biodiversity conservation is expected to decline, while the potential of non-PA habitats (non-PAs, i.e., natural, altered, or artificial ecosystems that are not formally designated as PAs) for biodiversity conservation is gaining attention. However, the contribution of non-PAs to biodiversity conservation remains poorly understood. With the aim of comprehensively assessing the effectiveness of non-PAs as transient refugia and steppingstones during future climate-change-induced migration of species in China, a six-metric integrated framework was applied and statistics of these metrics for PAs and non-PAs are compared. Results reveal that, a greater area of non-PAs has a low velocity of climate change (VoCC) compared to that of PAs, and can therefore serve as temporary refugia for species. The disappearing climate index (DCI) and novel climate index (NCI) results show that some 17 % of the subdivided climate classes within the PAs have changed. However, the displacement index (DI) results imply that nearly half (48.98 %) of the PAs need non-PAs to provide transient refugia for climate-driven migration of species in PAs. The higher ratio of effective steppingstones measured using the climate corridor score (CCS) and landscape current flow (LCF) further emphasizes that non-PAs play a more significant role as steppingstones for climate-driven migration than do PAs in terms of both their structural and functional connectivity. Our research further demonstrates that a conservation approach that improves connectivity among PAs and considers Other Effective area-based Conservation Measures (OECMs) is essential for long-term biodiversity adaptation to climate change.

Keywords

Climate change / Other Effective area-based Conservation Measures (OECMs) / Climate connectivity / Displacement index / Refugia / Steppingstones

Cite this article

Download citation ▾
Jie Su, Fanhua Kong, Haiwei Yin, Michael E. Meadows, Liding Chen, Hong S. He, Hui Sun, Zhenya Li, Kejing Zhou, Bin Chen. Essential contribution of habitats in non-protected areas to climate-driven species migration in China. Geography and Sustainability, 2025, 6(1): 100203 DOI:10.1016/j.geosus.2024.05.006

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability statement

The data and scripts for tracking climate-driven migration routes are freely available online (doi:10.6084/m9.figshare.23821305.v1).

CRediT authorship contribution statement

Jie Su: Writing – review & editing, Writing – original draft, Validation, Software, Methodology, Investigation, Formal analysis. Fanhua Kong: Writing – review & editing, Writing – original draft, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization. Haiwei Yin: Writing – review & editing, Supervision, Resources, Project administration, Conceptualization. Michael E. Meadows: Writing – review & editing. Liding Chen: Writing – review & editing. Hong S. He: Validation, Software, Methodology, Formal analysis. Hui Sun: Validation, Methodology, Formal analysis. Zhenya Li: Validation, Software, Methodology, Formal analysis. Kejing Zhou: Validation, Software, Methodology, Formal analysis. Bin Chen: Validation, Software, Methodology, Formal analysis.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grants No. 2022YFC3802604, 2022YFF1303102) and the Global Engagement for Strategic Partnership project of Nanjing University. We thank anonymous reviewers for thoughtful comments that substantially improved this manuscript. We also wish to sincerely acknowledge the scientists for their various contributions to the dataset.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.05.006.

References

[1]

Aguirre-Liguori, J. A., Ramírez-Barahona, S, Gaut, B. S., 2021. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol., 5, 1350-1360.

[2]

Alagador, D, Cerdeira, J. O., Araújo, M. B., 2016. Climate change, species range shifts and dispersal corridors: an evaluation of spatial conservation models. Methods Ecol. Evol., 7, 853-866.

[3]

Alagador, D, Cerdeira, J. O., Araújo, M. B., 2021. Spatial adaptive responses of highly threatened European mammal species under climate change. Preprints.org . doi: 10.20944/preprints202111.0550.v1.

[4]

Alves-Pinto, H, Geldmann, J, Jonas, H, Maioli, V, Balmford, A, Ewa Latawiec, A, Crouzeilles, R, Strassburg, B., 2021. Opportunities and challenges of other effective area-based conservation measures (OECMs) for biodiversity conservation. Perspect. Ecol. Conserv., 19, 115-120.

[5]

Araújo, M. B., Alagador, D, Cabeza, M, Nogués-Bravo, D, Thuiller, W., 2011. Climate change threatens European conservation areas: climate change threatens conservation areas. Ecol. Lett., 14, 484-492.

