Phenological control of vegetation biophysical feedbacks to the regional climate

Lingxue Yu , Ye Liu , Fengqin Yan , Lijie Lu , Xuan Li , Shuwen Zhang , Jiuchun Yang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) : 100202

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (1) :100202 DOI: 10.1016/j.geosus.2024.05.005
Research Article
review-article

Phenological control of vegetation biophysical feedbacks to the regional climate

Author information +
History +
PDF

Abstract

Phenology shifts influence regional climate by altering energy, and water fluxes through biophysical processes. However, a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to regional climate remains elusive. Using long-term remote sensing observations and Weather Research and Forecasting (WRF) model simulations, we investigated vegetation phenology changes from 2003 to 2020 and quantified their biophysical controls on the regional climate in Northeast China. Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests, while advanced green-up and delayed dormancy extended the growing season in croplands. This prolonged presence and increased maximum green cover intensified climate-vegetation interactions, resulting in more significant surface cooling in croplands compared to forests. Surface cooling from forest phenology changes was prominent during May’s green-up (-0.53 ± 0.07 °C), while crop phenology changes induced cooling throughout the growing season, particularly in June (-0.47 ± 0.15 °C), July (-0.48 ± 0.11 °C), and September (-0.28 ± 0.09 °C). Furthermore, we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model, with aerodynamic resistance emerging as the dominant factor. Crucially, our findings underscored that the land surface temperature (LST) sensitivity, exhibited substantially higher values in croplands rather than temperate forests. These strong sensitivities, coupled with the projected continuation of phenology shifts, portend further growing season cooling in croplands. These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature, emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.

Keywords

Phenology shifts / Biophysical feedback / Land-atmosphere interactions / Regional climate simulation

Cite this article

Download citation ▾
Lingxue Yu, Ye Liu, Fengqin Yan, Lijie Lu, Xuan Li, Shuwen Zhang, Jiuchun Yang. Phenological control of vegetation biophysical feedbacks to the regional climate. Geography and Sustainability, 2025, 6(1): 100202 DOI:10.1016/j.geosus.2024.05.005

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The numerical calculations in this study were carried out on the ORISE Supercomputer. This study was supported by the Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA28080503), the National Natural Science Foundation of China (Grant No. 42071025), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2023240). Ye Liu acknowledge the Pacific Northwest National Laboratory which is operated for DOE by Battelle Memorial Institute under Contract DE-A06–76RLO 1830.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2024.05.005.

References

[1]

Bonan, G. B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882), 1444-1449.

[2]

Bright, R. M., Davin, E, O'Halloran, T, Pongratz, J, Zhao, K. G., Cescatti, A., 2017. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 7, 296-302.

[3]

Bright, R. M., Zhao, K. G., Jackson, R. B., Cherubini, F., 2015. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Change Biol., 21(9), 3246-3266.

[4]

Case, J. L., Crosson, W. L., Kumar, S. V., Lapenta, W. M., Peters-Lidard, C. D., 2008. Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF model. J. Hydrometeorol., 9(6), 1249-1266.

[5]

Chen, C, Li, D, Li, Y, Piao, S. L., Wang, X. H., Huang, M. Y., Gentine, P, Nemani, R. R., Myneni, R. B., 2020. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Sci. Adv., 6(47), eabb1981.

[6]

Chen, C, Park, T, Wang, X. H., Piao, S. L., Xu, B. D., Chaturvedi, R. K., Fuchs, R, Brovkin, V, Ciais, P, Fensholt, R, Tommervik, H, Bala, G, Zhu, Z. C., Nemani, R. R., Myneni, R. B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2(2), 122-129.

[7]

Chen, L, Dirmeyer, P. A., 2016. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling. Environ. Res. Lett., 11(3), 034002.

[8]

Collins, W. D. , 2004. Description of the NCAR community atmosphere model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR. https://www2.cesm.ucar.edu/models/atm-cam/docs/description/description.pdf.

[9]

ESA, 2017. Land Cover CCI Product User Guide Version 2.

[10]

Fischer, E, Seneviratne, S, Vidale, P. L., Luthi, D, Schar, C., 2007. Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Clim., 20, 5081-5099.

[11]

Forkel, M, Migliavacca, M, Thonicke, K, Reichstein, M, Schaphoff, S, Weber, U, Carvalhais, N., 2015. Codominant water control on global interannual variability and trends in land surface phenology and greenness. Glob. Change Biol., 21(9), 3414-3435.