[6]

Asamoah, E. F., Beaumont, L. J., Maina, J. M., 2021. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change 11, 1105-1110.

[7]

Autumn, R. I., David, W, Fraser, S., 2024. Functional landscape connectivity for a select few: linkages do not consistently predict wildlife movement or occupancy. Landsc. Urban Plan., 243, 0169-2046.

[8]

Batllori, E, M-Parisien, A, Parks, S. A., Moritz, M. A., Miller, C., 2017. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol., 23, 3219-3230.

[9]

Belote, R. T., Barnett, K, Zeller, K, Brennan, A, Gage, J., 2022. Examining local and regional ecological connectivity throughout North America. Landsc. Ecol., 37 , pp. 2977-2990. doi: 10.1007/s10980-022-01530-9.

[10]

Blaum, N, Mosner, E, Schwager, M, Jeltsch, F., 2011. How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach. Biodivers. Conserv., 20, 2333-2345.

[11]

Bontrager, M, Angert, A. L., 2018. Gene flow improves fitness at a range edge under climate change. Evol. Lett., 3(1), 55-68.

[12]

Brennan, A, Naidoo, R, Greenstreet, L, Mehrabi, Z, Ramankutty, N, Kremen, C., 2022. Functional connectivity of the world's protected areas. Science 376, 1101-1104.

[13]

Carrasco, L, Papeş, M, Sheldon, K. S., Giam, X., 2021. Global progress in incorporating climate adaptation into land protection for biodiversity since Aichi targets. Glob. Change Biol., 27, 1788-1801.

[14]

Carroll, C, Parks, S. A., Dobrowski, S. Z., Roberts, D. R., 2018. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol., 24, 5318-5331.

[15]

Cazalis, V, Princé, K, J-Mihoub, B, Kelly, J, Butchart, S. H. M., Rodrigues, A. S. L., 2020. Effectiveness of protected areas in conserving tropical forest birds. Nat. Commun., 11, 4461.

[16]

Chandler, M, See, L, Copas, K, Bonde, A. M. Z., López, B. C., Danielsen, F, Legind, J. K., Masinde, S, Miller-Rushing, A. J., Newman, G, Rosemartin, A, Turak, E., 2017. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv., 213, 280-294.

[17]

Clements, H. S., Kerley, G. I. H., Cumming, G. S., De Vos, A, Cook, C. N., 2019. Privately protected areas provide key opportunities for the regional persistence of large- and medium-sized mammals. J. Appl. Ecol., 56, 537-546.

[18]

Codling, E. A., Plank, M. J., Benhamou, S., 2008. Random walk models in biology. J. R. Soc. Interf., 5, 813-834.

[19]

Convention on Biological Diversity, 2022. Kunming-Montreal Global Biodiversity Framework. CBD Montreal.

[20]

Convention on Biological Diversity, 2018. COP Decision 14/8: Protected Areas and Other Effective Area-Based Conservation Measures. CBD Montreal.

[21]

Cook, C. N., 2023. Progress developing the concept of other effective area-based conservation measures. Conserv. Biol., 38 , p. e14106. doi: 10.1111/cobi.14106.

[22]

Corrigan, C, Bingham, H, Shi, Y, Lewis, E, Chauvenet, A, Kingston, N., 2018. Quantifying the contribution to biodiversity conservation of protected areas governed by indigenous peoples and local communities. Biol. Conserv., 227, 403-412.

[23]

Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G, Lugo, A. E., 2008. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ., 6, 238-246.

[24]

Dahal, B. R., McAlpine, C. A., Maron, M., 2014. Bird conservation values of off-reserve forests in lowland Nepal. For. Ecol. Manage., 323, 28-38.

[25]

De Marco Jr, P, de Souza, R. A., Andrade, A. F. A., Villén-Pérez, S, Nóbrega, C. C., Campello, L. M., Caldas, M., 2023. The value of private properties for biodiversity conservation in the Brazilian Cerrado. Science 380(6642), 298-301.

[26]

Diengdoh, V. L., Ondei, S, Amin, R. J., Hunt, M, Brook, B. W., 2023. Landscape functional connectivity for butterflies under different scenarios of land-use, land-cover, and climate change in Australia. Biol. Conserv., 277, 109825.