[12]

Forzieri, G, Dakos, V, McDowell, N. G., Ramdane, A, Cescatti, A., 2022. Emerging signals of declining forest resilience under climate change. Nature 608, 534-539.

[13]

Forzieri, G, Miralles, D. G., Ciais, P, Alkama, R, Ryu, Y, Duveiller, G, Zhang, K, Robertson, E, Kautz, M, Martens, B, Jiang, C. Y., Arneth, A, Georgievski, G, Li, W, Ceccherini, G, Anthoni, P, Lawrence, P, Wiltshire, A, Pongratz, J, Piao, S. L., Sitch, S, Goll, D. S., Arora, V. K., Lienert, S, Lombardozzi, D, Kato, E, Nabel, J. E. M. S., Tian, H. Q., Friedlingstein, P, Cescatti, A., 2020. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 10(4), 356-362.

[14]

Friedl, M., Sulla-Menashe, D., 2022. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD12Q1.061 (accessed 3 July 2024).

[15]

Gonsamo, A, Chen, J. M., Ooi, Y. W., 2018. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol., 24(5), 2117-2128.

[16]

Graven, H. D., Keeling, R. F., Piper, S. C., Patra, P. K., Stephens, B. B., Wofsy, S. C., Welp, L. R., Sweeney, C, Tans, P. P., Kelley, J. J., Daube, B. C., Kort, E. A., Santoni, G. W., Bent, J. D., 2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341(6150), 1085-1089.

[17]

He, Q, Wang, M, Liu, K, Li, K, Jiang, Z., 2022. GPRChinaTemp1km: a high-resolution monthly air temperature data set for China (1951–2020) based on machine learning. Earth Syst. Sci. Data 14(7), 3273-3292.

[18]

Hersbach, H, Bell, B, Berrisford, P, Biavati, G, Horányi, A, Muñoz Sabater, J, Nicolas, J, Peubey, C, Radu, R, Rozum, I, Schepers, D, Simmons, A, Soci, C, Dee, D, Thépaut, J. N., 2018. ERA5 hourly data on single levels from 1959 to present. https://cds.climate.copernicus.eu/portfolio/dataset/reanalysis-era5-single-levels

[19]

Hong, S. Y., Dudhia, J, Chen, S. H., 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev., 132(1), 103-120.

[20]

Hong, S. Y., Pan, H. L., 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev., 124(10), 2322-2339.

[21]

IPCC, 2013. Climate Change 2013: The Physical Science Basis. The Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

[22]

IPCC, 2021. Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

[23]

Jeong, S. J., Ho, C. H., Jeong, J. H., 2009. Increase in vegetation greenness and decrease in springtime warming over east Asia. Geophys. Res. Lett., 36(2), L02710.

[24]

Jeong, S. J., Ho, C. H., Kim, K. Y., Jeong, J. H., 2009. Reduction of spring warming over East Asia associated with vegetation feedback. Geophys. Res. Lett., 36(18), L18705.

[25]

Jeong, S. J., Ho, C. H., Gim, H. J., Brown, M. E., 2011. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol., 17(7), 2385-2399.

[26]

Jiang, N, Shen, M, Chen, J, Yang, W, Zhu, X, Wang, X, Peñuelas, J., 2023. Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming. npj Clim. Atmos. Sci., 6(1), 7.

[27]

Kern, A, Marjanović, H, Barcza, Z., 2020. Spring vegetation green-up dynamics in Central Europe based on 20-year long MODIS NDVI data. Agric. For. Meteorol., 287, 107969.

[28]

Kim, J. H., Hwang, T, Yang, Y, Schaaf, C. L., Boose, E, Munger, J. W., 2018. Warming-induced earlier greenup leads to reduced stream discharge in a temperate mixed forest catchment. J. Geophys. Res. -Biogeosci., 123(6), 1960-1975.

[29]

Levis, S, Bonan, G. B., Kluzek, E, Thornton, P. E., Jones, A, Sacks, W. J., Kucharik, C. J., 2012. Interactive crop management in the community earth system model (CESM1): seasonal influences on land-atmosphere fluxes. J. Clim., 25(14), 4839-4859.