[27]

Dirzo, R, Young, H. S., Galetti, M, Ceballos, G, Isaac, N. J. B., Collen, B., 2014. Defaunation in the anthropocene. Science 345, 401-406.

[28]

Dobrowski, S. Z., Parks, S. A., 2016. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun., 7, 12349.

[29]

Dobrowski, S. Z., Littlefield, C. E., Lyons, D. S., Hollenberg, C, Carroll, C, Parks, S. A., Abatzoglou, J. T., Hegewisch, K, Gage, J., 2021. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth. Environ., 2, 198.

[30]

Donald, P. F., Buchanan, G. M., Balmford, A, Bingham, H, Couturier, A. R., La Rosa, G. E., Gacheru, P, Herzog, S. K., Jathar, G, Kingston, N, Marnewick, D, Maurer, G, Reaney, L, Shmygaleva, T, Sklyarenko, S, Stevens, C. M. D., Butchart, S. H. M., 2019. The prevalence, characteristics and effectiveness of Aichi Target 11’s “other effective area-based conservation measures” (OECMs) in key biodiversity areas. Conserv. Lett., 12 (5) , p. e12659. doi: 10.1111/conl.12659.

[31]

Elsen, P. R., Monahan, W. B., Dougherty, E. R., Merenlender, A. M., 2020. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv., 6 , p. eaay0814. doi: 10.1126/sciadv.aay0814.

[32]

Fick, S. E., Hijmans, R. J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 37, 4302-4315.

[33]

Fu, B. J., Liu, G. H., , Y. H., Chen, L. D., Ma, K. M., 2004. Ecoregions and ecosystem management in China. Int. J. Sust. Dev. World Ecol., 11, 397-409.

[34]

Gurney, G. G., Darling, E. S., Ahmadia, G. N., Agostini, V. N., Ban, N. C., Blythe, J, Claudet, J, Epstein, G, Estradivari, A, Jonas, H. D., Armitage, D, Campbell, S. J., Cox, C, Friedman Whitney, R, Gill, D, Lestari, P, Mangubhai, S, McLeod, E, Muthiga, N. A., Naggea, J, Ranaivoson, R, Wenger, A, Yulianto, I, Jupiter, S. D., 2021. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646-649.

[35]

Hamann, A, Roberts, D. R., Barber, Q. E., Carroll, C, Nielsen, S. E., 2015. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol., 21, 997-1004.

[36]

Hodgson, J. A., Thomas, C. D., Wintle, B. A., Moilanen, A., 2009. Climate change, connectivity and conservation decision making: back to basics. J. Appl. Ecol., 46, 964-969.

[37]

Hoffmann, S, Irl, S. D. H., Beierkuhnlein, C., 2019. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun., 10, 4787.

[38]

Iwamura, T, Wilson, K. A., Venter, O, Possingham, H. P., 2010. A climatic stability approach to prioritizing global conservation investments. PLoS One, 5 , p. e15103. doi: 10.1371/journal.pone.0015103.

[39]

Johnston, A, Ausden, M, Dodd, A. M., Bradbury, R. B., Chamberlain, D. E., Jiguet, F, Thomas, C. D., Cook, A. S. C. P., Newson, S. E., Ockendon, N, Rehfisch, M. M., Roos, S, Thaxter, C. B., Brown, A, Crick, H. Q. P., Douse, A, McCall, R. A., Pontier, H, Stroud, D. A., Cadiou, B, Crowe, O, Deceuninck, B, Hornman, M, Pearce-Higgins, J. W., 2013. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055-1061.

[40]

Kavwele, C. M., Torney, C. J., Morrison, T. A., Fulford, S, Masolele, M. M., Masoy, J, Hopcraft, J. G. C., 2022. Non-local effects of human activity on the spatial distribution of migratory wildlife in Serengeti National Park. Tanzania Ecol. Solut. Evid., 3, e12159.

[41]

Kong, F, Wang, D, Yin, H, Dronova, I, Fei, F, Chen, J, Pu, Y, Li, M., 2021. Coupling urban 3-D information and circuit theory to advance the development of urban ecological networks. Conserv. Biol., 35, 1140-1150.

[42]

Landau, V. A., Shah, V. B., Anantharaman, R, Hall, K. R., 2021. Omniscape.jl: software to compute omnidirectional landscape connectivity. J. Open Sour. Softw., 6, 2829.

[43]

Lapola, D. M., da Silva, J. M. C., Braga, D. R., Carpigiani, L, Ogawa, F, Torres, R. R., Barbosa, L. C. F., Ometto, J. P. H. B., Joly, C. A., 2020. A climate-change vulnerability and adaptation assessment for Brazil’s protected areas. Conserv. Biol., 34, 427-437.

[44]

Lewis, E, MacSharry, B, Juffe-Bignoli, D, Harris, N, Burrows, G, Kingston, N, Burgess, N. D., 2019. Dynamics in the global protected-area estate since 2004. Conserv. Biol., 33, 570-579.

[45]

Lu, K, Arshad, M, Ma, X, Ullah, I, Wang, J, Shao, W., 7673. (2022). doi: 10.1002/joc.7673.

[46]

Maciejewski, K, Baum, J, Cumming, G. S., 2016. Integration of private land conservation areas in a network of statutory protected areas: implications for sustainability. Biol. Conserv., 200 , pp. 200-206. doi: 10.1016/j.biocon.2016.05.027.

[47]

McRae, B. H., Dickson, B. G., Keitt, T. H., Shah, V. B., 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712-2724.

[48]

McRae, B, Popper, K, Jones, A, Schindel, M, Buttrick, S, Hall, K, Unnasch, R. S., Platt, J., 2016. Conserving Nature's Stage: Mapping Omnidirectional Connectivity for Resilient Terrestrial Landscapes in the Pacific Northwest. The Nature Conservancy, Portland Oregon

[49]

Morelli, T. L., Barrows, C. W., Ramirez, A. R., Cartwright, J. M., Ackerly, D. D., Eaves, T. D., Ebersole, J. L., Krawchuk, M. A., Letcher, B. H., Mahalovich, M. F., Meigs, G. W., Michalak, J. L., Millar, C. I., Quiñones, R. M., Stralberg, D, Thorne, J. H., 2020. Climate-change refugia: biodiversity in the slow lane. Front. Ecol. Environ., 18, 228-234.

[50]

Munks, S. A., Chuter, A. E., Koch, A. J., 2020. Off-reserve’ management in practice: contributing to conservation of biodiversity over 30 years of Tasmania's forest practices system. For. Ecol. Manage., 465, 117941.

[51]

Olson, D. M., Dinerstein, E, Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I, Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y, Lamoreux, J. F., Wettengel, W. W., Hedao, P, Kassem, K. R., 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933.

[52]

Parks, S. A., Carroll, C, Dobrowski, S. Z., Allred, B. W., 2020. Human land uses reduce climate connectivity across North America. Glob. Change Biol., 26, 2944-2955.

[53]

Parks, S. A., Holsinger, L. M., Littlefield, C. E., Dobrowski, S. Z., Zeller, K. A., Abatzoglou, J. T., Besancon, C, Nordgren, B. L., Lawler, J. J., 2022. Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts. Environ. Res. Lett., 17, 054016.

[54]

Parks, S. A., Holsinger, L. M., Abatzoglou, J. T., Littlefield, C. E., Zeller, K. A., 2023. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts. Glob. Change Biol., 29, 2681-2696.

[55]

Pimm, S. L., Jenkins, C. N., Abell, R, Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., Sexton, J. O., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187), 1246752.

[56]

Development Team, RAPIDS., 2023. RAPIDS: Libraries for End to End GPU Data Science. RAPIDS Development Team

[57]

Renton, M, Childs, S, Standish, R, Shackelford, N., 2013. Plant migration and persistence under climate change in fragmented landscapes: does it depend on the key point of vulnerability within the lifecycle?. Ecol. Model., 249, 50-58.

[58]

Saura, S, Bertzky, B, Bastin, L, Battistella, L, Mandrici, A, Dubois, G., 2019. Global trends in protected area connectivity from 2010 to 2018. Biol. Conserv., 238, 108183.