[30]

Li, D, Liao, W, Rigden, A. J., Liu, X, Shevliakova, E., 2019. Urban heat island: aerodynamics or imperviousness?. Sci. Adv., 5(4), eaau4299.

[31]

Li, Y, Piao, S. L., Chen, A. P., Wang, X. H., Ciais, P, Li, L. Z. X., 2020. Local and teleconnected temperature effects of afforestation and vegetation greening in China. Natl. Sci. Rev., 7(5), 897-912.

[32]

Li, Y, Zhang, W, Schwalm, C. R., Gentine, P, Smith, W. K., Ciais, P, Kimball, J. S., Gazol, A, Kannenberg, S. A., Chen, A, Piao, S, Liu, H, Chen, D, Wu, X., 2023. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems. Nat. Clim. Change 13(2), 182-188.

[33]

Lian, X, Jeong, S, Park, C. E., Xu, H, Li, L. Z. X., Wang, T, Gentine, P, Penuelas, J, Piao, S. L., 2022. Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nat. Commun., 13(1), 3925.

[34]

Lian, X, Piao, S, Li, L. Z. X., Li, Y, Huntingford, C, Ciais, P, Cescatti, A, Janssens, I. A., Peñuelas, J, Buermann, W, Chen, A, Li, X, Myneni, R. B., Wang, X, Wang, Y, Yang, Y, Zeng, Z, Zhang, Y, McVicar, T. R., 2020. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv., 6(1), eaax0255.

[35]

Liu, J. Y., Kuang, W. H., Zhang, Z. X., Xu, X. L., Qin, Y. W., Ning, J, Zhou, W. C., Zhang, S. W., Li, R. D., Yan, C. Z., Wu, S. X., Shi, X. Z., Jiang, N, Yu, D. S., Pan, X. Z., Chi, W. F., 2014. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci., 24(2), 195-210.

[36]

Liu, T. X., Yu, L. X., Zhang, S. W., 2019. Impacts of wetland reclamation and paddy field expansion on observed local temperature trends in the Sanjiang Plain of China. J. Geophys. Res.-Earth Surf., 124(2), 414-426.

[37]

Liu, J. Y., Zhang, Z. X., Xu, X. L., Kuang, W. H., Zhou, W. C., Zhang, S. W., Li, R. D., Yan, C. Z., Yu, D. S., Wu, S. X., Nan, J., 2010. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci., 20(4), 483-494.

[38]

Liu, Y, Xue, Y. K., MacDonald, G, Cox, P, Zhang, Z. Q., 2019. Global vegetation variability and its response to elevated CO2, global warming, and climate variability - a study using the offline SSiB4/TRIFFID model and satellite data. Earth Syst. Dynam., 10(1), 9-29.

[39]

Liu, T, Yu, L, Bu, K, Yang, J, Yan, F, Zhang, S, Li, G, Jiao, Y, Liu, S., 2022. Thermal and moisture response to land surface changes across different ecosystems over Heilong-Amur River basin. Sci. Total Environ., 818, 151799.

[40]

Liu, Z, Hubbard, K. G., Lin, X, Yang, X., 2013. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Glob. Change Biol., 19(11), 3481-3492.

[41]

Lorenz, R, Davin, E. L., Lawrence, D. M., Stöckli, R, Seneviratne, S. I., 2013. How important is vegetation phenology for European climate and heat waves?. J. Clim., 26(24), 10077-10100.

[42]

Menzel, A, Sparks, T. H., Estrella, N, Koch, E, Aasa, A, Ahas, R, Alm-Kübler, K, Bissolli, P, Braslavská, O. G., Briede, A, Chmielewski, F. M., Crepinsek, Z, Curnel, Y, Dahl, Å, Defila, C, Donnelly, A, Filella, Y, Jatczak, K, Måge, F, Mestre, A, Nordli, Ø, Peñuelas, J, Pirinen, P, Remišová, V, Scheifinger, H, Striz, M, Susnik, A, Van Vliet, A. J. H., Wielgolaski, F. E., Zach, S, Zust, A. N. A., 2006. European phenological response to climate change matches the warming pattern. Glob. Change Biol., 12(10), 1969-1976.

[43]

Minoli, S, Jägermeyr, J, Asseng, S, Urfels, A, Müller, C., 2022. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun., 13(1), 7079.

[44]

Moore, K, Fitzjarrald, D, Sakai, R, Goulden, M, Munger, J, Wofsy, S., 1996. Seasonal variation in radiative and turbulent exchange at a deciduous forest in Central Massachusetts. J. Appl. Meteorol., 35, 122-134.

[45]

Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G, Nemani, R. R., 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626), 698-702.

[46]

Myneni, R., Knyazikhin, Y., Park, T., 2021. MODIS/Terra+Aqua Leaf Area Index/FPAR 4-Day L4 Global 500 m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD15A3H.061 (accessed 3 July 2024).

[47]

Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F, Ek, M. B., Barlage, M, Kumar, A, Manning, K, Niyogi, D, Rosero, E, Tewari, M, Xia, Y. L., 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos., 116, D12109.

[48]

Park, C. E., Jeong, S., 2023. Land surface temperature sensitivity to changes in vegetation phenology over northern deciduous forests. J. Geophys. Res. Biogeosci., 128, e2023JG007498.

[49]

Park, H, Jeong, S, Peñuelas, J., 2020. Accelerated rate of vegetation green-up related to warming at northern high latitudes. Glob. Change Biol., 26(11), 6190-6202.

[50]

Peñuelas, J, Filella, I., 2001. Responses to a warming world. Science 294(5543), 793-795.

[51]

Peñuelas, J, Rutishauser, T, Filella, I., 2009. Phenology feedbacks on climate change. Science 324(5929), 887-888.

[52]

Piao, S, Liu, Q, Chen, A, Janssens, I. A., Fu, Y, Dai, J, Liu, L, Lian, X, Shen, M, Zhu, X., 2019. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol., 25(6), 1922-1940.

[53]

Piao, S, Wang, X, Park, T, Chen, C, Lian, X, He, Y, Bjerke, J. W., Chen, A, Ciais, P, Tømmervik, H, Nemani, R. R., Myneni, R. B., 2020. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ., 1(1), 14-27.

[54]

Piao, S. L., Fang, J. Y., Zhou, L. M., Ciais, P, Zhu, B., 2006. Variations in satellite-derived phenology in China's temperate vegetation. Glob. Change Biol., 12(4), 672-685.

[55]

Piao, S. L., Liu, Z, Wang, T, Peng, S. S., Ciais, P, Huang, M. T., Ahlstrom, A, Burkhart, J. F., Chevallier, F, Janssens, I. A., Jeong, S. J., Lin, X, Mao, J. F., Miller, J, Mohammat, A, Myneni, R. B., Penuelas, J, Shi, X. Y., Stohl, A, Yao, Y. T., Zhu, Z. C., Tans, P. P., 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359-363.

[56]

Piao, S. L., Tan, J. G., Chen, A. P., Fu, Y. H., Ciais, P, Liu, Q, Janssens, I. A., Vicca, S, Zeng, Z. Z., Jeong, S. J., Li, Y, Myneni, R. B., Peng, S. S., Shen, M. G., Pennuelas, J., 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun., 6, 6911.

[57]

Piao, S. L., Wang, J. W., Li, X. Y., Xu, H, Zhang, Y. C., 2022. Spatio-temporal changes in the speed of canopy development and senescence in temperate China. Glob. Change Biol., 28, 7366-7375.

[58]

Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G, Chen, G, Chen, J. M., Ciais, P, Davis, K. J., Desai, A. R., Dietze, M. C., Dragoni, D, Garrity, S. R., Gough, C. M., Grant, R, Hollinger, D. Y., Margolis, H. A., McCaughey, H, Migliavacca, M, Monson, R. K., Munger, J. W., Poulter, B, Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schaefer, K, Tian, H, Vargas, R, Verbeeck, H, Xiao, J, Xue, Y., 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American carbon program site synthesis. Glob. Change Biol., 18(2), 566-584.

[59]

Richardson, A. D., Keenan, T. F., Migliavacca, M, Ryu, Y, Sonnentag, O, Toomey, M., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol., 169, 156-173.

[60]

Rigden, A. J., Li, D., 2017. Attribution of surface temperature anomalies induced by land use and land cover changes. Geophys. Res. Lett., 44(13), 6814-6822.