[59]

Saura, S, Bertzky, B, Bastin, L, Battistella, L, Mandrici, A, Dubois, G., 2018. Protected area connectivity: shortfalls in global targets and country-level priorities. Biol. Conserv., 219, 53-67.

[60]

Scheffers, B. R., De Meester, L, Bridge, T. C. L., Hoffmann, A. A., Pandolfi, J. M., Corlett, R. T., Butchart, S. H. M., Pearce-Kelly, P, Kovacs, K. M., Dudgeon, D, Pacifici, M, Rondinini, C, Foden, W. B., Martin, T. G., Mora, C, Bickford, D, Watson, J. E. M., 2016. The broad footprint of climate change from genes to biomes to people. Science, 354 , p. aaf7671. doi: 10.1126/science.aaf7671.

[61]

Schulze, K, Knights, K, Coad, L, Geldmann, J, Leverington, F, Eassom, A, Marr, M, Butchart, S. H. M., Hockings, M, Burgess, N. D., 2018. An assessment of threats to terrestrial protected areas. Conserv. Lett., 11 (3) , p. e12435. doi: 10.1111/conl.12435.

[62]

Serra-Diaz, J. M., Franklin, J, Ninyerola, M, Davis, F. W., Syphard, A. D., Regan, H. M., Ikegami, M., 2014. Bioclimatic velocity: the pace of species exposure to climate change. Divers. Distrib., 20, 169-180.

[63]

Shrestha, N, Xu, X, Meng, J, Wang, Z., 2021. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun., 12, 1632.

[64]

Thomas, C. D., Gillingham, P. K., 2015. The performance of protected areas for biodiversity under climate change: protected areas under climate change. Biol. J. Linnean Soc., 115, 718-730.

[65]

Vargas-Amado, M. E., Vidondo, B, Fischer, C, Pisano, S. R. R., Grütter, R., 2023. Potential effect of managing connectivity to contain disease spread among free-ranging wild boar (Sus scrofa) in disparate landscapes. Ecol. Solut. Evid., 4 , p. e12270. doi: 10.1002/2688-8319.12270.

[66]

Wan, X, Jiang, G, Yan, C, He, F, Wen, R, Gu, J, Li, X, Ma, J, Stenseth, N. C., Zhang, Z., 2019. Historical records reveal the distinctive associations of human disturbance and extreme climate change with local extinction of mammals. Proc. Natl. Acad. Sci. U.S.A., 116, 19001-19008.

[67]

Watson, J. E. M., Venter, O., 2019. Mapping the continuum of humanity's footprint on land. One Earth 1, 175-180.

[68]

Withanage, W. K. N. C., Gunathilaka, M. D. K. L., Mishra, P. K., Wijesinghe, W. M. D. C., Tripathi, S., 2023. Indexing habitat suitability and human-elephant conflicts using GIS-MCDA in a human-dominated landscape. Geogr. Sustain., 4, 343-355.

[69]

Wintle, B. A., Kujala, H, Whitehead, A, Cameron, A, Veloz, S, Kukkala, A, Moilanen, A, Gordon, A, Lentini, P. E., Cadenhead, N. C. R., Bekessy, S. A., 2019. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. U.S.A., 116, 909-914.

[70]

Xu, W, Pimm, S. L., Du, A, Su, Y, Fan, X, An, L, Liu, J, Ouyang, Z., 2019. Transforming protected area management in China. Trends Ecol. Evol., 34, 762-766.

[71]

Xu, W, Zhang, J, Yang, W, Zhang, L, Hull, V, Wang, Z, Zheng, H, Liu, J, Polasky, S, Jiang, L, Shi, X, Rao, E, Lu, F, Wang, X, Daily, G. C., Ouyang, Z., 2017. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. U.S.A., 114, 1601-1606.

[72]

Zhang, Y, Zhao, R, Liu, Y, Huang, K, Zhu, J., 2021. Sustainable wildlife protection on the Qingzang plateau. Geogr. Sustain., 2, 40-47.

[73]

Zhang, K, Zou, C, Lin, N, Qiu, J, Pei, W, Yang, Y, Bao, X, Zhang, Z., 2022. The ecological conservation redline program: a new model for improving China's protected area network. Environ. Sci. Policy 131, 10-13.

PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

/