[61]

Shen, M, Piao, S, Jeong, S. J., Zhou, L, Zeng, Z, Ciais, P, Chen, D, Huang, M, Jin, C. S., Li, L. Z., Li, Y, Myneni, R. B., Yang, K, Zhang, G, Zhang, Y, Yao, T., 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. U.S.A., 112(30), 9299-9304.

[62]

Shen, M. G., Wang, S. P., Jiang, N, Sun, J. P., Cao, R. Y., Ling, X. F., Fang, B, Zhang, L, Zhang, L. H., Xu, X. Y., Lv, W. W., Li, B. L., Sun, Q. L., Meng, F. D., Jiang, Y. H., Dorji, T, Fu, Y. S., Iler, A, Vitasse, Y, Steltzer, H, Ji, Z. M., Zhao, W. W., Piao, S. L., Fu, B. J., 2022. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nat. Rev. Earth Environ., 3, 633-651.

[63]

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W., Powers, J.G., Duda, M.G., Barker, D.M., Huang, X.Y., 2019. A description of the advanced research WRF model version 4.1. NCAR Tech. Note NCAR/TN-556 + STR. doi: 10.5065/1dfh-6p97.

[64]

Stéfanon, M, Drobinski, P, D’Andrea, F, de Noblet-Ducoudré, N., 2012. Effects of interactive vegetation phenology on the 2003 summer heat waves. J. Geophys. Res. -Atmos., 117, D24103.

[65]

Subin, Z. M., Riley, W. J., Jin, J, Christianson, D. S., Torn, M. S., Kueppers, L. M., 2011. Ecosystem feedbacks to climate change in california: development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3-CLM3.5). Earth Interact., 15, 1-38.

[66]

Walther, G. R., Post, E, Convey, P, Menzel, A, Parmesan, C, Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O, Bairlein, F., 2002. Ecological responses to recent climate change. Nature 416(6879), 389-395.

[67]

Wan, Z, Hook, S, Hulley, G., 2015. MYD11A2 MODIS/terra land surface temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006. NASA EOSDIS land processes DAAC. https://ladsweb.modaps.eosdis.nasa.gov/

[68]

Wang, Z. M., Liu, Z. M., Song, K. S., Zhang, B, Zhang, S. M., Liu, D. W., Ren, C. Y., Yang, F., 2009. Land use changes in Northeast China driven by human activities and climatic variation. Chin. Geogr. Sci., 19(3), 225-230.

[69]

White, K, Pontius, J, Schaberg, P., 2014. Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty. Remote Sens. Environ., 148, 97-107.

[70]

Wu, C, Peng, J, Ciais, P, Peñuelas, J, Wang, H, Beguería, S, Andrew Black, T, Jassal, R. S., Zhang, X, Yuan, W, Liang, E, Wang, X, Hua, H, Liu, R, Ju, W, Fu, Y. H., Ge, Q., 2022. Increased drought effects on the phenology of autumn leaf senescence. Nat. Clim. Change 12(10), 943-949.

[71]

Wu, C, Wang, X, Wang, H, Ciais, P, Peñuelas, J, Myneni, R. B., Desai, A. R., Gough, C. M., Gonsamo, A, Black, A. T., Jassal, R. S., Ju, W, Yuan, W, Fu, Y, Shen, M, Li, S, Liu, R, Chen, J. M., Ge, Q., 2018. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Change 8(12), 1092-1096.

[72]

Xu, C, Liu, H, Williams, A. P., Yin, Y, Wu, X., 2016. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Glob. Change Biol., 22(8), 2852-2860.

[73]

Xu, X, Riley, W. J., Koven, C. D., Jia, G, Zhang, X., 2020. Earlier leaf-out warms air in the north. Nat. Clim. Change 10(4), 370-375.

[74]

Xue, Y. K., De Sales, F, Vasic, R, Mechoso, C. R., Arakawa, A, Prince, S., 2010. Global and seasonal assessment of interactions between climate and vegetation biophysical processes: a GCM study with different land-vegetation representations. J. Clim., 23(6), 1411-1433.

[75]

Xue, Y. K., Janjic, Z, Dudhia, J, Vasic, R, De Sales, F., 2014. A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos. Res., 147, 68-85.

[76]

Yang, B, He, M, Shishov, V, Tychkov, I, Vaganov, E, Rossi, S, Ljungqvist, F. C., Bräuning, A, Grießinger, J., 2017. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl. Acad. Sci. U.S.A., 114(27), 6966-6971.

[77]

You, N. S., Dong, J. W., Huang, J. X., Du, G. M., Zhang, G. L., He, Y. L., Yang, T, Di, Y. Y., Xiao, X. M., 2021. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 8, 41.

[78]

Yu, L, Li, X, Bu, K, Yan, F, Zhang, S, Liu, T., 2023. Increased background precipitation masks the moisture deficit caused by crop greening in Northeast China. J. Hydrol., 623, 129857.

[79]

Yu, L, Liu, Y, Bu, K, Wang, W. J., Zhang, S., 2022. Soil temperature mitigation due to vegetation biophysical feedbacks. Glob. Planet. Change 218, 103971.

[80]

Yu, L, Liu, Y, Li, X, Yan, F, Lyne, V, Liu, T., 2023. Vegetation-induced asymmetric diurnal land surface temperatures changes across global climate zones. Sci. Total Environ., 896, 165255.

[81]

Yu, L, Liu, Y, Liu, T, Yan, F., 2020. Impact of recent vegetation greening on temperature and precipitation over China. Agric. For. Meteorol., 295, 108197.

[82]

Yu, L, Liu, Y, Liu, T, Yu, E, Bu, K, Jia, Q, Shen, L, Zheng, X, Zhang, S., 2022. Coupling localized Noah-MP-Crop model with the WRF model improved dynamic crop growth simulation across Northeast China. Comput. Electron. Agric., 201, 107323.

[83]

Yu, L, Liu, Y, Yang, J, Liu, T, Bu, K, Li, G, Jiao, Y, Zhang, S., 2022. Asymmetric daytime and nighttime surface temperature feedback induced by crop greening across Northeast China. Agric. For. Meteorol., 325, 109136.

[84]

Yu, L, Xue, Y, Diallo, I., 2021. Vegetation greening in China and its effect on summer regional climate. Sci. Bull., 66(1), 13-17.

[85]

Yu, L. X., Liu, T. X., Bu, K, Yan, F. Q., Yang, J. C., Chang, L. P., Zhang, S. W., 2017. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Sci. Rep., 7, 14770.

[86]

Zaitchik, B. F., Macalady, A. K., Bonneau, L. B., Smith, R. B., 2006. Europe’s 2003 heat wave: a satellite view of impacts and land–atmosphere feedbacks. Int. J. Climatol., 26, 743-769.

[87]

Zeng, Y. L., Hao, D. L., Huete, A, Dechant, B, Berry, J, Chen, J. M., Joiner, J, Frankenberg, C, Bond-Lamberty, B, Ryu, Y, Xiao, J. F., Asrar, G. R., Chen, M., 2022. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ., 3(7), 477-493.

[88]

Zeng, Z. Z., Piao, S. L., Li, L. Z. X., Zhou, L. M., Ciais, P, Wang, T, Li, Y, Lian, X, Wood, E. F., Friedlingstein, P, Mao, J. F., Estes, L. D., Myneni, R. B., Peng, S. S., Shi, X. Y., Seneviratne, S. I., Wang, Y. P., 2017. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7(6), 432-436.

[89]

Zhao, G, Dong, J, Yang, J, Wang, H, Dai, J, Zhou, Y, Cui, Y, Ge, Q., 2023. Cropland expansion delays vegetation spring phenology according to satellite and in-situ observations. Agric. Ecosyst. Environ., 356, 108651.

[90]

Zhu, Z. C., Piao, S. L., Myneni, R. B., Huang, M. T., Zeng, Z. Z., Canadell, J. G., Ciais, P, Sitch, S, Friedlingstein, P, Arneth, A, Cao, C. X., Cheng, L, Kato, E, Koven, C, Li, Y, Lian, X, Liu, Y. W., Liu, R. G., Mao, J. F., Pan, Y. Z., Peng, S. S., Penuelas, J, Poulter, B, Pugh, T. A. M., Stocker, B. D., Viovy, N, Wang, X. H., Wang, Y. P., Xiao, Z. Q., Yang, H, Zaehle, S, Zeng, N., 2016. Greening of the Earth and its drivers. Nat. Clim. Change 6(8), 791-795.

[91]

Zohner, C. M., 2019. Phenology and the city. Nat. Ecol. Evol., 3(12), 1618-1619.

PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

/